206

Algorithms Supplement

Previously published algorithms

The following algorithms have recently appeared in the
Algorithms Sections of the specified journals.

(a) Communications of the ACM (October—-December 1969)
355 AN ALGORITHM FOR GENERATING ISING

CONFIGURATIONS
Generates n-sequences (S\, . . ., S,) of zeros and ones where
x=235;

i=1
n—1

and t= lesi+! — S
iz

are given.

356 A PRIME NUMBER GENERATOR USING THE
TREESORT PRINCIPLE

Finds the first m> 4 elements of the infinite sequence
2,3,5,7,11, ... of prime numbers using a method of dis-

tinguishing primes from composite numbers similar to that of
B. A. Chartres.

357 AN EFFICIENT PRIME NUMBER GENERATOR
Finds the next m primes.

358 SINGULAR VALUE DECOMPOSITION OF A
COMPLEX MATRIX

Finds the singular values 6, > 0, > ... > oy of the complex
M X N matrix (M > N) given in the first N columns of an
array A. Also finds the first NU columns of an M X M
unitary matrix U and the first NV columns of an N x N
unitary matrix V such that ||A — UZ V*|| is negligible
relative to ||A||, where T = diag(s,). Can also be used to
solve a homogeneous system of linear equations.

359 FACTORIAL ANALYSIS OF VARIANCE

Transforms a vector y, observed in a balanced complete
ty Xty X ... X t, factorial experiment, into an interaction
vector z whose elements include mean and main effects.

360 SHORTEST-PATH FOREST WITH TOPOLOGICAL
ORDERING

Given a subset (called roots) of the nodes, numbered from 1 to
n, spanned by a directed graph composed of arcs of known
length, finds for each node in the network the shortest path
connecting it to its closest root node.

361 PERMANENT FUNCTION OF A SQUARE
MATRIX

Calculates the permanent function of an n X n matrix A,

n—1 r
per(A)=3% (=1y ¥ X;
r=0 X€Tp—y i=1

The Computer Journal Volume 13 Number 2 May 1970

where T;,j =n,n — 1, ..., 1, is the set of vectors x — xp),
i=1,2,..., n, which are obtained by adding j columns of A

together in all (7) possible ways.

362 GENERATION OF RANDOM PERMUTATIONS

Produces a permutation on the integers 1,2, . . ., n, each of the

n! permutations being given by one value of r between 1 and n!
inclusive.

363 COMPLEX ERROR FUNCTION

Evaluates the real and imaginary part of the function
w(z) = exp (—z2) erfc (—iz) for arguments z = x + iy in the
first quadrant of the complex plane.

364 COLORING POLYGONAL REGIONS

Takes current regions and draws them in a two-dimensional
array.

365 COMPLEX ROOT FINDING

Uses the downhill iterative method to determine, within a
certain region, a root of a complex transcendental equation
f(z) =0 with the only restriction that w — f(z2) must be
analytic in the region considered.

366 REGRESSION USING CERTAIN DIRECT PRO-
DUCT MATRICES

A vector of observations is replaced by regression coefficients
obtained by the matrix product CT. vector where CT, the

transforming matrix, is the direct product of the transposes of
selected matrices.

367 ANALYSIS OF VARIANCE FOR BALANCED
EXPERIMENTS

Provides analyses of variance, covariance, and regression for
data collected according to a wide variety of experimental
designs.

(b) BIT (July 1969)

24 ALGORITHMS FOR THE INTERPRETATION
AND EVALUATION OF A FUNCTION DEFINED
BY CHARACTER STRINGS

Provides the possibility of supplying an arithmetic function to
a computer program at execution time without previous
compilation.

(c) Applied Statistics (March 1970)
AS26 RANKING AN ARRAY OF NUMBERS

Given a real array v[1: n] the procedure constructs another real
array b[1: n] where b(i) is the rank of v(i).

20z Iudy 61 U0 1sonB AQ 8GGE7E/902/2/E | /AI0IME/|UlWO0 /WO dNO" OIS PEDE//:SARY WOl PAPEOIUMO(

Algorithms Supplement 207

AS27 THE INTEGRAL OF STUDENT’S t-DISTRI-
BUTION

Computes the area from t to + oo for Student’s t-distribution
using Gentleman and Jenkins’ method.

AS28 TRANSPOSING MULTIWAY STRUCTURES

Overwrites real array X[1: n) with a re-ordered set defined by
X[il— X[j] where the inverse transformation is given in a
subsidiary procedure map. Examples of map are given (i) when
X is a symmetric matrix stored as upper triangular by rows and
is to be re-ordered so that it is stored as lower triangular by
rows and (ii) when X is an n-way array which is to have its
factor order permuted.

The following papers, containing useful algorithms, have
recently appeared in the specified journals.

(a) Numerische Mathematik

BALANCING A MATRIX FOR CALCULATION OF
EIGENVALUES AND EIGENVECTORS (Band 13, Heft 4,
pp. 293-304)

NUMERICAL CALCULATION OF ELLIPTIC INTE-
GRALS AND ELLIPTIC FUNCTIONS. III. (Band 13,
Heft 4, pp. 305-315)

(b) International Journal for Numerical Methods in Engineering

A FRONTAL SOLUTION PROGRAM FOR FINITE
ELEMENT ANALYSIS (Vol. 2, No. 1, pp. 5-32)

New algorithms

Algorithm 48
PROCEDURE FOR THE EVALUATION OF AN

INTEGRAL OCCURRING IN THE MEAN SQUARE
RESPONSE ANALYSIS OF LINEAR SYSTEMS

P. G. Littlewood
Dept. of Applied
Mathematics and
Computing Science
University of Sheffield

Author’s note:
The procedure intlap evaluates integrals of the type

© 1 i
—_ 2, —_ —_
I= J‘ox Wdr = 5 f_,i\;gs) . X(—s)ds
where

[ee}
X(@) = J x(t) exp (—st)dt
0
and is a rational function of s with the degree of the numerator
less than that of the denominator, i.e.

X(s) = c(s)/d(s)

where
n—1
c(s) =X ¢k
k=0
and
n
d(s) = 2 dksk,
k=0

and X(s) has poles in the left half-plane only.

In engineering investigations, integrals of the second type
occur very frequently, often where n is very large. Fuller
(1967) has given a short historical account of the analytical
methods used to evaluate integrals of this type, most of which
depend upon contour integration or are based on integration
by parts. An alternative method, using autocorrelation
functions, is given in Huntley (1969).

When X(s) is a rational function of s, with all its poles in

the left half-plane, then I can be expressed as an algebraic
function of the coefficients ¢y, ¢y, . . ., ¢,_1, do, dy, - - ., d,,
and tables for I have been published (Newton, Gould and
Kaiser, 1964) for n << 10. Unfortunately these tables become
extremely laborious to use for » > 7. Fuller quotes a general
expression for 7, involving the ratio of two determinants and
the method used, in this algorithm, for the evaluation of I,
is closely related to this expression.

It can be shown that I = (—1)*"1x,/(2d,) where x, . . ., x,,
satisfy the system of linear equations

m
.zodM—ixi+l =8&m/2 o<mg<n—1
i=

n—1

2 A iXip1 = &mi2

i=m—n

n<m<<2n—-2

where m takes even values only, and where the g; are the
coefficients of 52 in the expansion of c(s) . ¢(—s), i.e.

(s) . o(—s) =go +&15% +g25* + ... + g, 152D,

(If the system of linear equations were solved for x,, by
Cramer’s Rule, then the resulting expression for I would be
identical to that given by Fuller.)

The algorithm solves this system of equations by Gaussian
Elimination, considering only the non-zero entries in the
matrix of coefficients. In so doing it will be approximately
four times quicker in execution than a method which
evaluates, using standard routines, the determinants in the
expression quoted by Fuller.

The algorithm has been extensively checked, for a variety
of problems of different orders, and, in particular, with a
tenth order system solved by the method described in
Huntley (1969), in which complete agreement was obtained
to nine significant figures.

References

FuLrLer, A. T. (1967). The Replacement of Saturation
Constraints by Energy Constraints in Control Optimization
Theory, Int. J. Control, Vol. 6, No. 3, pp. 201-227.

HuNTLEY, E. (1969). The serial/matrix technique applied to
the analysis of linear systems with stationary random
inputs, Int. J. Control, Vol. 10, No. 1, pp. 13-27.

