243

The structure of the Cambridge algebra system

D. Barton*, S. R. Bournet and J. R. Horton*

* University Mathematical Laboratory, Cambridge

+ Trinity College, Cambridge

This paper describes the implementation of an algebra system under development in Cambridge.

(Received October 1969)

The algebra system under construction in Cambridge
consists of a programming language together with a
package of programs to perform certain types of algebraic
manipulation. The development of this work gives rise
to two fundamental classes of problem. The first class
is directly associated with the nature of the manipulative
algebra to be attempted and includes such problems as
the integration of arbitrary expressions and the so-called
‘simplification problem’. The second class of problems
arises from the fact that elementary operations on mathe-
matical expressions, such as addition, may well take an
inordinately long time when programmed for a computer,
and that algebraic expressions themselves frequently
occupy very large quantities of the machine’s store. The
two classes are not completely distinct since successful
simplification techniques will substantially reduce the
machine facilities required by subsequent manipulation.
However, it is useful to consider the second class of
problem independently of the first and discover how to
construct an algebra system that makes economical use
of the computer. Once this system exists it may then
be used to conduct experiments that will assist in the
attack on the more difficult problems of manipulative
algebra that we have placed in the former class.

Let us consider now the representation of the user’s
basic data element by the system and consider how this
may be achieved efficiently. It is obvious that while it
is possible to consider an ordinary floating point number
as a degenerate polynomial the overheads implied by
such a representation prohibit the use of a polynomial
manipulation system for ordinary numerical calculations.
This type of false generality may casily arise in a manipu-
lative algebra system, when a simple expression is treated
as a degenerate example of a more complicated entity,
and is perhaps the major cause of diseconomy arising
in such systems. This difficulty is partially overcome by
constructing the Cambridge system from a variety of
packages that each compute with different types of
expression. Then, given a particular problem, the user
may sclect a combination of packages that represents
with least redundancy the expressions occurring in the
problem.

The second source of inefficiency in an algebra system
arises through the choice of data structure used to
represent particular types of algebraic expression. A
polynomial might be considered simply as a string of
characters and manipulated by editing operations or
alternatively represented by a list structure and
manipulated by a list processing language. Other repre-
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sentations are also possible. The selection of a par-
ticular type of representation should be based, in the
main, on considerations of machine efficiency at runtime
while the availability of a particular language in which
to program the manipulative system itself should be of
secondary importance. The type of data structure that
it is economic to use depends, in part, on the nature of
the object to be represented and may well differ sub-
stantially for different classes of mathematical entity.
Thus the system should be programmed in a language
appropriate to the processing of the type of data structure
used to represent mathematical expressions. The latter
remarks indicate that the design of the language used
will be dictated by the broad requirements of the algebra
system and that the use of an established language may
constrain the choice of data structure in an undesirable
manner. It is with the above points in mind that the
Cambridge Algebra System has been designed.

The hierarchical structure of the manipulative system

We now describe the way in which the complete
manipulative system has been divided into self-contained
component subsystems known as runtime systems. The
divisions made in the system correspond to the divisions
that occur in mathematical expressions themselves and
are probably best illustrated by example. Consider the
composition of a manipulative system to compute in the
ring P of polynomials in n variables over a field G. The
addition of two polynomials takes place in P and this
will cause arithmetic between the coeflicients of the
polynomials that must be carried out in G. Thus we
provide a runtime system P to perform the manipulation
of the data structure representing a polynomial. This
data structure will contain references to the elements of
G and, during an addition, the runtime system P makes
calls to another runtime system G to carry out arithmetic
on the coeflicients in G of the polynomials.

This structure can be simply generalised. In order to
manipulate the ring P’ of polynomials over a new ground
field G* we need only to provide a runtime system G
manipulating the elements of G’ and couple this with
the P manipulator. In both of these examples we say
that the user makes direct use of the manipulator P and
indirect use of the manipulators G or G'. We may, of
course, use the P manipulator indirectly. Suppose that
we wish to compute with square matrices whose elements
arc drawn from a ring. The matrices themselves form
a ring M for which we must provide a runtime system M.
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Arithmetic between the members of M will involve
arithmetic between the elements of the matrices and we
may provide this in several ways.

1. M and G will allow the manipulation of matrices
whose elements are in G.

2. M and G’ manipulate matrices with elements G'.

3. M, P and G manipulate matrices with polynomial
elements whose coefficients are drawn from G.

4. M, P and G’ manipulate matrices with polynomial
elements whose coeflicients are drawn from G".

We see that in cases 3 and 4 above P is used indirectly.
Direct use of either G or G° would provide simply for
manipulation of field elements in G or G’ respectively.

