230

A computer program for banking multiple choice

questions

M. D. Buckley-Sharp* and F. T. C. Harrist

* Bland Sutton Institute
+ Department of Biology as Applied to Medicine, ‘Medical Education Group',
The Middlesex Hospital Medical School, London W1

A new technology of teaching and learning in higher education is developing. This technology,
based in large part on multiple choice examining, is already producing important information on
the mechanisms of vocational University Education.

At the Middlesex Hospital Medical School, the Research and Services Group for Medical Educa-
tion is already collaborating with over 70 Departments in Faculties of Medicine throughout Great
Britain. A very important part of the information generated by the procedures operated by the
group relates to the multiple choice questions themselves and their associated test statistics. In
order to manipulate and retrieve this data the Group have developed programs and sets of pro-
cedures. This question Bank system is complementary to existing procedures for scoring and
analysing examinations. The question Bank program accepts data on cards, or magnetic tape,
converting it to a suitable format for a random access file on magnetic disk. A command language
structure enables the information to be manipulated with the minimum of coded instructions.

The system is capable of expansion, and also of diversification to other fields, but the optimal

level, and type, of computer hardware for its operation is not at present available for use.

(Received December 1969)

There is a growing awareness of the need to sharpen the
tools of assessment in higher education. To an extent,
this need to develop new techniques of educational
‘quality control’ is forced on us by the complexity and
cost of higher education. This process needs to be
applied both to course, and to student assessment, and
the combination of the two has led to greatly increased
demand on the available facilities. For several reasons,
multiple choice questions (M.C.Q.) have been used.
Most people are familiar with M.C.Q. as a type of
question in which a question-stem is followed by a
number of possible answers, the examinee being invited
to choose, from among the answers, those which fit the
stem. Various types and formats of question have been
devised, all with similar aims, and similar properties.
M.C.Q. are used in the examination (assessment) process,
but they also have wide appeal as teaching aids, and in
opinion surveys.

Several computer programs have been devised to score
the data arising from the application of M.C.Q. (e.g.
Groves, 1968, Anderson, Wood, and Tomlinson, 1968,
Harris and Buckley-Sharp, 1968), and particular interest
has been shown, and much work carried out using these
techniques, in the field of medical education. A major
part of the procedure, not covered by these systems, is the
storage and retrieval of the questions themselves, to-
gether with the statistical data which arises from their
use. A system which uses a computer program
(QBANK3B) as its focal point has therefore been devised
and set up over the past two years to deal with the
problems associated with such storage and retrieval.
Some idea of the problems involved can be gained from

The Computer Journal Volume 13 Number 3 August 1970

the fact that our current question bank comprises nearly
six-thousand questions, each held on an average of ten
cards. This bank is growing at nearly four hundred
questions per month, making the checking and updating
of the data a time-consuming process.

The details of the parts of the procedure external to
the computer program have been discussed separately
(Buckley-Sharp and Harris, 1969), and they will not be
discussed here. It is the purpose of this paper to outline
the program itself, and its method of operation. Nom-
inally, the program will manipulate up to four disk
volumes, one at a time, giving access to nearly 30 x 106
characters of data per single program application.
Different program applications may use different volumes
giving unlimited storage access.

The problems of the system design

In a data banking system, the definition of the file
structure and the precise format of data records are the
prime considerations. It does not follow that the
format of the initial data, e.g. on cards, should be
retained as the format of records on accessible, or back-
up, media: this may be a most uneconomical proposition.
However, varistions in format introduce programming
complexities.

The unit of information is the record, and only
occasionally will it be necessary to obtain discrete data
from within records, for listing. This of course is in
contradistinction to the program requirements for data,
in which sort-keys, block counters, flags, and pointers of
all descriptions need to be maintained to monitor the
state of the system. In the interest of simplicity, the

Y202 YoJelN 0Z U0 1s9nB Aq L9EGHE/OEZ/E/E |/BIOIME/UIWOO/WOo"dNO"DILSPEDE//:SARY WOl PEPEOIUMO(

Banking multiple choice questions 231

access procedures available to the user should not need
to consider this multiplicity of control information, and
a mnemonic language, or command structure is ideal.
Command structures are familiar in very high level
languages, and in the procedures used by operators to
control the main computer system.