NewtoN, G. C, Gourp, L. A., and KAIser, J. F. (1964).
Analytical Design of Linear Feedbak Controls, J. Wiley.

procedure intlap(n, c, d, result);
value n, c, d; integer n; real result; array c, d;
comment intlap evaluates the integral of [x(1)] 1 2, with respect
to t, in the range O to infinity, in the cases where the Laplace
transform of x(t) can be expressed as a rational function of the
Laplace transform variable s.
i.e. x(s) = c(s) / d(s)
where c(s) = c(0) + c()s + ... +cn — st (n —1)
and d(s) =d0) +d()s + ... +dn — s} (n —1) +
d(n)s 1 n.
Equivalently the procedure evaluates 1 | (2 X pi X i) times the
integral of x(s) X x(—s) with respect to s in the range
—i X infinity to +i X infinity, where i = sqrt(—1) and x has
the form defined above. Input to the procedure is given by
n: the order of the polynomial d(s)
c: the coefficients of the polynomial c(s) arranged as a vector
d: the coefficients of the polynomial d(s) arranged as a vector.
The result of the integral evaluation is obtained via the para-
meter result;
if n =1 then result := 0-5 X c[0] 4 2 / (d[0] X d[1]) else

begin integer i, j, k, I, m; real acc;

array g[0 :n — 1], a[l : n, 1 : n];

ji=-1

fori:=Ostep 1 until» — 1 do

begin

comment this block evaluates the g’s;

20z Iudy 61 U0 1sonB AQ 8GGE7E/902/2/E | /AI0IME/|UlWO0 /WO dNO" OIS PEDE//:SARY WOl PAPEOIUMO(

208 Algorithms Supplement

l:=j:=—j; k:=0;
acc :=0;
Ll:ifi +k=n — 1ori— k = 0 then goto L2 else
begin
k:=k+1;1:=—1I;
acc :=acc +1 X c[i — k] X c[i + k]

end;
goto L1;
L2:gli]l :=2 X acc +j X cli] %X c[i]
end;
for i := 1 step 1 until » do
begin

comment this block evaluates the coefficient matrix;
m:=i=—2;k:=ifi/2 —m <0-1 then —1else — 2;
li=(n—i+1)=+2+1
for j := m + 1 step 1 until / do
begin
k:=k + 2;alj,i] :=d[k]
end
end;
for k := 1 step 1 until » — 1 do
begin
comment this block performs the Gaussian elimination;
m:=m—k+1)+24+k;
for i := k + 1 step 1 until m do
begin
ali, k] := ali, k1 / alk, k1;
if £ = 1 then goto L3;
l:=if2 Xk —1<nthen2 X k — 1 else n;
for j := k + 1 step 1 until / do
a[l’]] = a[’;]] - a[ia k] X a[k9j];
L3:gli — 11 :=gli — 11 — ali, k] X gk —- 1]

end
end;
result 1= 0-5 X g[n — 11/ (d[n] X al[n, nl);
ifn/2—n-+2<0-1 then result := — result
end intlap;

Algorithm 49

INDEXING SUBARRAYS IN MULTIDIMENSIONAL
ARRAYS
K. W. Smillie
Dept. of Computing Science
University of Alberta
Edmonton, Alberta, Canada
Author’s note:

We are given an N-dimensional rectangular array, the
elements of which are stored in row major order as a vector
Y. The dimensions of the array are stored as an N-component
vector R. We are required to select sequentially the elements
of any specified rectangular subarray without first extracting
the subarray from the array.

Let ¥V be an N-component vector of non-negative com-
ponents, such that the positive components give the fixed
coordinates of the subarray in the array. Let the scalar B
be the sequence number of any element in the subarray. For
example, for a 5 X 3 X 4 array, R = (5, 3,4), and Y has
60 components. The vector V = (2,1,0) specifies the
elements on the straight line defined by fixing the first and
second coordinates at 2 and 1, respectively. The elements
on this line may be selected by letting B take the values
1,2,3 and 4.

An algorithm to select the Bth element of a subarray may
be described as follows: (1) Construct a vector W which is
the representation of B — 1 in a mixed-base number system
defined by those components of R corresponding to zero
components in V. (2) Expand W to an R-component vector
X with zeros in those locations corresponding to non-zero
components in V. (3) Replace the zero components of X
produced in (2) by 1 less than the corresponding components

in R. Call the result Z. (4) Convert Z to a scalar I which
is 1 greater than the decimal equivalent of Z considered as a
base-R number. (5) Select the Ith component of Y as the
Bth element in the subarray.

The function SUBARRAY for this algorithm is written
in APL\360. B and V are arguments, E is the required
element of the subarray, and R and Y are global variables
defined outside the function. Each of the five statements of
the function SUBARRAY O given as

v E<V SUBARRAYO B; I; W; X; Z
[1] W<((V=0/RTB —1
2] X<V =0\W
3] Z<X+V#0) x V—1
(4] I«<1+R1Z
(5] E<Y[I]
\Y

performs the operations described in the correspondingly
numbered step in the algorithm. The single statement in
SUBARRAY combines the five statements of SUBARRAY 0
into a single statement.

Reference

GOWER, J. C. (1968). Simulating multidimensional arrays in
one dimension, Applied Statistics, Vol. XVII, No. 2,
pp. 180-185.

E<V SUBARRAY B
(1] E<Y[l + RL(V#0) x V—1) +
V=0\(V=0/RmTB—1]

\Y

Algorithm 50

HOW TO PROGRAM A COMPUTER TO PLAY LEGAL
CHESS
A. G. Bell
Atlas Computer Laboratory
Chilton
Didcot

Author’s note:

Many of the programs which have been written to play
chess (Good, 1967) include restrictions. This paper describes
how to produce all legal moves for any chess position includ-
ing queening, castling and en passant captures. To test and
demonstrate the techniques described a program was written
in ALGOL to solve any two move mate problem. The
program is given and the tables required to drive it are given
with some optional procedures in full in Appendices 1-4.

The tables

The most important feature of the program is that it
requires six tables (arrays) to-drive it. To keep the program
small it is best if these tables are read in rather than com-
puted, and for this reason they are given in full in Appendix 1.
Moreover it is simpler to understand and check how they
work.

The six tables fall naturally into three groups, these are
the knight and king, the bishop and rook, and the white
pawn and the black pawn (2.3). (The moves of the queen
are obtained by treating her as a rook and then a bishop.)

The knight and king tables

Appendix 1.1a is the table for the knight. It consists of
64 rows (each row corresponds to a square on the board as
given in Fig. 1(e)), the numbers in the left-hand column
being only for reference and not part of the table.

Consider row 1. This is used if a knight is in square 1.
The last number of the row is the total number of squares
to which a knight can move (in this case only 2), and the

20z Iudy 61 U0 1sonB AQ 8GGE7E/902/2/E | /AI0IME/|UlWO0 /WO dNO" OIS PEDE//:SARY WOl PAPEOIUMO(

Algorithms Supplement 209

preceding two elements are the numbers of the squares (18
and 11). The zeros in the table are not used.

The table of moves for a king (Appendix 1.14) is con-
structed in exactly the same way, so the procedure ‘knight or
king’ in the program only requires the number of the square
occupied by a knight or king, coupled with the appropriate
table to read off the squares the piece can move to. The moves
are stored sequentially in a list called ‘moves’. Note that two
checks are made before accepting a move (these checks apply

to all the men when listing their moves). The first is that no
man is allowed to occupy a square which contains a friendly
man, and secondly, that if the man can move to the square
containing the opponent’s king, then the listing of further
moves is terminated (by exiting via the label ‘cut off’). This
latter device checks the legality of the opponent’s previous
move. Castling the king is dealt with in the section
‘Castling’.

57 58 59 60 61 62 63 64 BLACK | WB WN
49 50 51 52 53 54 55 56 | WB
41 42 43 44 45 46 47 48 BP
33 34 35 36 37 38 39 40 WR BN | BQ | BK | WP
25 26 27 28 29 30 31 32 1 BP BP WP
17 18 19 20 21 22 23 24 WN BP WP
9 10 11 12 13 14 15 16 WK WP wQ
1 2 3 4 5 6 7 8 WHITE
(a) Board notation (b) Example of actual position
3 2
3
1
4 1 2 5 6
1 1 1
2 1 1
6 1 b

(c) ‘whitemen’

(d) ‘blackmen’

11 10 12 14 18 22

32 \ 33 39 51 57 62

(¢) Number and positions of white’s eleven men—‘whitepiece’

7 20 28 30

36 ‘ 37 38 46

(f) Number and positions of black’s seven men—*blackpiece’

Fig. 1. Representation of white and black men on the board. White plays from south to north

20z Iudy 61 U0 1sonB Aq 85G6YE/902/2/€ | /810IME/|UlWO0/Woo"dNo-dIWaPEDE//:SARY WOl Papeojumod

210 Algorithms Supplement

The rook and bishop tables

Appendix 1.2q is the table used to generate the rook’s
moves. The first row of numbers is the increment to move
the rook from its initial square in each of its four possible
directions, i.e. east (+1), west (—1), north (48) and south
(—8). Again consider row 1 which is used if a rook is in
square 1. The first number is the terminal square on the
board (see Fig. 1(@)) if it moves in an easterly direction
(i.e. 8), the second if it moves west (1), the third if it moves
north (57) and the fourth if it moves south (1). Attempts
to move west and south from square 1 will be skipped.

