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Discrete, nonlinear string vibrations*

D. Greenspan

Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706, USA

This paper develops a new approach, computer oriented in the sense that both the model and the equations of
motion are discrete, to the problems arising from the vibrations of an elastic string.

(Received February 1969)

1. Introduction

Problems related to the vibrations of an elastic string
have been studied for many years by mathematicians,
physicists and engineers (see, e.g. all the quoted references
and the references contained therein). For such prob-
lems, we will develop in this paper a new approach
which is completely computer oriented, in the sense that
both the model and the equations of motion are discrete.
Thereby, we will be able to study nonlinear motion of a
vibrating string by means only of arithmetic processes.

2. The discrete string

A discrete string is one which is composed of a finite
number of particles. It will be treated mathematically
as an ordered set of n + 2 circular, homogeneous
particles C,, k=0, 1,2, ..., n, n + 1, with respective
centres (X, yi), as shown typically in Fig. 1. Of course,
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by the molecular theory of matter, real strings are
discrete strings for which # is relatively large.

Our problem will be that of describing the return of a
discrete string to a position of equilibrium from an
arbitrary position of tension when 7 is relatively small.
The resulting motion can be considered as an approxima-
tion to that of a real string, the improvement of which is
dependent largely upon one’s computer capability. It

will be assumed throughout that C, and C,, , are fixed
while Cy, C,, . . ., C, are free to move, and that

Xo=1Y0o="VYnt1=0. 2.1

3. Velocity and acceleration of a particle

To facilitate dealing with the motion of a discrete
vibrating string, it will be convenient to develop first the
concepts of velocity and acceleration for a particle which
moves in a fixed direction. Throughout, the location of
the particle will be identified with the location of the
centre of the particle.

For At > 0,lets, = kAt,k=0,1,...,9—1,q. At
time #, let a particle which is in motion along an S axis
have its centre at 5,. We wish to define the velocity v,
and acceleration g, of the particle at each time ¢,
k=1,2,... q. For this purpose, consider first the
interval ¢, < # < t;. Suppose, as shown in Fig. 2, one
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knows v, in addition to s, and s;. For example, when a
particle’s motion begins from a position of rest, one
would know that vy = 0. Let us try to define v, = v(¢,)
in a fashion that will use all the given data. Such is the
case when one defines »; implicitly by the smoothing
formula

51 — 8o _ Yo + vy
AL = 3 - @aG.n

Note that if one were to define »; by the backward
difference formula

§1 — S

AV

then the knowledge of v, would have been neglected.
On the other hand, if one were to define velocity by a

7)1=

3.2
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196 D. Greenspan

forward difference formula, it would follow that

§1 — 8o
At

and vy = 0 would imply that s, = s,. However, it is
undersirable physically to imply that a particle whose
initial velocity is zero cannot move during the first time
interval of length At.

The above considerations then motivate the general
definition

(3.3)

?)0:

Sk — Sk—1_ Yk—1 + v
At 2 ’

for velocity v,.
With regard to acceleration q, = a(t,), k = 1,2,...,4,

one rarely knows ay, so that one is forced to define a, by
the backward difference

k=1,2....q (34

V1 — Yy
Y VA

from which we are motivated to define a, by

U — Y
JAV

From (3.4) and (3.5), it follows readily (Greenspan,
1968a) that

a, k=12,...,4q. 3.5)

2
Y1 =7; [s1 — 50] — o (3.6a)

-1

= A [Sk + (—Dksg 42 2 ( Disi_ ;] + (—1)kv,,
k=2 (3.6b)

a, So — VoAt] (3.7a)

2
~ @t

2
a, = (A_t)Z [S2 — 3S[ + 2s0 + vOAt] (3'7b)
k—1

381+ 2(—1)kso + 4_§2 [(—1)se—;]
+(—=DrvoAt}, k> 3. 3.7¢)

2
ak:(A—t)'z{sk -

4. The law of motion

In terms of the definitions of Section 3, the motion of
a particle is assumed to be governed by a generalised
Newton’s equation of the form

Fiti_)=mat); k=12,...,q. @.1

The form of (4.1) has particular computational value
since the left side will be a function only of sy, sy, . . .,
84—1, while the right side will be a linear combination of
S0> 815 + -+ Sg—1, S5 For then (4.1) can be solved
explicitly for s,, and the particle’s position can be
generated easily on a digital computer for a large number
of time steps. From the resulting recursion formula for
84 one has immediately the existence and uniqueness of
each s, for given s, and v,, provided only that F is
always defined.