Question format: mode of access
Questions are stored on 80-column cards as

(i) from one to forty ‘text’ cards

(ii) a single ‘status’ card

(iii) from one to forty ‘data’ cards. Questions with-
out data cards will be accepted by the program,
but a special dummy data card is constructed and
stored internally with the question. This dummy
data card is deleted when genuine data becomes
available.

Each ‘data’ card is a product of a single run of the
question in a multiple choice question test. The card is
produced by the SCORE7L marking program (Harris
and Buckley-Sharp, 1968, User Bulletin 11), when the
required option is set. SCORETL also produces a
‘status’ card for each question which is used only to
check the answer pattern. Question references (Buckley-
Sharp and Harris, 1969) are added manually to these
cards.

Questions may be placed on magnetic tape, when the
format is precisely the same as that for cards, i.e. the
data exists as card images on tape, and so card, and tape,
may be considered as identical media for the purpose of
the Question Bank Program.

The manipulative operations of such a filing system are
best conducted using random access to the large amounts
of data involved. This means that the data must be
available on magnetic disk rather than on cards, or tape.
Translation between these various media is the function
of the FILE, and DUMP commands (see Bank Control
Language below).

When resident on disk, the question data is in a com-
pressed form which enables considerable economies in
access time to be made. Questions are stored on disk as

(i) a single ‘status’ record,
(ii) from one to forty text records,
(iii) from one to forty data records.

Note that the position of the status record is different
to the position of a status card. The content is also
different, in that the disk ‘status’ record contains various
block counters to facilitate access to the remainder of
the question. The text itself is in a compressed form
with all strings of blanks removed. Such removal is
signalled in the record by a numeric zero (two bytes),
followed by a count of the number of blanks removed
(two bytes), followed by the continuation of the text
following the omitted blanks. All transactions to or
from disk storage take place in compressed form, with
the text being ‘compressed’ before writing out, and
‘released’ after reading in. The process is in fact slightly
more subtle, for a preliminary survey determines whether
one or more complete text records are saved by such
compression. Where this is not the case, the compres-
sion-release cycles are bypassed. Considerable advan-
tage is gained even by this simple method; the amount of

disk space commonly saved being between 209 and 30 7;.

By the nature of the data, it is necessary to access
records which correspond in size to card images (in fact,
the disk records are 66 bytes long). If a file were
composed of direct access records of this size, it can be
estimated that half the available space would be occupied
by inter-record gaps! Since the supplied software does
not support blocked direct access records, it has been
necessary to provide just such a facility within the pro-
gram. This involves the provision of what amounts to
two buffers, which are used to deliver and receive data
to and from the program. The buffers correspond to
twelve records (as viewed by the program), and are
written and read in foto to or from disk to keep the disk
file updated. Four of these long records are contained
on each disk track, giving a total of forty-eight program
records per track, or exactly double the number which
could be stored in the unblocked state. Using this form
of blocking, and the text compression already outlined,
it has been estimated that some 120,000 program records
may be contained on a single disk volume (I.B.M. 1316
for I.LB.M. 2311 drive). This compares to the 44,000
which would be possible if the original cards were to be
placed by themselves into a direct access file. This

_system also conveys the further advantage that 1/0

activity is reduced. Once a buffer has been retrieved,
individual ‘records’ may be delivered by program ‘direct
access’ statements without further file manipulation.

In order to access the files of information when they
are held on disk, a dictionary is used. Each dictionary
entry has two parts; a question reference, and a record
number. When a dictionary entry is being checked, it
occupies ten bytes of store, but when it is not being used,
some bits are redundant, and each entry is held, without
loss of data, in only six bytes. This increases the
number of entries which can be held in store at any one
time to 12,000. The question reference (bytes 1-6 of
expanded version) comprises three letters, and three
numbers; a format which permits mnemonic subject
classification (letters) and serial numbering (Buckley-
Sharp and Harris, 1969). The record number (bytes
7-10 of expanded version) is the location within the file
(starting at 1, and assuming unblocked records) of the
first record of the question. Since the first record is the
status record, and since the status record contains the
counts of both text and data records, questions are
accessed by the following procedure:—

(i) find question reference in dictionary
(ii) get associated record number
(i) read this record and get counts of text and data
records
(iv) read text records using counter
(v) read data records using counter
(vi) ‘release’ the compressed text ready for use.