The greatest number of moves a rook can have is 14, all
of which would be produced only if the rank and file of the
rook were empty, or if only the terminal squares contained
enemy pieces. However, as in the ‘knight or king’ procedure,
each square generated must be tested for the presence of a
friendly man. If he is present, then the move to that square
is ignored and the next increment (i.e. direction) is selected:

if my man in [i] % O then goto new direction;

If the square does not contain a friendly man, then the move
is added to the list ‘moves’ and a new test is now made for
the square being occupied by a hostile man:

if opponents [i] #% 0
If he is absent the next square in the current direction is
generated. Otherwise, the procedure will exit if that man is
the opponent’s king (like the ‘knight or king move’) or else it
will select another direction. When it has exhausted all four
directions, it terminates.

The bishop table (Appendix 1.2b) operates in exactly the
same way. The four directions this time are north-east (4-9),
south-west (—9), north-west (+7) and south-east (—7).

The white and black pawn tables

Unlike the pieces, the colour of pawns is important. In
the program, white pawns move up the board and black
pawns move down, hence two tables. The pawn is the most
difficult man of all for which to generate moves because it
has five distinct moves.

Consider the white pawn:

(1) from its starting position it can move either one or two
empty squares up the board;

(2) from then on it advances 1 empty square at a time;

(3) captures opponents in the immediate north-east or
north-west square;

(4) becomes a queen, rook, bishop or knight on reaching
the eighth rank;

(5) captures en passant.

The black pawn differs only in that it must always move
down the board.

The tables deal only with moves of the type (1), (2) and (3),
queening (4) is dealt with by the program (see section—
Making a move) and en passant captures by the section ‘en
passant capture’.

Appendix 1.3a is the table used to generate the white
pawn’s possible moves. Pawns can only exist in the squares
9 to 56 and the rows are numbered accordingly. The first
column is the pawn moving forward one square and if this
square is empty the move is recorded. Then, and only then,
the program will try to advance the pawn two squares (the
number of this square is in the second column). If that
square is also empty then the move is also recorded. Note
that once a pawn has moved, the double move derived from
the table is always suppressed because the square is apparently
occupied (by itself!).

The third and fourth columns give the squares which may
be entered provided an opponent is in them (i.e. captures).
Square 65 of the opponent is always empty (a ‘no-man’s
land’), catering for edge effects.

The black pawn’s table (Appendix 1.3b) operates in exactly

the same way. Once again, the procedure ‘white or black
pawn move’ only requires to know the square a pawn occupies
and the table appropriate to the pawn’s colour. The usual
test for taking the opponent’s king is made.

Listing the moves

The procedure ‘list moves’ uses the three procedures
described in the previous section and works for either black
or white men. It must however distinguish the different men,
and therefore each man is described by a different integer.
Thus, king (K) = 6, queen (Q) = 5, rook (R) = 4, bishop
(B) = 3, knight (N) = 2 and pawn (P) = 1.

Consider Fig. 1(b) in which the position is a two move
mate for white. Figs. 1(c) and 1(d) are the required repre-
sentation of the position stored in the arrays ‘white men’ and
‘black men’.

‘list moves’ has five parameters:

(1) ‘piece’—an integer array (dimension O : 16) describing:
(a) how many white or black men are on the board
(in piece [0]), and
(b) where each of them is (see Figs. 1(e) and 1(f)).
This array saves time scanning the board for men
but loses time when moves are actually made;

(2) ‘mymanin’—a representation of the board containing
the pieces of the side whose moves we wish to list (see
Fig. 1(c));

(3) ‘opponents’—similar to (2) but containing only the
opponent’s pieces. This is used to detect captures and
therefore must be separate from ‘mymanin’ (see Fig.
1@));

(4) ‘startat—the generated moves stored in a large array
called ‘moves’ begin at ‘moves[startat]’;

(5) ‘cutoff’—a label used when the opponent’s king can
be taken, i.e. his last move was illegal.

On entry, the information generated will be stored
sequentially in the array ‘moves’ starting from element
‘startat’. For the example given in Figs. 1(b-f), a loop is
set up to scan the 11 men

for pointer := piece [0] step —1 until 1 do
and ‘square’ successively becomes the number of the square
each white man occupies. If the square is empty, the man
has been captured. However if there is a man there, then he
is first identified (by storing 3 items of information in the
array ‘moves’) before generating his moves. The information
is:

(1) ‘pointer’—his position in the array ‘piece’;

(2) ‘mymanin[square]’—his value (pawn = 1, knight = 2,
etc.);

(3) ‘square’—his position on the board;

and is used later when the moves are actually done.
The next instruction in the procedure is crucial. ‘moveof’
is declared as a switch and the result of

‘goto move of [mymanin[square]l’

is to call the appropriate procedure with the correct para-
meter. Note the colour of a pawn is checked to decide which
table to use, and the moves of a queen are the result of a
rook and then a bishop call.

In the example, the 11th man is considered first (the loop
runs faster if written this way). He is in square 62 of the
‘white men’ board which contains the number 2, i.e. a knight.
Therefore, ‘moveslc]’ is 11, ‘moves[c + 1] is 2 and
‘moves[c + 27 is 62.

The program then jumps to label ‘a knight’, obeys the call
‘knight or king move [knight]’ and generates the moves for a
knight located in square 62, i.e. the list 56,47,45,52. The
program then jumps to label ‘nextman® which checks if any
moves have been generated (the identification will be over-

20z Iudy 61 U0 1sonB AQ 8GGE7E/902/2/E | /AI0IME/|UlWO0 /WO dNO" OIS PEDE//:SARY WOl PAPEOIUMO(

Algorithms Supplement 211

BACK
NO. MAN POSITION TO

knight 11 2 62 56, 47, 45, 52 —62
bishop 10 3 57 50, 43, 36 —57
bishop 9 3 51 60, 42, 58, 44, 37 —51
pawn 8 1 39 47, 46 —39
rook 7 4 33 34, 35, 36, 41, 49, 25,17,9,1 —33
pawn 6 1 32 40 —32
knight 4 2 18 35,28,3,1 —18
queen 3 5 14 15, 16, 13, 6, 23, 5, 21,28,7 —14
king 1 6 10 1,2,3,9,11, 17, 19 —10

Fig. 2. List of moves of white for position in Fig. 1

written if the man cannot move). If so, it stores ‘—square’
in the moves list (i.e. —62 in the case of this knight) to
indicate the termination of the man’s moves, and then
considers the next man in the list ‘piece’. It similarly con-
tinues until the list is exhausted. The resulting list of
numbers in ‘moves’ is given in Fig. 2. Note that two pawns
(numbers 5 and 2) have no moves and are omitted.

After generating the moves of all the men, the position of
the last entry is recorded in ‘startat’. This marker is used
when the moves are actually being made. Illegal moves (the
king cannot move to squares 11 or 19) will be detected when
they are actually made and it is found that the opponent can
then take the king. (See next section.)

Making a move

The procedure ‘make move’ operates on the list generated
by ‘list moves’. Its functions are:

(1) to alter the contents of the four arrays ‘whitemen’,
‘blackmen’, ‘whitepiece’ and ‘blackpiece’, depending on
which side has the move (if the depth is odd then white,
otherwise black).

To do this, it needs to know:

(a) the squares from and to which a man can move
(‘pointer’ into the list ‘moves’ gives this information.
In the example, ‘pointer’ equals 3 for the knight’s first
move, hence ‘from’ is 62 and ‘t0’ is 56);

(b) the position in array ‘mypiece’ of the man it is about
to move (in the example the knight is in the 11th
position). This information is in ‘locate[depth]’; and
finally

(c) the initial value of the man in case it is a pawn which
queens. This information is in ‘q[depth]’.

