237

The MINIMOP multi-access operating system

T. G. McLain* and A. R. Tricet

* Control Data Corporation, Washington D.C., U.S.A.
t Computer Analysts and Programmers Ltd., Reading

(Both formerly of Software and Applications Programming Organisation, I.C.L., Bracknell)

This paper describes the design and development of a multi-access system which has been
implemented on the small to medium 1900 series computers.

(Received August 1969)

Multi-access or Time Sharing systems are usually asso-
ciated with either large powerful computer installations
servicing scores of terminals, or are implemented as
dedicated systems on smaller computers using specially
designed hardware and software. However, almost all
computer users could benefit from some of the facilities
typified in such systems, e.g. on-line program debugging,
file enquiry, problem solving, etc. It would therefore,
seem desirable to make such facilities available on
smaller computers, to which communications hardware
has been added.

We were, therefore, required to design and implement
a simple but flexible multi-access system which would
be viable on any 1900 series computer with as little as
16K words of core store, and which would require no
special hardware other than that currently available in
the 1900 range, and which would interface with the
standard 1900 Executive program. This latter require-
ment was essential, since for processors having sufficient
core store, the ability to multiprogram a multi-access
operating system with other programs, or indeed with
another operating system controlling the scheduling of
programs in a batch processing manner, was very
desirable. The essential peripheral equipment necessary
to operate a simple but efficient multi-access system,
consists of communications equipment and some form
of random access backing store. Implementation on
relatively small processors dictated the use of inexpensive
hardware and thus the minimum configuration specified
for the MINIMOP system is

(i) Any 1900 series processor (other than a 1901,
1901A or 1902) with at least 16K words of core
store.

(ii) Exchangeable Disc Transports, each of 1 or 2
million 24 bit words capacity.

(iii) Communications Multiplexer and Line Terminal
Equipment.
(iv) Teletype 33 Consoles.

In addition, it was assumed the processor would have
at least one input and one output peripheral (for example,
a tape reader and a line printer).

The Computer Journal Volume 13 Number 3 August 1970

The choice of an Exchangeable Disc store (E.D.S.) in
preference to fixed disc or drum was made for reasons
of storage flexibility as well as cost. Where the potential
users can be grouped in such a way that each group
needs access to the computer only during predeter-
mined periods, then it is not necessary to have the
total system storage accessible at all times. Exchange-
able Disc storage makes this possible and allows each
group of users in such an environment more file storage
than they would normally have on a fixed disc. This is
particularly applicable to University departments.

Facilities provided

Our aim was to provide as many of the basic essentials
of a large general multi-access system as space would
allow, without including facilities which would increase
the complexity of the system to an extent where it was
attempting the job of a fully fledged operating system
offering on-line and batch processing capability.

These basic essentials were considered to be:

A simple easy to use Command Language.

Adequate filing and editing facilities.

Compilers interfaced at command level, for running
programs written in a high level language.

Access to a library of other compilers and programs.

Conversational problem solving capability.

Capability of allowing the user to extend the system
under certain limitations to provide the on-line
facilities relevant to his application.

Internal batch processing to utilise any unused C.P.U.
time if multiprogramming under Executive is not
possible (background jobs).

Adequate utility programs to set up the file structure
and provide system off-lining.

The first five formed the requirements on which the
initial design was based and the need for the sixth
became apparent during the development of the free
standing 1900 JOSS type conversational language JEAN,
which was being undertaken at about the same time.
We considered extendability to be the answer in a small
multi-access system, to the different needs of a variety

¥202 I4dy 61 U0 1senb Aq 92€G1E/2€2/€/E L/oIIE/|UlWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

238 T.G. McLain and A. R. Trice

of users, and we decided therefore to design the
input/output interface between JEAN and MINIMOP
in such a way that other conversational packages,
written by the user, could be incorporated in the basic
MINIMOP system in the same way. For this reason
the interface, which is provided by a single monitorable
extracode, was made as simple as possible. To have
access to such a package it is only necessary to incor-
porate it in the library with a single marker bit set to
indicate its special properties.