Since a bank file is only accessable via a dictionary, the
dictionary must be stored at the end of the job, or when
a new file is to be used. This is done by dumping the
dictionary onto the same disk volume as the bank file,
and dismounting the disk. Remounting the disk, and
reading in the dictionary is sufficient to restore all file
access facilities. This is economic in computer time, as
the dictionary occupies only some 2%-39% of the disk
space need for a bank file, and therefore takes little time
to recover.

Y202 YoJelN 0Z U0 1s9nB Aq L9EGHE/OEZ/E/E |/BIOIME/UIWOO/WOo"dNO"DILSPEDE//:SARY WOl PEPEOIUMO(

232 M. D. Buckley-Sharp and F. T. C. Harris

Table 1

BANK Control Language: Command Function Summary

Command Function

OPEN Initiate a random access disk file for use.

CLOS Terminate use of a disk file.

FILE Enter data to a disk file, OR, bring a dictionary
into core.

DUMP Dump data from a disk file, OR, dump a
dictionary from core.

EDIT Edit the contents of a disk file.

DICT Write out the current dictionary.

WRIT Write out the current disk file.

WORK Make selections from the current file using
statistical profile.

KWIC Make selections from the current file using
textual profile.

STOP Close down operations.

BANK control language

The BANK Program operates under the action of a
series of commands. These are executed sequentially on
recognition, and the commands themselves are not
stored prior to execution. It is therefore not possible to
alter the logical flow during program execution where a
batch processing system is used. Nor is it possible to
check syntactical accuracy of the data stream before
commencing execution. If and when commands can
be given via an on-line terminal, these problems will be
much alleviated. Indeed, the structure of the system has
been defined with just this possibility in mind. In the
opinion of the authors, such data banking is best carried
out in conversational mode, as the requirements for in-
put commands, and output (console or video terminal)
are small, and constitute a minor part of the operations.
The devising and writing of the required software is how-
ever complex, and comparable, in terms of effort
required, to operation software.

There are currently ten commands, each consisting of
only four letters. The letters have been chosen to indi-
cate the command function. They are summarised in
Table 1.

Operands are used to supplement some of the com-
mands. They are required when setting up a disk file,
and when reading data to or from disk, and another
data storage medium (cards or tape). The commands
which require operands are therefore the OPEN, FILE,
and DUMP commands. The operands themselves
specify the location of the required data on its data
storage medium. These are logical references, and do
not themselves specify physical data locations. The
connection between the logical and physical references is
made using job control language (J.C.L.) facilities,
available under the System 360 Operating System
(O.S. 360) (IBM Form C28-6539). The interpretation
of the first operand i.e. the restrictions placed by the
program on the connections which may be established
by J.C.L. are shown in Table 2.

Second operands are only used when the first operand
has the value 02, 04, or 16. In this case, the second
operand specifies the sequence number (first, second, etc.)
of the data-set on the logical unit specified by the first

operand. Thus a first operand of 02, and a second
operand of 001 specifies the first data set on unit two.
The correspondence between this specification, and a
physical data location is maintained by the job control
language DDNAME (IBM Form C28-6539).

Each of the ten commands, with its operands if needed,
is recognised by a supervisor program which then takes
the appropriate action by transfer to one or more sub-
programs designed to service the request. Some of
these service subprograms read data cards themselves, so
that commands will be interspersed with other data.
Within the service subprograms, reversion to the super-
visor may be automatic, or depend on the flow of data.
In general, a routine which itself reads cards, will revert
to the supervisor program when a card is read bearing
the name of the command which caused entry to the
routine. Thus, when transfer has been made to the
routine which services the EDIT command, the reading
of another EDIT card causes reversion to the super-
visor. The commands which may read cards, and to
which this applies are the FILE, EDIT, WORK, and
KWIC commands. Other commands do not read data
cards, and the card following one of these commands is
therefore the next command.