To move a man requires six operations labelled A1 to 46
in the program:

Al: the value of the man (‘g[depth]’) is stored in ‘fo’ (unless
it is a pawn queening in which case a queen, rook, bishop
and knight substitution is successively made);

A2: the square ‘from’ is cleared;

A3: any possible capture on the man’s previous move (when
the square ‘from’ was entered) is restored to the
opponent’s board;

A4: any possible capture in the new square is now recorded,
‘c[depth]’ usually becomes zero but this does not matter;

AS: clear his board of any possible man in square ‘to’;

A6: update the list of positions of men on the board. In
the example the knight in the 11th position occupied
square 62, this is now replaced by 56 ready to generate
white’s list of second moves.

(2) After making a move, the depth is increased and the
opponent’s replies are generated for the new board
configuration. This tests if the move just made is legal,
and if not, the call of ‘/listmoves” will return to the label
‘illegal move’ effectively ignoring the move just made.

(3) If the move is legal, the list of opponent’s replies is
ready to be made. The number of the first opponent
and his value are initialised and the procedure ter-

minates (the purpose of ‘back to [depth]’, which records
the initial square of the man just moved, is explained
in the next section).

The effect of ‘make move’ operating on the list ‘moves’ is
to cycle a man around the squares he can move to until a
negative ‘fo’ square is reached. This means that the man has
completed his moves. The man and board are, therefore,
returned to their starting positions (the five operations
labelled Bl to BS. N.B.—We know ‘hismen[—to]’ must be
zero, otherwise the operations are identical to 41-46). The
next man’s moves are initialised and the procedure exits via
label ‘continue’ which checks that the list of moves has not
been exhausted and usually results in an immediate call of
the procedure ‘make move’ again and the new man begins his
moves.

Solving two move mates

In order to test the validity and speed of the procedures
‘listmove’ and ‘makemove’, the complete program uses them
to solve any two move mate problem with white to move.
The program works in the same way as a human solves the
problem albeit rather moronically. That is, it makes white’s
opening moves, one after the other, until it finds the opening
move which, regardless of what black does in his next two
moves, allows white to check on his second move (to avoid
stalemate) and to always capture the black king on his third
move.

To speed up the solution it is necessary to reverse a move
at times. For example, white makes an opening move (W1),
and black makes a reply (B1) such that white cannot check

(@) BB | BR | BK

BP BP

WP | BP | WP

BP BP BP

BP WP
BP WP | WB
WP WP | WR

WB | WR | WK

Bell’s position—the simplest two move mate position known

®

11 6'7‘8 13!15"16 23 | 24 31!45347
| |

‘white piece’

11‘21}29 37 38‘39 46 | 53 | 55 62\63'64

‘black piece’

Fig. 3. Position is two move mate inevitably. White has only
one move, black has only one (legal) reply and white still only
has one move

20z Iudy 61 U0 1sonB Aq 85G6YE/902/2/€ | /810IME/|UlWO0/Woo"dNo-dIWaPEDE//:SARY WOl Papeojumod

212 Algorithms Supplement

DEPTH
w1 1 P *P <
B1 2 BK - R2 /’/ P - N5
7 +
'2 5 N / —
i,e. last black move
was illegal therefore
try another
B2 4 BK - R2
N
5 P * BK

i.e. last black move was illegal, there are
no more therefore reverse last white
move (B*P) and try another black
move at depth 2.

> does white now

black's
opening

\replies exhausted
hence answer is |

check the black king?
yes (R *K)

Fig. 4. Flow of program when solving problem given in Fig. 3

the black king with his second move. Now it is necessary
to reverse the black reply (Bl) before attempting another
white opening move. This is done by calling procedure
‘reverse move’, giving the present square that the black man
occupies and his initial square. The initial square of all men,
before beginning to make that man’s moves, is always stored
in ‘back to[depth]’. In order to show the flow of the solution,
consider the position given in Fig. 3(a). There are 11 white
men and 11 black men in the positions described by the arrays
‘white piece’ and ‘black piece’ (Fig. 3(b)).

When black’s moves at depth 2 are exhausted, the solution
has been obtained and the position achieved by the correct
white opening move can be printed.

The flow of the program is given in Fig. 4 and the actual
contents of the array ‘moves’, giving the moves generated at
the five depths, is given in Fig. 5. When run on Atlas the
program can solve a two move mate problem in about
45 seconds, this reduces to 5 seconds when written in basic
code. It can also prove the uniqueness of the answer.

NUMBER INITIAL
DEPTH OF MAN VALUE SQUARE TO ETC.
W1 1 9 1 31 38 —31
P * P
B1 2 11 6 64 56 —64 5 1 39 31 -39
K — R2 P — N5
(illegal)
w2 3 8 3 31 —24
B * P
B2 4 11 6 64 56 —64
K — R2
S 11 1 47 56 listing of moves terminated
P * K

Fig. 5. Contents of array ‘moves’ on completion of problem
given in Fig. 3. Compare with Fig. 4

Omissions
The program to solve two move mates will fail in two cases:

When

(1) castling; or

(2) en passant capture is involved.
These are omitted because they slow the program down and
rarely occur in such problems. However, if required, they
may be included as follows.

Castling

For any given position, the program requires four Boolean
variables to be set to calculate whether white or black can
castle on either the king or queen side. Thus

white king side castle := white queen side castle :=
black king side castle := black queen side castle := true;

would be used if the program is presented with a position in
which all castlings are still valid (Fig. 6(a)). To simplify the
problem, the positions of the king, the king rook and the
queen rook in the array ‘piece’ should be fixed for both sides
(e.g. 1, 2 and 3 as given in Fig. 6(b) and 6(c)).

To castle white on the king side merely needs the following
list of numbers inserted in the array ‘moves’

1 6 5-7 2 4 8 6 -8 1 6 7 -5
K — KNI R — KBI uncastle

The procedure ‘make move’ will then operate correctly.
To castle white on the queen side requires the list

1 6 5-3 3 4 1 4 -1 1 6 3 -5
K — QBI R — Qi1 uncastle

To castle king side requires

1 6 61 —63 2 4 64 62
K — KNIl R — KBI

—64 1 6 63 —61
uncastle

20z Iudy 61 U0 1sonB Aq 85G6YE/902/2/€ | /810IME/|UlWO0/Woo"dNo-dIWaPEDE//:SARY WOl Papeojumod

Algorithms Supplement 213

57 58 59 60 61 62 63 64

@| R K R
R K R
|
1 2 3 4 5 6 7 8
()] K KR QR © K KR QR
3 5 8 1 3 61 64 57
‘whitepiece’ ‘blackpiece’

Fig. 6. Castling

and to castle black queen side requires

1 6 61 —59 3 4 57 60 —57 1 6 59 —61
K — QBI1 R — Q1 uncastle

The difficulty is whether the appropriate list can be legally
added to the list ‘moves’. Three questions must be asked.

Ql: Have the king or rooks moved? (The four Boolean
variables help to answer this one.)

Q2: Any pieces between king and rook ?

Q3: Does the enemy control any of the three squares the
king is in, must pass over or go to?

Appendix 2 is a piece of ALGOL text which asks these
questions and, if successful, inserts the correct list. Points
to note are:

(1) At any depth, men moved to obtain a position have
been recorded in ‘locate [depth]’. So question 1 is
answered by scanning the contents to see if king or
relevant rook has been moved, plus the knowledge
whether it was possible to castle (king or queen side)
in the initial position;

(2) castling is the only move which is checked for legality
before being placed in the list, because the moving of
two men is involved and ‘reverse move’ can only return
one man to his initial position.

The piece of program has been written in full in order to
show exactly the conditions being tested. It can be easily
compressed. The procedure ‘castle’ replaces the dummy
procedure in the program.

En passant capture

To implement en passant capturing requires the use of the
array ‘en passant’ which records the position of the ‘ghost’
pawn when a pawn moves forward two squares. The follow-

ing four operations must be made and the associated code
inserted in the program at the labels epl, ep2, ep3 and ep4
(twice) respectively.

1. Detect a pawn has moved forward two squares and, if
so, record position of ghost pawn:

epl: en passant[depth] := if q[depth] = 1 and
abs (backtol[depth] — to) > 10
then (backto[depth] + to) = 2 else 0;

2. When listing pawn moves, check if a pawn can move to
capture a possible ghost pawn, and if so, record the move:

ep2: if opponents [pawn[i]] # 0 or
pawn [i] = en passant[depth — 1]
then
3. When making a pawn move, ask if it is an en passant

capture, and, if so, apparently capture a man with a negative
value and remove the correct pawn:

ep3: if qldepth] = 1 and to = en passant[depth — 1]
then

begin his men [to] := —1;
his men [if to < 32 then to + 8 else fo — 8] :=0
end;

4. When reversing a move, ask if ‘c[depth]’ is negative,
i.e. the move was an en passant capture. If yes, then restore
correct pawn. (N.B.—This is required in two places in the
program.)
epd: if c[depth] = —1 then

his men [if from < 32 then from -8 else from —8] :=1

else his men [from} := c[depth];

Input and output

It is recommended that the tabies and the chess position
be input as shown in Appendix 3. The procedure ‘print
position’ given in Appendix 4 is useful when debugging the
program. Both use the Atlas I/0 statements (I.C.T., 1966)
and are self-explanatory.