The last two requirements were included for com-
pleteness. In a 16K processor there would be no unused
core space and multiprogramming under Executive would
not be possible, so the ability to process background
jobs within MINIMOP to absorb unusued C.P.U. time
is an added advantage. The provision of utility routines
to allow bulk off-line input and output relieves the user
of a great deal of the tedium from his work and enables
him to obtain required results more quickly. He also
needs adequate routines to set up basic file structures,
etc. (No attempt to describe these is made in this
paper.)

Finally, we attempted to provide as much security
and accounting as was possible within the obvious
restrictions of a small system. We were unable to
provide incremental dumping and automatic archiving
facilities during on-line running because of space restric-
tions. A certain reliance is therefore placed on the
organisation of the installation to dump cartridges or
files using standard library routines to other cartridges
or other magnetic media at regular intervals. File
security, in addition to that normally provided by
Executive, was achieved by normal password techniques.
The system allows the user to change his password at
will from the console once he has gained access to his
file, thus increasing its security. Accounting informa-
tion, giving total console connect time and C.P.U. time
used, is typed at the console when the user logs out. A
record of this is also written to the system output file
for central accounting purposes. It was obvious that
users with large processors would require more extensive
facilities than those available in a system designed for
the minimum configuration. For this reason we de-
veloped two separate versions, MINIMOP 1 under
which users could run programs of up to 5-75K words,
and MINIMOP 2 under which users could run programs
of 11K words. Because of the core size limitations,
MINIMOP 1 was only capable of providing JEAN and
a FORTRAN II compiler, however MINIMOP 2, as
well as providing JEAN, has integrated ALGOL,
FORTRAN IV and PLAN 3 compilers. These com-
pilers are standard ICL compilers interfaced directly to
MINIMOP. (The Command Language is given in
Appendix 1.)

File store

It was our objective to provide a simple but adequate
filing system for users. The 1900 Executive program
contains a file control package for E.D.S. and there
seemed no reason not to take advantage of this and avoid
duplication within MINIMOP. We therefore arranged
that a user at a console could have access to one named
file on disc at any given time. The name of the file,
as known to Executive, is synonymous with the name of
the user, as quoted in the logging-in command, and there

is a one to one correspondence, therefore, between
console and file. (Subsequently we discovered this to
be an annoying restriction when considering enlarging
the system.)

Blocks of information are stored within a given user’s
file in named subfiles and a directory of these subfiles is
maintained in the first few blocks of the file. One ever-
present subfile is named SPACE and records the amount
of unused storage at the end of the file. File handling
at the subfile level is performed entirely by MINIMOP.
Subfiles are flagged according to the type of information
contained in them, and in particular erased subfiles,
which contain information no longer required, are
flagged in a unique way. All such erased subfiles are
physically removed from the file and the remainder
arranged sequentially in the file, with the SPACE sub-
file adjusted in length, after condensing the file (garbage
collection). This can occur as a result of a command
from the user, or by system instigation when a command
implicitly requires more disc storage than there is avail-
able at the end of the file.

In addition to users’ files, of which there could be any
number within reason on one or more E.D.S. cartridges,
several system files were essential, namely

A file to contain a copy of MINIMOP and its over-
lays (MINIMOP file).

A dump file to contain the current state of each
program associated with a particular console when
not resident in core (the SWAP file).

A file for off-line output and accounting information
(the SYSTEM OUTPUT file).

A file to contain a prepared sequence of programs
and their data to be run when the system is under-
loaded (the BACKGROUND JOBS file).

Several library program and subroutine files.

All system files are administered by Executive in the
same way as users’ files. The SWAP file contains a
program loader in the first block to enable library
programs to be loaded to core initially on command
from a user. It is situated here for convenience since it
is easy to bootstrap it in using the program swapping
sequence.