The individual commands

In this section, the purpose of the commands and their
function is further explained.

The OPEN command: the CLOS command

The OPEN command causes the program to set up an
area on disk ready for use as a bank file. For this
reason, operand 1 is valid, and may hold one of the
values 08, 10, 12, or 14. Second operands are irrelevant.

Table 2
Restrictions on first operands for OPEN, FILE,
and DUMP
Operand Valid Comment
01 No Program utility work space: may not be
referenced.

02 Yes (FILE or DUMP) Tape unit, or sequ-
ential disk data.

03 No Standard printer reference.

04 Yes As for 02.

05 Yes (FILE only) Standard card reader

reference.
06 No Standard printer reference.
07 No Standard card punch reference.

08 Yes 1st bank disk file (random access).
09 No Dictionary for 1st bank file: direct
reference invalid.
10 Yes As for 08, but 2nd file.
11 No As for 09, but 2nd file.
12 Yes As for 08, but 3rd file.
13 No As for 09, but 3rd file.
14 Yes As for 08, but 4th file.
15 No As for 09, but 4th file.
16 Yes As for 02.
Higher No Program restriction.

Y202 YoJelN 0Z U0 1s9nB Aq L9EGHE/OEZ/E/E |/BIOIME/UIWOO/WOo"dNO"DILSPEDE//:SARY WOl PEPEOIUMO(

Banking multiple choice questions 233

Table 3
FILE/DUMP: Operands and their interpretation

Op10Op2 Comment
05 FILE only: a bank file must be open ready
for use.
02 nnn)| Read/Dump card images from/to the speci-
04 nnn ;fied logical unit starting at data set nnn.
16 nnn j A bank file must be open.

(l)g \| Read/Dump the dictionary associated with
12 T the specified bank file into/from store.
14 j May be used to open a file before use.

Only one of the logical units 08, 10, 12, or 14 may be
‘open’ at a time, so that if an OPEN command is given
for a new file, while the old file is still open, the old file
is first automatically closed using the DUMP command
(see below), which causes the old dictionary to be stored
for future use before the new dictionary is prepared.
After the OPEN command, the new file is assumed to be
empty. However, there are two possible conditions of
the empty file. When a direct access file is first used, it
is ‘preformatted’ by the support software: a file made
ready by the ‘OPEN’ command may thus be classed as
‘created’ or ‘not-created’. This distinction is important
when the FILE command is used to open a file (see
FILE command below), for a file which has not been
created, can have no dictionary. To prevent failure in
this situation, a ‘creation-flag’ is used to control the
commands which can be executed on a file.

The CLOS command informs the program that a
given bank file is no longer required. All pointers and
counters which control file access are cancelled, and any
information still in the file becomes irretrievable unless
the dictionary has previously been saved. Use of a
CLOS command immediately before an OPEN com-
mand bypasses the automatic DUMP operation which
is executed on the old file before opening the new file.
Since only one bank file can be open at any time, only
the current file can be acted upon by the CLOS com-
mand; operands are therefore unnecessary. After a
CLOS command, no bank transactions can take place
until a new file has been opened.

The FILE command: the DUMP command

The FILE command allows data to be inserted to a
bank file. Alternatively, it permits the reading of a
dictionary into store, so that a previously created bank
file may be accessed. All valid operands shown in
Table 2 are permitted, and further details are shown in
Table 3.

The DUMP command reverses the action of the FILE
command. The value 05 for the first operand is not
valid, but all other values may be used (see Tables 2 and
3). When data is dumped to units 02, 04, and 16, the
current bank file remains open for further transactions,
but when the operand has the value 08, 10, 12, or 14, the
bank file is closed after use as if a CLOS command had
been subsequently given. Since only the current bank
file can be used in a dump, the use of 08, 10, 12, or 14, is
merely a check that the correct file is present. If this
check is not required, then omission of the operands for

the DUMP command forces a dictionary dump for the
current file, whatever its reference number.

The EDIT command

No operands are required since only the current bank
file may be used. Editing information which follows an
EDIT command may comprise

(1) ‘STATus’ cards,

(ii) ‘DATA’ cards, and

(iii) ‘DLET’ cards.