The validity of the conservation laws for (4.1), which
is in part related to the stability of the numerical
procedure to be followed, follows readily as in Greenspan
(1968a).
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5. Equations of string vibration

We will proceed under the popular assumption that
each particle of a discrete string can move in the vertical
direction only. The string is then said to exhibit trans-
verse vibrations.

Letxg <x; <X, <...<X, <Xppyiand x; — x;_
=Ax,i=1,2,...,n+1. Attime#,k=0,1,2,...,
g, measured in seconds, let C;, as shown in Fig. 3, be a
typical particle in motion. In order to incorporate the
time dependence of the centres of C;_;, C; and Cjq,
let the respective centres of these particles at time 7, be
(xj—15 Yi-1, s (s Y5, 1) (Xj415 Vit 1, k)> Where each co-
ordmate is measured in feet

In studying the motion of C;, we will take into account
only tensile, viscous, and gravitational forces. For this
purpose, let T, be the tensile force between C;_; and C,
let T, be the tensile force between C; and C;., , and let
the viscosity vary with the velocity of the particle. Then
(4.1) takes the particular form

l Vi1, k-1 “—yi,k~1)
[(Ax)? + (Pig1, k=1 — Vi, k= D2
l (yi,k—-l —'yi—l,k—l)
[(Ax)? + (i, k=1 — Yi—1, k= D*]?

—ow,- k—1 — mg =ma,~,k; k= 1, 2, 3, oo oy (5.1)

T,

— Ty

where g > 0, « > 0 and m is the mass of C;. By means
of (3.6) and (3.7), it follows readily from (5.1) that

At)?
yll_ytO"i‘(l————— IOA +( )
{|T| (Yis1,0 — Vi, 0)
A+ Girr, 0 — yi 212
(,Vi,o _J’i~1,o) _ }
ITII [(Ax)z + (yi, 0 — yi—-l, 0)2]1/2 . mg 5

i=1,2,..,: (52a
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aAt
yi,2=(3_7 i1 “m Ji,o
alt
- (1 —W U," oAt
(At)z{ (Vis1,1—Yi, 1)
T 9 £
+ 2m I 2| [(Ax)? + (J’i+1, 1 — )i, 1)2]”2
__lTI (yi,l_yi——l,l) —mg}'
YA 4+ (3,1 — Yie1, D2 ’
i=12,...,n (5.2b)
aAt aAt
o= (3 2= _1)k—1 XNy
Vi, k (3 ) Vi k=1 + (=1 (2 o )V 0
aAr\ -1 .
+2(2=50) (2,10 ))

T}

[ I
L] - . - -
~) ANAFLo

+ (=1 (12

(Ar)?

(yit 1, k=1 — Vi, k— )

T om ['T 2| (A

+ Vi1, k=1— Vi, k= 1)*]1/?

i k=1 = Yim1,5-1) :I
— T 2 ) B ‘
I [(AX)?* + (i k-1 — Yie1, - )2 e |

Before considering actual dynamical problems, it is
worth noting that in practice it is of value to know the
steady state, or terminal position, of a vibrating string.
With this position available a priori, one can actually
check a particular computation to see whether or not it is
converging or diverging. The steady state can often be
obtained by applying the generalized Newton’s method
(Greenspan, 1968b) to the algebraic system:

|T2|(J’i+1 — ¥
[(Ax)? + (yis1 — ¥)?IV?
|T1|(J’i — Yi-1)

i=12,...,n,
(5.3)

which results easily from (5.1) after setting a; , = v;
=0.

T Gy R

6. Examples

A large number of examples using (5.2a)-(5.2c) were
run at the University of Wisconsin Computing Center.
In this section we will discuss several which are both
illustrative and of physical interest. In all cases the
output is given graphically with 100 additional points
interpolated linearly between each pair of consecutive
particles and the strings are all of approximately the

k>3,i=1,2,...,n (5.2¢) same weight.
t:ouoo O.CLL 0.08 0.12
C.16 0,20 0.2l 0.28
\//
0.2 0.0 0.48 0.56
0.68 0.78 0.88 __1.00
2.00 3,00 5,00 10.00
\/

Fig. 4
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Example 1: Consider an eleven particle string with

i, .
x,-=m,z-—0,l,2,...,10,w1th

YViok—1 — Vi—1, k—
T1=T0[1+] kle 1k1]

_{_g(yi,k—l _Ai')i—l,k—l)z:l 6.1)