Basic system design

The structure of the system reflects the three basic
functions which have to be carried out, namely:

Input/output functions
File referencing functions
System activity and user program scheduling

In order that these functions could be carried out
apparently autonomously, we took advantage of the
sub-programming facilities provided by Executive in the
majority of 1900 processors. This is a device whereby
different parts of a single program may be multipro-
grammed with each other, by providing a copy of the
basic registers with each subprogram (member). Thus
we arranged that MINIMOP would consist of three
members each concerned with one of the functions
listed. Communication between each member program
is by common queues and lists which are formed, main-
tained and processed by each of the member programs
(see Fig. 1).

¥202 I4dy 61 U0 1senb Aq 92€G1E/2€2/€/E L/oIIE/|UlWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

MINIMOP 239

Queue of Queue of
disc requests activities

Input ——> Disc) Activity

output control control routine
control routine
routine

/.

System User
overlay program
routine

User console

Fig. 1. Basic system design

The provision of buffers presented a somewhat difficult
problem, remembering that we had severe core storage
limitations. We arranged for a single dedicated buffer
to be assigned to each console within the program,
capable of containing 128 characters in internal 1900
code. This was used both for input from and output
to the console.

For file transfers, a number of 128 word buffers are
provided, and allocated and relinquished dynamically
(four such buffers are currently incorporated in MINI-
MOP 2). In spite of this minimal bufferage, the core
store occupied by buffers occupies nearly 1K words,
approximately one third of the non-overlayed part of
MINIMOP.

In addition to these buffers, for each console, an
area of working store was set aside, called the V-area.
It contains various values associated with the state of
the particular console and any activities being carried
out for the console user by MINIMOP. For example,
the location VO contains indicators specifying the
physical state of the console, e.g. the multiplexer channel
number to which it is attached, whether it is inputting
or outputting, etc. This area of store is referred to by
individual routines of MINIMOP using a modifier and
quoting Vn in the address field of a typical instruction.
This enables the majority of these routines to be
multithreaded.

A particular use which the V-area is put to is to store
the current peripheral assignments of a console user.
Quite often the program the user is running from his
console expects input from, and sends output to ordinary
peripheral devices. However, the user usually requires
to input directly from his file and output either to his
console or to the system output file. In order to do this,
he ‘assigns’ each such peripheral referred to in his
program, to be effectively a named subfile in his file,
the console or the system output file.

There are three basically separate program instruc-
tion areas in core store:

An area for routines fixed permanently in core store.

A 256 word overlay area for system activity routines.

An object program area into which the current object
program is swapped when allocated processor time.

Having these three areas gave us considerable flexibility
during the development of the system, since any par-
ticular routine, if it cost too much in fixed store, could
be overlayed as a system activity routine; and subse-
quently, if it was necessary to enhance it so that it
occupied so many overlays that its efficiency was impaired,
it could be converted to what we termed a subject
program and be loaded to the object program area from
the library. The Editor is an example of such a subject
program competing with any other user’s object program
for processor time, whereas the LOGIN system activity
is performed by several system overlays at a higher
priority than subject programs.

Input/Output

The fundamental approach to input/output is that
the user operates in a question and answer mode, thus,
unless the system is outputting to a console, it is always
in a state of readiness to accept input, and will have
indicated this to a user by printing an ‘invitation to type’
character. An exception to this rule is when a user
enters a lengthy process from his console (e.g. a com-
pilation), in which case he is informed that the process
has started but of course his console then remains
temporarily dormant.

Four levels were defined for the input mode, as
follows:

Level 0 Prior to logging in

Level 1 Command level (post logging in)

Level 2 Conversational level (input direct to program)
Level 3 Data to file input

At Level 1, all MINIMOP commands except LOGIN
are valid. Certain commands lead to level 2 being set,
whereby all input messages are passed on by the system
to the user’s object program. This could be, for example,
the MINIMOP Editor which would interpret such
messages as editing commands, or JEAN, which would
interpret such messages as JEAN commands; Level 3
is set on receiving an INPUT or MACDEF command
at Level 1, and all subsequent input messages, until the
terminator **** is input, are automatically written to
the user’s file.