For a STATus card, the status information for the
question is retrieved and checked. If column 6 on the
STATus card contains a 1, any discrepancy is altered in
favour of the card.

For a DATA card, the information is added to the
other data cards associated with the question. If the only
DATA information with the question is a dummy DATA
card formed because the original question had no actual
data, then the new DATA card overrides this dummy.

For a DLET card, the question reference is deleted
from the dictionary, and the space on the bank file is
released.

The three types of edit card may be input in any order,
and in any quantity.

The DICT command: the WRIT command

These commands dump details of the current bank
file. The DICT command dumps the contents of the
dictionary, and also provides a check for duplicated
references. The WRIT command dumps the entire
contents of the current bank file itself. This includes all
text, and data relating to the questions. Due to the
quantity of output that this may involve, it is clear that
only small files should be dumped using this facility.

The WORK command

No operands are required. Within the service routine,
WORK data cards are read (as distinct from WORK
command cards, which are read by the supervisor
program). These have a content shown in Table 4, and
they are similar in content to DATA cards contained
within questions.

Cards containing a question reference amount to a
specific request for that question via a dictionary search.
All cards not containing a question reference amount to a
general request for any question whose data matches
the various headings on the WORK request card. Each
entry is optional, although sufficient should be entered
to avoid producing too many questions.

The KWIC command
Like the WORK command, the KWIC command is

Table 4
Parameters on a WORK data card

Subject heading
Examination reference
Four statistical parameters
Two alias names

A question reference

Y202 YoJelN 0Z U0 1s9nB Aq L9EGHE/OEZ/E/E |/BIOIME/UIWOO/WOo"dNO"DILSPEDE//:SARY WOl PEPEOIUMO(

234 M. D. Buckley-Sharp and F. T. C. Harris

used to make selections. This command permits the
insertion of a textual profile which forms the basis of the
request. The profile is inserted on KWIC data cards
(analogous to WORK data cards). If column 6 on the
card is non-blank, then the text area (columns 7-72) is
taken as a direct continuation of the text area on the
previous card. Within the text area, or contiguous text
areas, the profile is inserted as character strings enclosed
in quotation marks (’). Several strings may beinserted in
a single text area; each string is enclosed in quotes, and
separated from other strings by at least one card column.
The text from a question must contain at least one of the
strings from a KWIC text area (or contiguous text areas)
to be selected (OR procedure). In addition, several
independent text areas may be set up, simply by inserting
more request cards with text areas which are not conti-
nuations of previous cards. Each new text area may be
termed a ‘line’, although a line may occupy more than
one card. In this respect, the format is similar to
standard FORTRAN program cards. A question must
contain at least one of the strings (OR procedure) from
every line (AND procedure) to be selected. An example
of a KWIC profile request compiled from KWIC data
cards is shown in Table 5: this might be expected to
result in the selection of questions concerning traffic-
lights (sic).

The STOP command

This command terminates the job with suitable close
down procedures. It is used as the last card in the chain
of commands.

Example of the use of the BANK program

Table 6 shows an example of a data stream for the
BANK program. The complete data stream is com-
posed of commands intermixed with other data as
required.

In the example, a file exists (has been defined in the
J.C.L. for the job step) on unit 08: the dictionary for this
is read (from unit 09) enabling the file to be accessed. A
question called ABC123 has an error, and a new version
is to be substituted : the current version is first edited out
(EDIT—DLET—EDIT), and the new version is then
added (FILE—question—FILE). A dictionary listing is
requested: this will be for the whole file. The WORK
cards request the current (i.e. new) version of ABC123
to be listed, after which the file is no longer needed and
is to be dumped to tape (unit 02, file 1).