Summary and applications

This paper is mainly concerned with describing techniques
to generate a list of all legal moves for any chess position.
The problems of:

(a) how many times a position has occurred before with
the same player to move; and

(b) how many moves have been made since the last capture
or pawn move, are not solved. It can become very
difficult if they are included in the look ahead, but it
is not illegal to ignore them. Moreover, such situations
are not likely to occur in a game.

It is hoped that the paper will be of use to people who wish
to write a chess-playing program; of course the techniques
(especially the contents of the tables) are not sacrosanct and
should be adapted to the computer and language one wishes
to use. The main points to appreciate are:

(1) The table drive.

(2) How to check the legality of a move, i.e. by actually
making it and calling opponent’s ‘list moves’. This
avoids the problems of pins and moving into check
with which some programs have wasted time and, if
legal, one is immediately ready to execute the
opponent’s replies.

(3) How to queen, castle and capture en passant. No
previous chess program has included all these features
before, they are idiosyncracies of the game and do not
fit easily into a table-driven program.

(4) The fact that previous positions are not remembered
as such but information (hopefully a minimum) is

20z Iudy 61 U0 1sonB AQ 8GGE7E/902/2/E | /AI0IME/|UlWO0 /WO dNO" OIS PEDE//:SARY WOl PAPEOIUMO(

214 Algorithms Supplement

stacked from which the program restores a position
when required. Again some chess programs actually
stored a copy of each new position a player could
reach. Thus, to solve a two move mate problem would
require 64 (number of squares) X 30 (average number
of moves) X 4 (plies) = 7680 locations not to mention
the time wasted in storing them.

Having understood these points, which suffice for solving
simple mate problems, extensions are required for other
aspects of chess. For example, when playing a game further
information must be produced by ‘list moves’, such as number
of squares controlled and their relative importance (control
of centre squares is better than that of edge squares).

Also, because ALGOL usually runs 5-10 times slower than
the equivalent basic code, the program should be coded in
one of the lower languages of a particular machine. This
is not as difficult as it seems because the tables are, on the
whole, machine and language independent. Translation of
this program into Atlas Basic Language took about 10 days.

The program was also run successfully on the C.D.C. 6600
ALGOL Compiler, requiring 1 day to punch the program
in the dialect and alter the input/ouput statements.

Finally, and mainly as a demonstration, the ALGOL
program was extended to actually play a game via the on-line
console at the S.R.C. Atlas Laboratorv. Much of the effort
went into producing an agreeable input/output system.

The strategy was simple, the program looked ahead 3
plies and would accept equal or better captures in that range
with weighting on swops of the more powerful pieces (i.e. it
will always swop a queen for a queen); if no swops or
captures were present it attempted to control as many
squares as possible. This program, although written in
ALGOL, responded almost immediately to the moves of
the opponent when entered via the on-line console.

The program played two games with John Scott’s program
on the ICL 1900 computer (Scott, 1969) and the result is
given in Fig. 7. N.B.—Only two games are possible because
neither program learns. The strategy of the ALGOL
program was altered at move 4 in game 1 to take advantage
of the position, i.e. I cheated.

The strategy of taking equal or better captures seems to
work and results in dull but fairly equal games in these two
cases. The Scott program responds in the order of 1 minute
and is coded in basic 1900; it therefore appears that, as chess
programs spend a great deal of time listing moves, the
techniques described in this paper are reasonably efficient.

Papers on the problem of playing good chess on a computer
are Greenblatt’s chess program (Greenblatt, 1967); the playing
techniques described by Arthur Samuel, especially Alpha-
Beta pruning (Samuel, 1967) and the attempt by Barbara
Huberman to analyse end games (Huberman, 1968).

Acknowledgements

The author would like to thank the staff of the Atlas
Computer Laboratory for its aid in producing this paper.

GAME 1 GAME 2
SCOTT(W) v. ATLAS(B) ATLAS(W) v. SCOTT(B)

1. P-Q4 N-QB3 1. P-K4 P-Q4

2. P-K4 P-K3 2. P*P Q*P

3. P-Q5 B-QNS ch 3. P-Q4 N-KB3

4. P-QB3 B-QB4 4. B-KB4 Q-KS5 ch.

5. P-QN4 N*P 5. B-K3 B-Q2

6. P*N Q-B3 6. P-Q5 Q*QP

7. P*B Q*R 7. Q*Q N*Q

8. B-Q3 *P 8. B-QBS5 P-K4

9. N-KB3 P*p 9. B*B K*B
10. KP*P Q*QpP 10. B-Q3 N-KBS
11. N-QB3 Q*P 11. B-QB4 N*P ch.
12. B-Q2 12. K-Q2 P-KR4
13. 13. N-QB3 R-KR3

Fig. 7. Game played by modified program

References

Goop, I. J. (1967). A Five-year Plan for Automatic Chess,
Machine Intelligence 2, Oliver and Boyd: Edinburgh.

GREENBLATT, R. D., EASTLAKE, D. E., and CROCKER, S. D.
(1967). The Greenblatt Chess Program, AFIPS Con-
ference Proceedings: Thomson.

HUBERMAN, BARBARA J. (1968). A Program to Play Chess
End Games, Computer Science Department, Stanford
University, Technical Report No. CS 106, August.

SAMUEL, A. L. (1967). Some Studies in Machine Learning
using the Game of Checkers. II—Recent Progress, IBM
Journal, November.

Scort, J. J. (1969). A chess-playing program, Machine
Intelligence 4, Edinburgh University Press, pp. 255-265.

begin

integer i, j, k, [, m, n, depth, w1, bl, w2, b2;

integer array knight, king[1:576], bishop, rook[0:259],
wpawn, bpawn[36:227], whitepiece, blackpiece[0:16],
whitemen, blackmen[1:65], ¢, q, locate, numberofmoves,
backto, en passant[1:5], moves[1:500];

procedure print position;
See Appendix 4: ;

procedure Jistmoves(piece, mymanin, opponents, startat,
cutoff);
integer array piece, mymanin, opponents;,
integer startat; label cutoff;
begin
switch moveof := apawn, aknight, abishop, arook, aqueen,
aking;
integer ¢, i, j, k, I, pointer, square;

procedure castle;
See Appendix 2: ;

procedure knightorkingmove(knightorking);
integer array knightorking;
begin
Jj =9 X square;
for i := j — knightorking[j] step 1 until j — 1 do
if mymanin[knightorking[i]] = O then
begin
if opponents[knightorking[i]] = 6 then goto cutoff;
c:=c+1;
moves|c] := knightorking[i]
end
end of knightorkingmove;

procedure rookorbishopmove(rookorbishop);
integer array rookorbishop;
begin
for j := 0 step 1 until 3 do
begin .
k := rookorbishop[j]1;
1 := rookorbishopl4 X square + jl;
for i := square + k step k until / do
begin
if mymanin[i] = 0 then goto newdirection;
i=c+1;
moves([c] :=i;
if opponents[i] # 0 then
begin
if opponents[i] = 6 then goto curoff else goto
newdirection
end
end;
newdirection: end
end of rookorbishopmove;

procedure whiteorblackpawnmove(pawn);
integer array pawn;