File referencing

All transfers to and from any user’s file, except the
library files and the swap file, are queued chronologically
in a circular list by entering a common subroutine. It
is a feature of the system design that only one transfer
(except in exceptional circumstances) can be queued for
a given console at any time, so the list is of finite
length. Each transfer request queued, in addition to
the transfer parameters, specifies whether a buffer is
required, whether on completion a standard MINIMOP
subroutine should be entered, and whether the activity
which is temporarily halted, awaiting the completion of
this transfer, is to be requeued in the list of current
activities. Transfers may be one of three types, read,
write, and read-then-write. The subroutine call feature

¥202 I4dy 61 U0 1senb Aq 92€G1E/2€2/€/E L/oIIE/|UlWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

240 T. G. McLain and A. R. Trice

is especially useful in the case of the last type of transfer
because a subroutine can be entered automatically at the
end of the read phase to move information selectively
into the buffer prior to the write phase, thus achieving
selective record overwriting in the file. The subroutine
can also change itself to another subroutine so that a
second subroutine can be entered after the write phase,
which we found a useful trick.

MINIMOP 1 IS READY

LOGIN ROBINSONFILE
TYPE PASSWORD

<« X X X XI
OK
«~SUMMARY
SPACE 255 144
HHUUF 242 8
TTDA 8 1
DBTS M 9 9
PPLP 18 6
MMMMF 24 9
MB MB F 33 27
J KJ KF 60 9
DBBCM 69 36
LDADF 105 12
MNBUS 117 53
ITPR 170 24
LLLLF 194 8
LLLMF 202 8
PCI1F 210 8
PC2F 218 35
TTTU 253 1
TTTI 254 1
OK
<LIST TTDA
11’3000 0
230

4500 7125

50
3000

0

OK
<EDIT TTDA
OK
~WC =/
OK
«/ALT 0, 1, 300
OK
<3000 500
<«/FINISH

OK
<FORTRAN ITPR, ZZZJ, CONS
oP

«Fgf){/"f}lllggN COMPILATION BY # XFDE MK IC DATE
PROGRAM FOR CALCULATING INCOME TAX
C PROGRAM DESCRIPTION
PROGRAM (PAYE)
INPUT 1 = TRO
gl‘\ljir)PUT (MONITOR), 2, 3 = LPO
C ONLY ONE SEGMENT
MASTER PAYE
END OI;: SEgMENT, LENGTH 186, NAME PAYE
INISH
END OF COMPILATION—O ERRORS
DELETED EP
<~LOAD ZZZ)
op
HALTED LD
«<ASSIGN LPO, CONS
K

(0)
«<ASSIGN TRO, ITDA
OK

<ENTER 0

TOTAL TAX PAID FOR THE YEAR = £547-76
DELETED

«<LOGOUT

Activity and program scheduling

In scheduling the available processor time between
different consoles, reference is made to an activity list,
which has one entry per console. Every MINIMOP
command results in a chain of activities being carried
out, some of which may be system activities, some of
which may be program activities. System activities are
carried out exclusively by MINIMOP overlay routines

User types password on illegible 4 characters

User obtains details of the contents of his file

User obtains details of the contents of a data subfile

User calls in Editor to edit this data subfile
Defines warning character to be recognised by the Editor
Alters first line to read 3000 500

Exit from Editor

Compile FORTRAN program held in subfile ITPR into subfile
ZZZ7]J sending listing to the console

Load program

Specify LP output to console and TR input to come from subfile
ITDA

Execute program

Fig. 2. Example of MINIMOP console log

¥202 I4dy 61 U0 1senb Aq 92€G1E/2€2/€/E L/oIIE/|UlWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