A new file is then requested (OPEN). Since the pre-
vious file is still ‘open’, and only one file may be open at
a time, the program will close file 08 by giving its own
DUMP command. Note that this will conveniently
save the dictionary for file 08 so that the disk file may be

Table 5
Example of a KWIC request matrix listing

.AND. LINE 1 ‘YELLOW’
.OR. ‘AMBER’

.AND. LINE 2 ‘RED’

.AND. LINE 3 ‘GREEN’

Table 6
Example of a BANK program data stream

Data Stream Comment
FILE 08 Open a file and read dictionary.
EDIT Commence edit.
DLET ABC123 Remove question ABC123
from file.
EDIT End of edit.
FILE 05 Read new questions from cards.
TEXT (text) ABC123 New
. . version
. . . of
STAT 5 10100 ABCI123 question
DATA (data) ABCI123 ABCI123.
FILE End of questions.
DICT Print dictionary of current file.
WORK Commence selections.
WORK ABCI123 Find and write question
ABCI123.
WORK End of selections.
DUMP 02001 Dump current file to tape.
OPEN 10 Open new file.
FILE 05 Read questions from cards.
(questions)
FILE End of questions.
DUMP 02002 Dump to another tape.
STOP End.

used at a later date (this does not affect the tape copy
which is also available as backup). Some questions are
read into file 10, and these are dumped to another tape
(until 02, file 2). The facilities of J.C.L. enable this
second tape data set to be located independently of the
tape data set used in the first DUMP command, even to
the extent of locating it on a different volume. The only
exception is that the second data set cannot be both on
the same volume, and physically in front of the first,
otherwise the first data set will clearly be lost.

Following this second DUMP, the job ends. Since
the current file (10) is still open when the STOP com-
mand is given, the file is first closed with a dictionary
dump, as happened with the first file (08). This inter-
locking facility of the commands controlling opening,
closing, and reading/dumping is extremely useful, for it
reduces the number of command cards needed, and
removes some of the risk of inadvertently losing data.
However, the multiple functions remain logically con-
sistent, and should not lead to confusion.

Discussion

A considerable number of university teachers, chiefly
in faculties of medicine, are now taking advantage of the
various scoring and analysis procedures offered for
multiple choice questions. A country-wide research
organisation is run, on essentially informal lines, from
the Middlesex Hospital Medical School, and this is
primarily aimed at medical faculties. The upsurge of
in-course assessment, with its concomitant advantages
has demanded some form of automation, and multiple
choice questions (M.C.Q.) have proved useful in this

Y202 YoJelN 0Z U0 1s9nB Aq L9EGHE/OEZ/E/E |/BIOIME/UIWOO/WOo"dNO"DILSPEDE//:SARY WOl PEPEOIUMO(

Banking multiple choice questions 235

field. This should not be taken to exclude other forms
of assessment, but merely to place them in their proper
perspective.

In solving most of the technical, administrative,
economic, and ethical problems associated with M.C.Q.
examination scoring and analysis, the area relating to
question paper storage and preparation has been largely
neglected: but many of the system constraints apply
equally to scoring, and to question storage. In parti-
cular, the (centralised) computer facilities must be
capable of simple presentation and interface with the
teacher or examiner, so that he need not concern himself
with actual computer operations.

Whatever system is devised, it must be economical.
While computer manufacturers (notably), and others,
can spend large sums of money on complex systems,
programming, and hardware, they will make little pro-
gress in the general university market as long as most
university departments are forced to think in terms of an
education budget of a few pounds, rather than hundreds,
or thousands of pounds. This may be for a very long
time indeed.

With the program written, it appears that it might be
suitable for other applications. A parallel field of study
has been the maintenance of student records on file, with
name and other free text information coupled to course
details and test results. It now appears that this is a
good example of a similar system which could be
similarly treated. No doubt, other examples will come
to light given time.

As with every other system, a computer program is but
a small part, and QBANK3B is supported by a well
defined protocol. While there has not been space to
consider this in detail, one item is of interest. A com-
puter card has been designed (see Fig. 1) to enable the
originator of the questions, and others if desired, to gain
rapid access to the Bank file. The question may be

typed onto this card, or a copy of the listing of the
question may be fixed to the card: the latter having the
advantage that the stored (and reproducible) version is
shown, while the former has the advantage that the card
will still pass through normal unit-record equipment.