T,— T, I:l +‘yi+1,k~1A;J/i,k—1

€(Vist, k=1 — Vi, k—1\*].
+5 1 ik } 62
and with «=0-6, m=0-1, Ty =9, Ar=0-002,
Ax=0-1, n=09, g =322, e =0-01. The string is
placed in a position of tension by bringing the centre
particle to the point (0-5, 0-5). The particles to the left
of centre are positioned on the line y = x and those to
the right of centre on the line y= —x 4+ 1. The
resulting configuration is that shown for ¢z = 0-00 in
Fig. 4. The string is released from its position of ten-
sion and its stable, strongly damped motion is shown
typically from ¢#=0-00 to = 10-00 in Fig. 4. At
t = 10 the moving particles were oscillating no more
than 2-10—* and were located at (0-1, —0-1137), (0-2,
—0-2023), (0-3, —0-2669), (0-4, —0-3080), (0-5,
—0-3236), (0-6, —0-3080), (0-7, —0-2669), (0-8,
—0-2023), (0-9, —0-1137). The steady state positions,
found by a method described in the next example, are
(0-1, —0-1137), (0-2, —0-2022), (0-3, —0-2668), (0-4,
—0-3079), (0-5, —0-3235), (0-6, —0-3079), (0-7,
—0-2668), (0-8, —0-2022), (0-9, —0-1137). The total
computing time consumed on the UNIVAC 1108 was
under 14 seconds.

Example 2: Consider now a twenty-one point string with

0,5 t=420
=425
"1.0
t=,30
=133
t2.35
Fig. 5

x; = %, i=0,1,2, ... 20; with T, and T, defined by
(6.1)~(6.2); and with « = 0-15, m = 0-05, T, = 12-5,
At =0-00025, Ax =0-1,n =19, g = 32-2, ¢ = 0-01.
The string is placed in a position of tension by bringing
the centre particle to the point (1, 1). The particles to
the left of centre are positioned on y = x and those to
the right of centre on y = —x + 2. The resulting con-
figuration is that shown for # = 0 in Fig. 5. The string
is released from its position of tension and its downward
motion from ¢t =0 to ¢ = 0-:35 is shown typically in
Fig. 5, while its upward motion from ¢t = 0-35 to
t = 0-69 is shown typically in Fig. 6. The lower curve
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Fig. 7

in Fig. 7 is the string’s position after six seconds, at
which time its maximum oscillation is less than 0-005.
The upper curve in Fig. 7 labelled S, is the steady state
solution, which was obtained as follows. Substitution of
the given parameters into (5-3) yields the system

R — .
(12-5) [1 +J|L+()%—l—&’ + (0-005) x

Yit+1 — J’i)z] (Yig1 — Vi)
0-1 [(0-01) — (¥i+1 — J’i)z]”2

— Yi—1

—(12-5) [1 + 'yTI + (0-005) x

(yi — Yi— 1)2] (yi — yi-1)
0-1 [(0-01) — (y; — yi-1?]
i=1,2,...,19. (6.3)

This system was replaced by an alternate system of ten

;3= 1-61;
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equations in yy, y,, . . ., Y10 by applying the symmetry
assumption y; = yy_;, i=0, 1, 2, . . ., 9 and the
‘hanging chain’ assumption y; > y;,,,i=20,1,2,...,9
to (6-3). The alternate system was solved by the
generalized Newton’s method (Greenspan, 1968b)
and yqy, Y12, - - -, V1o Were then defined by symmetry.
The resulting values of y;, y,, . . ., 19 Were substituted
finally into (6-3) and were verified to be the required
solution. At the end of six seconds, the particles of the
string were at most 0-0025 from steady state. The
total UNIVAC 1108 computer time consumed for six
seconds of vibrations and for determination of the steady
state was under 50 seconds.

Example 3: The string in Example 2 was considered
again but with a different initial position. The first
particle was placed at (0-1, 0-5), the second particle at
5
(0-2, 1), and the remaining particles on y = — §(x —2),
as shown for + = 0-00 in Fig. 8. The first 0-75 seconds
of motion is shown typically in Fig. 8. Convergence to
steady state S, shown in Fig. 7, was at a rate comparable
to that of Example 2.

Example 4: The string in Example 3 was considered
again but without gravity, that is, with g = 0. The first
0-75 seconds of motion is shown typically in Fig. 9.
Convergence to the steady state solution y; =0, i = 1,
2, ..., 19 was at a rate comparable to that of Example 2.