MINIMOP 241

and have an inherently higher priority than program
activities. The latter need much more core store, and
progress for between one and two seconds until they are
complete or until they require MINIMOP to perform
some service, whichever is the sooner. Double round
robin scheduling is applied, in that all currently queued
system activities are serviced one after the other between
the servicing of each program activity. In practice,
however, since nearly all system activities require the
overlay area, what happens is that the overlay for the
first system activity is transferred to core store while
the first program activity is progressing. When this
terminates, the system activity is obeyed if the overlay
is in core and when complete, the transfer of the overlay
for the next system activity is started and the next
program activity progressed. Naturally there are vari-
ations in this pattern, depending on the mix of system
and program activities, and the occurrence of consecutive
system activities using the same overlay. However, a
fair amount of overlap is achieved by this double-round-
robin scheduling algorithm and considerably more could
be achieved with the introduction of more overlay areas
and more than one program area; unfortunately we were
unable to spare the space.

Object programs are given at least one second as
mentioned above, however MINIMOP monitors the
running of the object program and, if a service is required,
it may be either swapped out and placed at the bottom
of the program activity queue, or suspended while the
service is carried out. An example of the latter is the
occurrence of an input instruction referencing a basic
peripheral which has been assigned as a subfile of a
user’s file. An example of the former is an output
instruction in conversational mode to the user’s console.
Other events in the object program such as illegals,
program messages to the operator console, program
deletions, etc., are dealt with similarly.

System development

The total suite of programs was written in the 1900
PLAN assembly language using the 1900 COSY editing
and assembly system. One of the difficulties encountered
in testing even a small multi-access system, catering for
only a few user consoles, is the inability to feed the system
with pre-arranged sequences of input from a selection
of terminals. To simplify this problem a communica-
tions simulator was included in MINIMOP. This
enabled MINIMOP to read simulated commands for
several imaginary terminals from paper tape and reflect
them and their responses to a line printer. Thus we
were able to feed MINIMOP, when under test, with

Reference
MINIMOP manual. ICL publication 4102

Appendix 1

MINIMOP 2 COMMAND LANGUAGE

predetermined sequences of commands for several lines
to eliminate particular errors. Because of the higher
speed of this paper tape reader/line printer combination
than that of a number of teletypes, we were able to
carry out tests more quickly and, what is more important,
remotely, since these tests needed no interaction on our
part. This testing technique is extremely useful for the
bulk of the development of a multi-access system and
solves the problem of finding numbers of tame teletype
operators when testing. However, saturation testing,
with real consoles interacting with the system, was of
course essential to eliminate errors not detected using
the communications simulator, for example timing
errors.

System performance

MINIMOP 2 totals about 10K words of permanent
and overlayed on-line program, about 5K words of
subject programs and 14K words of utility programs.
It is now in use in about twenty installations, in the
majority sharing the core with one or possibly two
GEORGE 2 batch operating systems. Our general
impression is that, once the initial system set up pro-
cedure has been accomplished and the users of the
system have become used to it, they find it extremely
easy to use and, because of this simplicity of use, find
that they get through their program development and
problem solving much more quickly than they would by
other methods. In addition it is proving a useful tool
in University installations where students are undergoing
courses in computing.

Nevertheless, from experience, we appreciate that
there are several areas in which we would have liked to
have done things differently. However, MINIMOP is
being continually enhanced to include additional facilities
which have been found desirable by users of the system.

International Computing Services Ltd. have developed
from MINIMOP 2 the commercial multi-access system
INTERACT, which operates on a 64K 1905F. This
system, currently allowing nine simultaneous users, will
be developed and enlarged in the future to allow many
more users.

Acknowledgements

We would like to thank ICL for permission to publish
this paper. We would also like to thank the original
team of five programmers whose unenviable task it was
to do the programming and testing of the system and to
Mr. M. Edmunds of ICSL for his many constructive
suggestions.