With the current volume of information, data main-
tenance would be impossible without computer assis-
tance. However, at any level of operation, the system
must balance effectiveness against cost. While the
University College London Computer Centre has been
extremely helpful throughout the project (and indeed,
without them this system would not be in existence), they
suffer from a lack of peripherals, and the program wastes
a considerable amount of processor time due to its
requirements for input/output. At the moment, a batch
processing procedure is adequate, and the cost of com-
puter time is conveniently defrayed by the University
computer services. As the quantity of data enlarges,
batch processing will become less suitable. There is no
doubt that the potential of the system can only be fully
exploited when it has been implemented on a local dedi-
cated computer, which needs only medium speed, but
large random access storage. Such a computer should
also be capable of connection to a more powerful
machine for ‘number-crunching’, where needed. The
use of on-line terminals to such a machine would also be
required as the active participation of the user will
enable decisions on data movement to be taken as
problems arise, rather than at present, where a complex
job must be planned, in detail, in advance. This is a
situation which, of itself, limits the maximum usable size
of the Bank and its files of data.

In spite of these difficulties, it is felt that the command
language approach has been fully justified. With such a
language, modules of program may be written in-
dependently (to a certain extent) to deal with each
command, and these can be varied and updated with

ooty
‘QUESTION REFERENCE QUESTION
QUESTION BANK REQUEST CARD
UEDO17 REFERENCE
= Boofloo
1576 77 78 79 80
The Middlesex Hospital Medical School Question Bank System is 80-column ARAY }
card, and magnetic tape based. Each question may use 66 columns of up to [722222
40 cards, and a further 4O cards may be used for question statistics.
Using this information, and any other you may have, which of the following 333333
are true? Belass
(4) Questions cannot usually be listed on a line printer in lower case.
(Bg Diagrams are economically stored on 80-column cards. 505555
(C) There would be no advantage in making the Question Bank interface with |s66666
a microfilm record system.
(D) Question text can extend to no more than 2640 characters. 111111
(E) The WORK command can be used to prevent the allocation of duplicate 888888
question references. 989991

12345678 91011121214 15161 1819202122232425262728293031 32 33 34 35 36 37 38 30 40 41 42 43 44 45.46 47 48 42 50 51 52 53 54 55 56 57 58 53 60 61 €2 63 64 65 66 67 68 69 70 71 7273 74 75 76 77 78 79 80
1M UNITED «INGDOM LIMITED 866 -18534

MIDDLESEX HOSPITAL MEDICAL SCHOOL

Fig. 1 Sample question on computer card

Y202 YoJelN 0Z U0 1s9nB Aq L9EGHE/OEZ/E/E |/BIOIME/UIWOO/WOo"dNO"DILSPEDE//:SARY WOl PEPEOIUMO(

236 M. D. Buckley-Sharp and F. T. C. Harris

little interference from other parts of the program. The
supervisor which knits the modules together, is also
capable of rapid modification. It is therefore proposed
to extend this experience by writing other command
interpreter programs for other similar projects.

If the reader can now answer the question in Fig. 1,
the letters of the correct choices will be found in the
third word of this sentence.

References
ANDERSON, J., Woop, H., and ToMLINSON, R. W. S. (1968).

Acknowledgements

The authors would like to thank the staff of University
College London Computer Centre for their assistance.
Mrs. D. Evans has been largely responsible for the
recording of the Bank of nearly 6000 multiple choice
questions onto cards. The authors are indebted to
Dr. P. Samet, Director of the UCL Computer Centre for
his advice in the preparation of this manuscript.

Brit. J. Med. Educ., Vol. 2, p. 210.

BUCKLEY-SHARP, M. D., and HARRrs, F. T. C. (1970). The Banking of Multiple Choice Questions, Brir. J. Med. Educ. (Vol. 4, p.
42). Bulletin 11: An Examiner’s Guide to SCORE Version 7L (released to users).

GROVEs, P. D. (1968). The Computer Journal, Vol. 10, p. 365.

Harrss, F. T. C., and BUCKLEY-SHARP, M. D. (1968). Brit. J. Med. Educ., Vol. 2, p. 48.

International Business Machines (U.K.) Ltd. Form C28-6539.