20z Iudy 61 U0 1sonB AQ 8GGE7E/902/2/E | /AI0IME/|UlWO0 /WO dNO" OIS PEDE//:SARY WOl PAPEOIUMO(

Algorithms Supplement

begin

fori := 4 X square,i + 1 do
begin
J = pawnli];

if mymanin[j1== 0 \/ opponents[j]+ 0 then goto

pawncapture;
c:=c+1;
moves[c] :=]
end;
pawncapture: for i := 4 X square + 2,i + 1 do
ep2: if opponents[pawnli]] = 0 then
begin
if opponents[pawnl[i]] = 6 then goto cutoff;
c:=c+1;
moves[c] := pawnl[i]
end
end of whiteorblackpawnmove;
¢ := startat;
for pointer := piece[0] step — 1 until 1 do
begin
square .= piece[pointer];
if mymanin[square] = O then goto continue;
moves[c] := pointer;
moves[c + 1] := mymanin[square];
moves[c + 2] := square;
c:=c+2;
goto moveof [mymanin[square]];
apawn: if whitemen[square] = 1 then
whiteorblackpawnmove (wpawn)
else whiteorblackpawnmove(bpawn); goto nextman;
aknight: knightorkingmove(knight); goto nextman;
aking: knightorkingmove(king); goto nextman;
arook : rookorbishopmove(rook); goto nextman;
aqueen: rookorbishopmove(rook);
abishop: rookorbishopmove(bishop);
nextman: if moves[c] # square then
begin
moves[c + 1] := — square;
c:=c+2
end else ¢ := ¢ — 2;
continue: end;
CASTLING: See Appendix 2:
startat .= ¢
end of listmoves;

procedure makemove(pointer, mymen, hismen, mypiece,
hispiece, continue);
integer pointer;
integer array mymen, hismen, mypiece, hispiece;
label continue;
begin
integer from, to;
goto srart;
illegal move: depth := depth — 1; pointer := pointer + 1;
start:
from := moves[pointer];
to := moves[pointer + 1];
if 70 > 0 then

begin
epl:
Al: if gldepth] =1 A (to > 56 V to < 9) then
begin

pointer := pointer — 1;
mymen[to] : = if mymen[to] = O then 5 else
mymen[to] — 1;
if mymen[to] = 2 then pointer := pointer + 1;
end else mymen[to] := qldepth];
A2: mymen[from] := 0;
A3: hismen[from] := c[depth];
A4: cldepth] := hismen[to];
AS: hismen[to] := 0;
A6: mypiece[locate[depth]] := to;

ep3: depth := depth + 1;

to := numberofmoves(depth] :=
numberofmoves [depth — 1];

listmoves(hispiece, hismen, mymen,
numberofmoves [depth), illegal move);

locate[depth] := moves[to];

qldepth] := moves[to + 1];

backtoldepth] := moves[to + 2]

end else

begin

Bl: mymen[— to] := qldepth];

B2: mymen|[from] := 0;

ep4:

B3: hismen] from] := cldepth];

B4: cldepth] :=0;

B5: mypiece[locate[depth]] := — to0;
locateldepth] := moves[pointer + 2];
gldepth] := moves[pointer + 3];
backtoldepth] : = moves[pointer + 41;
pointer .= pointer + 3;
goto continue
end

end of makemove;

procedure reversemove(from, mymen, hismen, mypiece);
integer from;
integer array mymen, hismen, mypiece;
begin
mymen[backto[depth]] := qldepth];
mymenl[from] := 0;
ep4: hismen[from] := c[depth];
c[depth] := 0;
mypiece[locate[depth]] := backto[depth]
end of reversemove

ENTRY: TO READ IN THE TABLES AND PROBLEM
INSERT APPENDIX 3 HERE WITH APPROPRIATE
INPUT STATEMENTS:

c[1] :=0;

depth :=1;

numberofmoves[1] .= 1;

listmoves(whitepiece, whitemen, blackmen, numberofmoves[1],
theend);

comment When debugging program print the list of moves just
produced, for example;
for i := 1 step 1 until numberofmoves[1] do print(moves[il);
locateldepth] := moves[1];
qldepth] : = moves[2];
for wl := 3 step 1 until numberofmoves[1] do
begin
makemove(wl, whitemen, blackmen, whitepiece, black-
piece, wlcontinue);
See Appendix 4 in order to: printposition;
for bl := numberofmoves[1] + 2 step 1 until numberof-
moves([2] do ‘
begin
makemove(bl, blackmen, whitemen, blackpiece, white-
piece, blcontinue);
for w2 := numberofmoves[2] + 2 step 1 until number-
ofmoves[3] do
begin
makemove(w2, whitemen, blackmen, whitepiece,
blackpiece, w2continue);
n := numberofmoves[4];
listmoves(whitepiece, whitemen, blackmen, n, not-
stalemate);
goto w2continue;
notstalemate: for b2 := numberofmoves[3] + 2 step 1 until
numberofmoves[4] do
begin
makemove(b2, blackmen, whitemen, blackpiece,
whitepiece, b2continue);

215

20z Iudy 61 U0 1sonB Aq 85G6YE/902/2/€ | /810IME/|UlWO0/Woo"dNo-dIWaPEDE//:SARY WOl Papeojumod

216 Algorithms Supplement

depth := 4; 41, 0 0 0 0 S8 51 35 26 4
reversemove(moves[b2 + 1], blackmen, whitemen, 42, 0 0 57 59 52 36 27 25 6
blackpiece); goto w2continue; 43, 49 58 60 53 37 28 26 33 8
b2continue: depth .= 4 44, 50 59 61 54 38 29 27 34 8
end; 45. 51 60 62 55 39 30 28 35 8
depth := 3; 46. 52 61 63 56 40 31 29 36 8
reversemove(moves[w2 + 1], whitemen, blackmen, 47. 0 0 53 62 64 32 30 37 6
whitepiece); goto blcontinue; 48. 0 0 0 0 54 63 31 38 4
w2continue: depth := 3
end; 49, 0 0 0 0 0 59 43 34 3
depth :=2; 50. 0 0 0 0 60 44 35 33 4
reversemove(moves[bl + 11, blackmen, whitemen, 51. 0 0 57 61 45 36 34 41 6
blackpiece); goto wlcontinue; 52. 0 0 58 62 46 37 35 42 6
blcontinue: depth .= 2 53. 0 0 59 63 47 38 36 43 6
end; 54. 0 0 60 64 48 39 37 44 6
printposition, THE ANSWER: 55. 0 0 0 0 61 40 38 45 4
goto theend, 56. 0 0 0 0] 0 62 39 46 3
wlcontinue: depth := 1
end; 57. 0 0 0 0 0 0 51 42 2
theend: 58. 0 0 0 0 0 52 43 41 3
end 59. 0 0 0 0 53 4 42 49 4
60. 0 0 0 0 54 45 43 50 4
e— SEEEEEEEE
KNIGHT TABLE 6. 0 0 0 0 0 48 46 53 3
NU:)‘:ER 64. 0 0 0 0 0 0 47 54 2
SQUARE MOVES
1. 0 0 0 0 0 0 18 11 2
2. 0 0 0 0 0 17 19 12 3
3. 0 0 0 0 9 18 20 13 4
4. 0 0 0 0 10 19 21 14 4 .
5. 0 0 0 0 11 20 2 15 4 Appendix 1.1
6. 0 0 0 0 12 21 23 16 4 KING TABLE
7. 0 0 0 0 0 13 22 24 3 NUMBER
8. 0 0 0 0 0 0 14 23 2 OF
SQUARE MOVES
9. 0 0 0 0 0 26 19 3 3 1. 0 0 0 0 0 2 9 10 3
10. 0 0 0 0 25 27 20 4 4 2. 0 0 0 1 3 9 10 11 5
11. 0 0 17 26 28 21 5 1 6 3. 0 0 0 2 4 10 11 12 5
12. 0 0 18 27 29 22 6 2 6 4, 0 0 0 3 5 11 12 13 5
13. 0 0 19 28 30 23 7 3 6 5. 0 0 0 4 6 12 13 14 5
14. 0 0 20 29 31 24 8 4 6 6. 0 0 0 5 7 13 14 15 5
15. 0 0 0 0 21 30 32 5 4 7. 0 0 0 6 8 14 15 16 5
16. 0 0 0 0 0 22 31 6 3 8. 0 0 0 0 0 7 15 16 3
17. 0 0 0 0 34 27 11 2 4 9. 0 0 0 1 2 10 17 18 5
18. 0 0 33 35 28 12 3 1 6 10. 1 2 3 9 11 17 18 19 38
19 25 34 36 29 13 4 2 9 8 11. 2 3 4 10 12 18 19 20 8
20 26 35 37 30 14 5 3 10 8 12 3 4 5 11 13 19 20 21 8
21 27 36 38 31 15 6 4 11 8 13. 4 5 6 12 14 20 21 22 8
22 28 37 39 32 16 7 5 12 8 14, 5 6 7 13 15 21 22 23 8
23 0 0 29 38 40 8 6 13 6 15. 6 7 8 14 16 22 23 24 8
24 0 0 0 0 30 39 7 14 4 16. 0 0 0 7 8 15 23 24 5
25 0 0 0 0 42 35 19 10 4 17. 0 0 0 9 10 18 25 26 5
26 0 0 41 43 36 20 11 9 6 18. 9 10 11 17 19 25 26 27 8
27 33 42 44 37 21 12 10 17 8 19 10 11 12 18 20 26 27 28 8
28 34 43 45 38 22 13 11 18 8 20 11 12 13 19 21 27 28 29 8
29 35 4 46 39 23 14 12 19 8 21 12 13 14 20 22 28 29 30 8
30 36 45 47 40 24 15 13 20 8 22 13 14 15 21 23 29 30 31 8
31 0 0 37 46 48 16 14 21 6 23 14 15 16 22 24 30 31 32 8
32 0 0 0 0 38 47 15 22 4 24 0 0 0 15 16 23 31 32 5
33 0 0 0 0 50 43 27 18 4 25 0 0 0 17 18 26 33 34 5
34 0 0 49 S1 4 28 19 17 6 26 17 18 19 25 27 33 34 35 8
35 41 S50 52 45 29 20 18 25 8 27 18 19 20 26 28 34 35 36 8
36 42 51 53 46 30 21 19 26 8 28 19 20 21t 27 29 35 36 37 8
37 43 52 54 47 31 22 20 27 8 29 20 21 22 28 30 36 37 38 8
38 44 53 55 48 32 23 21 28 8 30 21 22 23 29 31 37 38 39 8
39 0 0 45 54 56 24 22 29 6 31 22 23 24 30 32 38 39 40 8
40. 0 0 0 0 46 55 23 30 4 32 0 0 0 23 24 31 39 40 5