¥202 I4dy 61 U0 1senb Aq 92€G1E/2€2/€/E L/oIIE/|UlWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

ALGLOAD
ALGOL

sfn, CONS*
sfn, sfn, CONS*

Compiles and loads the ALGOL program in the subfile.
Compiles the ALGOL program stored in the first subfile and
writes the semi-compiled program to the second subfile.

242

T. G. McLain and A. R. Trice

ALTER m, n

ASSIGN peripheral name, sfn
ASSIGN peripheral name
ASSIGN peripheral name, CONS
CONDENSE

DATE

EDIT sfn, sfn*

ENTER n

ERASE sfn

FIND program name
FORLOAD sfn, CONS*
FORTRAN sfn, sfn, CONS*
INPUT sfn

JEAN

LISTFILE sfn, peripheral name*
LOAD sfn, CONS*
LOGIN file name

LOGOUT

MACDEF sfn
NEWPASSWORD password

OBEY sfn, X, Y, Z ...
PLAN sfn, sfn, CONS*
PLNLOAD sfn, CONS*

PRINT m, n

RESTORE sfn

SAVE sfn

SUMMARY

TIME

N.B. * denotes optional parameter, sfn denotes subfile name

Resets the contents of location m in the users program with
value n, m and n have several formats.

Input assignment.

Output assignment.

Output assignment.

Removes all deleted subfiles from the users file.

Prints the date.

Loads the Editor in readiness to edit a subfile.

Enters the users program at location 20 4 n.

Marks this subfile deleted in the file.

Loads the specified program from the library.

As ALGLOAD but for a FORTRAN program.

As ALGOL but for a FORTRAN program.

Introduces a new subfile. Subsequent lines of input up to ****
are stored in the subfile.

Loads the JEAN program and enters it.

Output the subfile to the console or system output file.
Consolidates and loads the semi-compiled program in the subfile.
Opens the users file and prepares to check the password.
Disconnects the user from the system closing his file and printing
accounting information.

As for INPUT but each line of input represents a command.
Changes the password of the users file.

Implements the commands listed in the subfile. X, Y, Z, etc.,
are actual parameters which replace original undefined parameters
%A, %B, %C, etc.

As ALGOL but for a PLAN program.

As ALGLOAD but for a PLAN program.

Outputs the contents of locations m tom + n — 1.

Restores the users saved object program as his current object
program.

Saves the user’s current object program in his file.

Prints a summary of the users file at the console.

Prints the time.

Book Review

Numerical Methods for Partial Differential Equations, by
William F. Ames, 1969; 291 pages. (Thomas Nelson and
Sons Ltd., £3.25 paper.

In the preface, the author states that the present volume con-
stitutes an attempt to introduce to upper level engineering and
science undergraduate and graduate students the concepts of
modern numerical analyses as they apply to partial differ-
ential equations. In his attempt the author has most certainly
succeeded and has produced a most readable and lively text.
The contents cover both initial, boundary and eigenvalue prob-
lems with reference (where appropriate) to elliptic, parabolic
and both first and second order hyperbolic problems. The
author’s style of giving reasonably meaningful practical exam-

ples of application of the methods combines with his semi-
rigorous approach to the more theoretical problems of
stability and convergence.

The student will find some 250 exercises spread throughout-
its five chapters whilst 400 references (up to the year
1968) will be of more interest to the more experienced reader.
If I were to find fault with this book it would be in the scant
treatment given to multidimensional problems in comparison
with intensive discussion of one and two dimensional prob-
lems. However, the author is probably justified in the virtual
exclusion of such topics as his aim is primarily to produce a
student textbook. With this in mind the author is to be
congratulated on the outcome.

A. R. GourLAy (Dundee)

¥202 I4dy 61 U0 1senb Aq 92€G1E/2€2/€/E L/oIIE/|UlWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