Example 5: The string in Example 2 was considered
again but with an initial position defined as follows. The
fifth particle was set at (0-5, —1) and the fifteenth particle
at (1-5,1). The particles to the left of the fifth were set
on y = —2x, those between the fifth and the fifteenth on
y = 2x — 2, and those to the right of the fifteenth on
y= —2x + 4. The resulting configuration is that
shown for ¢ = 0-00 in Fig. 10, where the first 0-95
seconds of motion is shown. Convergence to steady
state S shown in Fig. 7 was at a rate comparable to that
of Example 2.

Example 6: Consider a forty-one particle string with
= 2—’0, i=0,1,2,... 40; with T, and T, defined by

(6-1)~(6-2); and with « = 0-125, m = 0-025, T, = 10-0,
At = 0-00025, Ax = 0-05,n = 39, g = 32-2,¢ = 0-01.
The string is placed in a position of tension by bringing
the centre particle to (1, 1), the particles to the left of

X
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centre to y = x, and the particles to the right of centre to
y = —x + 2, as shown for # = 0-00 in Fig. 11. The
need for greater accuracy than that required of Examples
1-5 led to use of the CDC 3600 for the computation.
The volume of the output became so excessive that it was
graphed directly, without printout, by a Calcomp 570
digital plotter. The first 0-35 seconds of motion is
shown typically in Fig. 11 as the string executes its
initial movement downwards. A full four seconds of
vibrations were graphed and showed a convergence to
steady state similar to that of Examples 1-5. The
entire computing time was under ten minutes.

7. Remarks

The intuition used in constructing the examples of
Section 6 can be outlined as follows. A variety of initial
conditions and parameters are inserted into (5.2a)—(5.2¢)
and the computer is programmed to give 5-10 seconds of
vibration. If no convergent cases result, then Az and e
are decreased while « and m are increased. When a
convergent case results, others can be constructed with a
steady state closer to the horizontal by decreasing m a
small amount, while still others with larger oscillations
can be constructed by decreasing « a small amount. Ifa
decrease in « or Ax results in divergence, then A¢ must
also be decreased to retain the convergent behaviour.

Other convergent examples, not seriously different in
behaviour from those of Section 6, were obtained with
€ =01, e = 0-001, and with T defined by raising the

1 3
bracketed terms in (6.1) and (6.2) to the powers 3 and 53

Studies of light strings led to such rapid convergence
that the graphical output was relatively uninteresting.
Nevertheless, it became apparent quickly that the number
and variety of interesting parameter choices and initial
positions of tension was so vast that no attempt could
be made at present to study them all. Initial studies of a
201 particle string with transverse oscillations only and
of a 21 particle string which allowed also for longitudenal
motion resulted in no significant results due to a shortage
of available computing time.

Finally, it should be noted that (6.1) and (6.2) follow
from the simple assumptions of Fermi, Pasta and
Ulam (1955). More complex formulas, which allow for
each particle to have a relatively large radius, can also be
developed and will be similar to those of Carrier (1945).

AMEs, W. F. (1965). Nonlinear Partial Differential Equations in Engineering, Academic Press: New York.

CARRIER, G. F. (1945). On the nonlinear vibration problem of an elastic string, Quart. Appl. Math., Vol. 3, pp. 157-165.
FerMmi, E., PAsTA, J. R., and ULaMm, S. (1955). Studies of nonlinear problems I, Los Alamos Report #1940.

GREENSPAN, D. (1968a). Discrete mechanics, Technical Report 7#49, Department of Computer Sciences, University of Wisconsin.
GREENSPAN, D. (1968b). Lectures on the Numerical Solution of Linear, Singular, and Nonlinear Differential Equations, Prentice

Hall: Englewood Cliffs.

LANGER, R. E. (1947). Fourier series, American Math. Mo., Vol. 57, No. 2.

MELCHER, J. (1968). Complex waves, IEEE Spectrum, pp. 86-101 (October).

Morsk, P. M., and FesHBACK, H. (1953). Methods of Theoretical Physics, McGraw-Hill: New York.

WEINBERGER, H. F. (1965). Partial Differential Equations, Blaisdell: New York.

ZABUSKY, N. J. (1962). Elastic solution for the vibrations of a nonlinear continuous model string, Jour. Mathematical Physics,

Vol. 3, pp. 1028-1039.

¥202 I4dy 61 U0 1senb Aq L8¥6EYE/S6L/2/E L/eIoIE/|Uuloo/woo dno-olwepeoe//:sdiy wolj pepeojumod