20z Iudy 61 U0 1sonB AQ 8GGE7E/902/2/E | /AI0IME/|UlWO0 /WO dNO" OIS PEDE//:SARY WOl PAPEOIUMO(

Algorithms Supplement 217

33 0 0 0 25 26 34 41 42 5 25. 32 25 57 1 61 25 25 4
34, 25 26 27 33 35 41 42 43 8 26. 32 25 58 2 62 17 33 5
35 26 27 28 34 36 42 43 44 8 27. 32 25 59 3 63 9 41 6
36 27 28 29 35 37 43 44 45 8 28. 32 25 60 4 64 1 49 7
37 28 29 30 36 38 44 45 46 8 29. 32 25 6l 5 56 2 57 8
38 29 30 31 37 39 45 46 47 8 30. 32 25 62 6 48 3 58 16
39 30 31 32 38 40 46 47 48 8 31. 32 25 63 7 40 4 59 24
40 0 0 0 31 32 39 47 48 5 32. 32 25 64 8 32 5 60 32
41 0 0 0 33 34 42 49 50 5 33. 40 33 57 1 60 33 33 5
42 33 34 35 41 43 49 50 51 8 34. 40 33 58 2 61 25 41 6
43 34 35 36 42 44 50 51 52 8 35. 40 33 59 3 62 17 49 7
44 35 36 37 43 45 51 52 53 8 36 40 33 60 4 63 9 57 8
45 36 37 38 44 46 52 53 54 8 37. 40 33 61 5 64 1 58 16
46 37 38 39 45 47 53 54 55 8 38. 40 33 62 6 56 2 59 24
47 33 39 40 46 48 54 55 56 8 39. 40 33 63 7 48 3 60 32
48 0O O 0 39 40 47 55 56 5 40, 40 33 64 8 40 4 61 40
49 0 0 0 41 42 50 57 58 5 41 48 41 57 1 59 41 41 6
50 41 42 43 49 51 57 58 59 8 42 48 41 58 2 60 33 49 7
51 42 43 4 50 52 58 59 60 8 43 48 41 59 3 61 25 57 8
52 43 44 45 51 53 59 60 61 8 44 48 41 60 4 62 17 58 16
53 4 45 46 52 54 60 61 62 8 45 48 41 6l 5 63 9 59 24
54. 45 46 47 53 55 61 62 63 8 46 48 41 62 6 64 1 60 32
55. 46 47 48 54 56 62 63 64 8 47 48 41 63 7 56 2 61 40
56 0 0 0 47 48 55 63 64 5 48 48 41 64 8 48 3 62 48
57. 0O 0 0O O O 49 5 58 3 49, 56 49 57 1 58 49 49 7
58. 0O O 0 49 5 51 57 59 5 50. 56 49 58 2 59 41 57 8
59. 0O 0 0 50 51 52 58 60 5 51. 56 49 59 3 60 33 58 16
60. 0 0 0 51 52 53 5 61 5 52. 56 49 60 4 61 25 59 24
61. 0 0 0 52 53 54 60 62 5 53. 56 49 6l 5 62 17 60 32
62. 0O O 0 53 54 55 61 63 5 54, 56 49 62 6 63 9 61 40
63. 0 0 0 54 55 5 62 64 5 55. 56 49 63 7 64 1 62 48
64. 0O 0 0O O O 55 5 63 3 56. 56 49 64 8 56 2 63 56
57. 64 57 57 1 57 57 57 8
58. 64 57 58 2 58 49 58 16
59. 64 57 59 3 59 41 59 24
60. 64 57 60 4 60 33 60 32
Appendix 1.2a Appendix 1.2b 61. 64 57 6l 5 61 25 61 40
ROOK TABLE BISHOP TABLE 2%: 2 g; g g 2§ 1; 2§ ;‘ﬁ
E w N S NE SW NW SE 64. 64 57 64 8 64 1 64 64
1 —1 8§ —8 9 -9 7 —7
1. 8 1 57 1 64 1 1 1
2. 8 1 58 2 56 2 9 2
3. 8 1 59 3 48 3 17 3
4. 8 1 60 4 40 4 25 4
5. 8 1 61 5 32 5 33 5 Appendix 1.3a Appendix 1.3
6. 8 1 62 6 24 6 41 6 WHITE PAWN TABLE BLACK PAWN TABLE
7. 8 1 63 7 16 7 49 7
8. 8 1 64 8 8 8 57 8 +8 +16 +7 49 -8 —16 -7 -9
9. 16 9 57 1 63 9 9 2 9. 17 25 65 18 1 9 2 65
10. 16 9 58 2 64 1 17 3 10. 18 26 17 19 2 10 3 1
11 16 9 59 3 56 2 25 4 11. 19 27 18 20 3 11 4 2
12 16 9 60 4 48 3 33 5 12 20 28 19 21 4 12 5 3
13. 16 9 61 5 40 4 41 6 13 2100 29 20 22 5 13 6 4
14. 16 9 62 6 32 5 49 7 14 2 30 21 23 6 14 7 5
15. 16 9 63 7 24 6 57 8 15 23 31 22 24 7 15 8 6
16 16 9 64 8 16 7 58 16 16 24 32 23 65 8 16 65 7

[=)}
N
—

N
—
[\
b
.
<
[=)}
—
O NN P WN -
H
(o]
AP WN=O
N
O
AN NDIP W
[\]
.
N
o
N
.
N
[
()
(=}
P
w
N
L
P
N
—
N

4
o
N ==

20z Iudy 61 U0 1sonB AQ 8GGE7E/902/2/E | /AI0IME/|UlWO0 /WO dNO" OIS PEDE//:SARY WOl PAPEOIUMO(

218 Algorithms Supplement

25. 33 25 65 34 17 25 18 65
26. 34 26 33 35 18 26 19 17
27 35 27 34 36 19 27 20 18
28 36 28 35 37 20 28 21 19
29 37 29 36 38 21 29 22 20
30 38 30 37 39 22 30 23 21
31 39 31 38 40 23 31 24 22
32 40 32 39 65 24 32 65 23
33 41 33 65 42 25 33 26 65
34 42 34 41 43 26 34 27 25
35 43 35 42 44 27 35 28 26
36, 44 36 43 45 28 36 29 27
37 45 37 44 46 29 37 30 28
38 46 38 45 47 30 38 31 29
39 47 39 46 48 31 39 32 30
40 48 40 47 65 32 40 65 31
41 49 41 65 50 33 41 34 65
42 50 42 49 51 34 42 35 33
43 51 43 50 52 35 43 36 34
44 52 44 51 53 36 44 37 35
45 53 45 52 54 37 45 38 36
46 54 46 53 55 38 46 39 37
47 55 47 54 56 39 47 40 38
48 56 48 55 65 40 48 65 39
49 57 49 65 58 41 33 42 65
50 58 50 57 59 42 34 43 41
51 59 51 58 60 43 35 44 42
52 60 52 59 61 44 36 45 43
53 61 53 60 62 45 37 46 44
54 62 54 61 63 46 38 47 45
55 63 55 62 64 47 39 48 46
56 64 56 63 65 48 40 65 47
Appendix 2