Book Review

Artificial Intelligence through Simulated Evolution, by
Lawrence J. Fogel, Alvin J. Owens, and Michael J.
Walsh, 1966; 170+xii pages. (New York, London,
Sydney: John Wiley and Sons Ltd., £3.75)

An ancient principle in the design of machines is to adopt or
to adapt methods used by nature. Although obvious, the
principle is important and often overlooked so that it merits
a name, say the Naturist Principle. 1t is usually necessary to
bring two or more ideas together: birds do not fly by rotating
their beaks nor by jet propulsion. An aeroplane is a cross
between a bird and a sycamore seed or perhaps a squid.

The naturist principle can be applied to the study of mach-
ine intelligence by trying to copy the tricks of language, of the
nervous system, and of the evolution of intelligence including
the principles of natural selection and mutation. A fair amount
of work has been done using the first two of these three
approaches, and the third (evolutionary) approach is also not
entirely new; it was, for example, suggested, by Oliver Self-
ridge in the 1958 symposium on the mechanisation of thought
processes at the National Physical Laboratory. But the
present book gives an account of what were perhaps the first
fairly extensive experiments based on the idea. The idea
should of course not be confused with the machine simulation
of evolution for the study of evolution itself. (See, for
example, J. L. Crosby, New Scientist, 21st February 1963.)

The individual ‘machines’ simulated in the experiments are
all small finite-state automata. The simulation on a general-
purpose computer is almost essential for the experiments
owing to the continual redesign of the automata. The tasks
put to these automata are the prediction of the next elements
in sequences of letters, and sometimes there is an element of
control as well. The more successful automata are allowed
to give birth to new automata, with slight modifications in-
cluding additions. Some measure of success is achieved for
prediction problems that are simple enough, for example,
when the original sequence is periodic and when the problem
has a simple approximate solution. Practical implications
are not yet evident since evolutionary techniques are not
necessary for such simple problems. Moreover the bare
description of the experiments makes it difficult to see the
wood for the trees. But a beginning has been made.

The experiments are relevant to the status of simplicity in
the mechanical or mental construction of concepts since, in
some of the experiments, automata were handicapped in

accordance with their complexities. Any given simple hypo-
thesis is more likely to be approximately true, and also, for
a variety of methods of concept generation, more likely to be
generated than any given more complicated hypothesis: this
is why life is possible. This would usually be true irrespective
of the precise definition of ‘simplicity’ and irrespective of the
method of hypothesis generation, be it by linguistic trans-
formation, by pseudorandom artificial or real neural networks
(the human method) or by simulation of evolution. Once an
approximately correct hypothesis is generated, then it will
tend to be confirmed (and hence consolidated in an adaptive
technique) in virtue of its correct predictions. The present
work, partly in virtue of its title, will help to channel research
in these directions.

The automata that occur in the experiments are much
simpler than unicellular animalcules, so it is appropriate that
sexual reproduction has not yet been simulated. But eventu-
ally it will need to be since it would give scope to the combin-
ation of the good features of both ‘parents’. This would be
a natural strategy for the design of a creative machine, since,
as Arthur Koestler has emphasised, creativity always involves
the bringing together of two distinct ideas.

In addition to the description of the experiments there is
also some speculative discussion. When discussing hard
science the style is cold and dry, but it gets warmer when the
science gets softer. Examples of the two styles are: (i) ‘It is
also evident that the cost matrix which expresses the goal of
comparison must embody the characteristics that are the basis
for human judgments of similarity’ and (ii) ‘. . . the scientific
method was not invented, it was discovered. It existed long
before man; in fact it gave rise to man. Natural evolution
can be looked upon as a realisation of the scientific method’.
(Cf. the quotation heading Chapter 1 of Warren Weaver’s
‘Lady Luck’.)

There is no name index. For this the publishers are more
to blame than the authors, since the production of a name
index is a routine job which the publishers should organise
after the page proofs are available.

1. J. Goop (Oxford and Blacksburg, Virginia)

[Editor’s Note: There was an unfortunate delay in the prep-
aration of this review for publication, which was in no way
the reviewer’s responsibility. We apologise to the authors
for the delay.]

Y202 YoJelN 0Z U0 1s9nB Aq L9EGHE/OEZ/E/E |/BIOIME/UIWOO/WOo"dNO"DILSPEDE//:SARY WOl PEPEOIUMO(