The following is inserted at label ‘Castling’ in the program
CASTLING:

if piece[1] = 5 then goto white king side else
if piece[1] = 61 then goto black king side else
goto ferminate;
white king side: if white king side castle N\ whitemen[6] = 0 A
whitemen[7] = O then

for n := depth — 2 step — 2 until 1 do
if locate[n] =1 V locate[n] = 2 then goto white queen

side;
end else goto white queen side;
whitemen([6] := whitemen[7] : = 6;
n:=c;

listmoves(blackpiece, blackmen, whitemen, n, cant castle wk
side);
can castle wk side: castle(5, 7, 2, 8, 6);
cant castle wk side: whitemen[6) := whitemen[7] := 0;
white queen side: if white queen side castle N whitemen[2] = 0
A whitemen[3] = 0 A whitemen[4] = O then
begin
for n := depth — 2 step — 2 until 1 do
if locate[n] = 1 V locate[n] = 3 then goto terminate;
end else goto terminate;
whitemen([3] := whitemen[4] : = 6;
n:=c;
listmoves (blackpiece, blackmen, whitemen, n, cant castle
wq side);
can castle wq side: castle(5, 3, 3, 1, 4);
cant castle wq side: whitemen([3] : = whitemen[4] : = 0;
goto ferminate;
black king side: if black king side castle A blackmen[62] = 0
A blackmen[63] = 0 then

begin
for n := depth — 2 step — 2 until 2 do
if locate[n] =1 V locate[n] = 2 then goto black queen
side;
end else goto black queen side;
n:=c;
listmoves(whitepiece, whitemen, blackmen, n, cant castle bk
side);
can castle bk side: castle(61, 63, 2, 64, 62);
cant castle bk side: blackmen[62] := blackmen[63] := 0;
black queen side: if black queen side castle N blackmen[58] = 0
A blackmen[59] = 0 A blackmen[60] = O then
begin
for n := depth — 2 step — 2 until 2 do
if locate[n] =1 Vv locate[n] = 3 then goto terminate;
end else goto rerminate;
blackmen[59] := blackmen[60] := 6;
n:=c;
listmoves(whitepiece, whitemen, blackmen, n, cant castle bgq
side);
can castle bq side: castle(61, 59, 3, 57, 60);
cant castle bq side: blackmen[59] := blackmen[60] : = 0;
terminate:

The following replaces the dummy procedure ‘castle’ in the
program

procedure castle(kfrom, kto, rook, rfrom, rto);
integer kfrom, kto, rook, rfrom, rto;

begin

moves[c] :=1;

moves[c + 1] := 6;

moves[c + 2] := kfrom;
moves[c + 3] := — kto;
moves[c + 4] := rook;
moves[c + 5] := 4;

moves[c + 6] := rfrom;
moves[c + 7] := rto;
moves[c + 8] := — rfrom;
moves[c + 9] :=1;

moves[c + 10] := 6;
moves[c + 11] := kto;
moves[c + 12] := — kfrom;
c:=c+13

end;

I

I

Finally, the Boolean variables must be declared in the outer
block of the program thus

Boolean white king side castle, white queen side castle,
black king side castle, black queen side castle;

and initialised suitably on entry depending on which castlings
are still valid.

Appendix 3

Algol text to input the relevant contents of Appendix 1 and a
two move mate position

for i := 1 step 1 until 9 X 64 do knight[i] := read,

for i := 1 step 1 until 9 X 64 do king[i] := read,

for i := 0 step 1 until 4 X 64 + 3 do rook[i] := read,

for i := O step 1 until 4 X 64 + 3 do bishop[i] := read,

fori:=4 X 9step1until4 X 56 + 3 do wpawnl[i] := read,

fori:=4 X 9step1until4 X 56 + 3 do bpawnl[i] : = read,
CLEAR THE WHITE AND BLACK BOARDS:

for i:=1 step 1 until 65 do whitemenli] : = blackmen[i]:=0;
NUMBER OF WHITEMEN 1IS:

whitepiece[0] := read;
NOW READ IN THEIR VALUE AND POSITION ON
THE BOARD:

for i := 1 step 1 until whitepiece[0] do

20z Iudy 61 U0 1sonB AQ 8GGE7E/902/2/E | /AI0IME/|UlWO0 /WO dNO" OIS PEDE//:SARY WOl PAPEOIUMO(

Algorithms Supplement 219

begin
ji=read; k := read,
whitemen[k] := j; whitepieceli] := k
end;
NUMBER OF BLACKMEN 1IS:
blackpiece[0] := read,
AND THEIR VALUE AND POSITION ON THE BOARD
1S
for i := 1 step 1 until blackpiece[0] do
begin
ji=read; k .= read,
blackmenlk] := j; blackpieceli] := k
end;
comment The example in Fig. 1 is described by the following
data
11
610112514218122132433139351357262
7
1 20 1 28 1 30 2 36 5 37 6 38 1 46;

Appendix 4
Prints the position, the layout is similar to Fig. 1(b)
procedure print position;
begin
switch /ist :=p,n, b, r,q, k;
newline(2);
for i := 56 step — 8 until 0 do
begin
for j := 1 step 1 until 8 do
begin

if whitemen[i 4+ j] = 0 then goto printblack else
writetext(‘w’);
goto list[whitemen[i + j]1;

printblack: if blackmen[i + j] = 0 then goto empty else write-
text(‘b’);
goto list[blackmenli + j11;

p: writetext(‘p’); goto sp;
n: writetext(‘'n’);, goto sp;
b: writetext(‘b’); goto sp;
r: writetext(‘r’); goto sp;
q: writetext(‘q’); goto sp;
k: writetext(‘k); goto sp;
empty: writetext(‘, 0");
sp: writetext(‘,)
end;
newline(1)
end
end;

Note on Algorithm 44

SOLUTION OF NONLINEAR SIMULTANEOUS
EQUATIONS

In procedure nonlinb the real variable thetal and the arrays
x1, x2 are used in an arithmetic expression before they have
had anything assigned to them. This caused an execution
error when these procedures were tested using the ICL 1900
Algol compiler.

This difficulty can be avoided by replacing the line before
the first call of inival by

sl :=s2 := thetal :=0;
for i := 1 step 1 until order do
x1[i] := x2[i] := 0;

Also in procedures nonlina and nonlinb a semicolon is needed
just before the label EXIT. It should be, e.g.

F1: type :=1; go to FAIL;

EXIT: end of procedure nonlina;
K. Fielding
Computing Centre
University of Essex

Mr. Broyden replies:

The major ‘errors’ in the algorithm do not, in fact, affect
its progress since although thetal and the arrays x1 and x2
are used before they have anything assigned to them, the
initial values they contain are, in fact, just shunted down the
stack and eventually disappear off the end; they are not
actually used in real calculation. The procedure that I gave
you did not fail when I tested it because in those days the
ICL Algol translator set all unassigned stores to zero. The
policy has now been changed to set all unassigned stores to
something which causes overflow. Hence it is necessary to
initialise these stores to some arbitrary but finite number
and Mr. Fielding chose the logical and obvious value of zero.
I hope this will clarify the situation.

Perhaps I should add that the above letter by Mr Fielding
was written at my suggestion, was sent to you with my bless-
ing, and received my full approval.

Computing Centre
University of Essex

Note on Algorithm 47

A CLUSTERING ALGORITHM

There is a minor error in the Author’s note of Algorithm 47,
which does not affect the working of the algorithm. The
L-condition referred to is not the same as the L;-condition
in Jardine (1969) cited in the paper. The clusters generated
by Algorithm 47 satisfy Jardine’s L;-condition but are more
homogeneous.

C. J. van Rijsbergen
King’s College Research Centre
Cambridge

Note on Algorithm 47

A. H. J. Sale’s Note on Algorithm 42 applies equally to
Algorithm 47 printed alongside. Algorithm 47 also contra-
venes the USASI Fortran standard in subroutine CLUST
where array Y, having been equivalenced with array Z in the
calling program, should not be redefined (see section 8.4.2
in the standard) and again in subroutine PREV where the
terminal parameter in a DO statement should not be an
expression (section 7.1.2.8). The algorithm also assumes
logical unit O to be a printing device: it would seem to be
better practice in a general routine to pass the output unit
number as a parameter.

D. T. Muxworthy
Edinburgh Regional Computing Centre.

[Editor’s apology. The editor apologises for these errors which
were not spotted when the paper was refereed.]

Contributions for the Algorithms Supplement should be sent to
Mrs. M. O. Mutch
University Engineering Department
Control Engineering Group
Mill Lane, Cambridge

20z Iudy 61 U0 1sonB AQ 8GGE7E/902/2/E | /AI0IME/|UlWO0 /WO dNO" OIS PEDE//:SARY WOl PAPEOIUMO(