Provided that a system is built as indicated above and
a suitable set of basic runtime systems is provided it will
be possible for the user to select the appropriate combina-
tion of runtime systems to obtain a manipulative package
that satisfies the requirements of his problem with least
redundancy. Provided also that a runtime system is
well defined, it is possible for the user to write a new
member system for inclusion in the hierarchy if no
suitable combination of systems already exists. Further,
when the system is subdivided in the above manner each
runtime system is concerned only with the manipulation
of those parts of the overall data structure known to it.
No other runtime system requires direct access to this
part of the data structure, which may therefore be
arranged in the machine’s store as considerations of
space and time dictate. A runtime system may always
be replaced by a system manipulating a different repre-
sentation of the same mathematical entity and hence
there is room for experimentation to determine the most
economic data structures.

The structure of a runtime system

We shall now discuss in greater detail the set of sub-
routines of which a manipulative runtime system is com-
posed. Broadly speaking, a runtime system is the set
of all subroutines that deal with a particular aspect of
the complete data structure. Each routine takes as input
head pointers* or integers, and either modifies an existing
data structure, creates a new structure, or returns an
integer or head pointer as output. This output is passed
to the calling program that is either a user program, if
the runtime system is being used directly, or the runtime
system immediately above it in the hierarchy if it is used
indirectly. As an example we describe a minimal set of
subroutines that would comprise the manipulator P for
polynomials in P. These subroutines may be divided
into four classes, A to D.

Class A subroutines are housekeeping programs. They
are not directly connected with the arithmetic operations
necessary in P but are required to administer space and
arrange type conversion between numerical data and
algebraic data. Two routines are provided, one to copy an
existing polynomial into new space obtained from the
space administration system and one to return the space
occupied by a polynomial to the pool of vacant space.
Further routines are necessary to convert a number
into a polynomial and a polynomial into a number if this
latter operation is possible.

*A head pointer is the store address of the beginning of a data
structure.

Class B subroutines are those that perform the arith-
metic and other fundamental operations on the poly-
nomials. This class of subroutines frequently contains
programs that are unique to a particular runtime system
and depend on the nature of the entity represented.
However, we have found that the following subroutines
occur in most non-numerical systems.

In this case « and B represent polynomials contained
in P and the Class B routines included in the 2 manipu-
lator are:

Iao = — « (negate o)

2. a = dafox; (differentiate « w.r.t. x,)

3. a = [ adx; (integrate « w.r.t. x;)

4 a=a—+ B (add « to B)

5. a=a—f (subtract 8 from «)

6, a = af (multiply « by B)

7. a =aff (divide a by B)

8. a =atp (raise a to the power f)

9. o = afxy, ...,  (this routine substitutes the poly-
B, .s X,) nomial f into the polynomial « for

one of the variables x;)
10. Print « on an output device.
11. Read « from an input device.

Class C subroutines are intended to allow the user
to make his own economies with the mathematical
formalism. In any particular instance the Class C sub-
routines simply produce the result of an arithmetic
operation modified according to some prescribed rules,
the exact nature of which is not relevant to this discus-
sion. To illustrate the use of these routines, suppose that
we are multiplying two polynomials in P and that only
the part of the result linear in a particular variable is
required. It is clear that there are more economical
means of obtaining this result than simply to compute
the entire product and subsequently to discard unwanted
terms, and if a Class C subroutine is provided for this
purpose in P then considerable economies are possible
at runtime. We have found that Class C subroutines
of P include versions of all the Class B routines involving
multiplication of polynomials. These subroutines carry
out the formal manipulation of polynomials in the
ordinary manner but dynamically apply certain rules to
the partial result of the computation. Finally, they
produce a result, modified according to the rules imposed,
and are thus able to make substantial savings in both
space and computation time compared with that required
to construct and then edit the complete result.

In general the specification of the subroutines in
Class C for a complicated mathematical entity is not a
trivial matter since the type of formal mathematical
device for which it is useful to provide a special facility
is heavily dependent on the nature of the object under
consideration. It is our experience that these are best
discovered by experiment and by reference to user
programs. To provide a Class C subroutine for a
particular purpose, as in the case of the linear example
above, is usually very easy. The difficulty lies in the
specification of a set of such routines that provides
comprehensive facilities while not leading to a prolifera-
tion of special purpose subroutines, although in the case
of polynomials this latter problem leads to very little
trouble.

The above three classes of subroutines are adequate
to allow the construction of a runtime system for use
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directly by an object program, but if it is to be used
indirectly by another runtime system a further class must
be provided. The subroutines in this final class, D,
provide for communication between the several runtime
systems and they are intended to allow the calling
program to arrange its activities more economically in the
light of the subordinate system’s requirements. A typical
such routine calculates the space occupied by a section
of data structure or alternatively estimates the com-
putation time required for a particular operation. Such
statistics are of considerable use to simplification pro-
grams whose object is to try to contain the user’s
calculations within the available machine store.

The object programming language

Once a set of runtime systems exists the user may call
any combination of systems appropriate to his problem.
Each combination manipulates a distinct mathematical
entity and consequently, when designing a programming
language for users of the system, it is convenient to
draw the distinction, discussed by Wilkes (1968), between
the inner and outer syntax of the potential language.
It is clear that if this distinction is not made then a
separate language and compiler must be provided corre-
sponding to each mathematical entity manipulated by
the system. Further, the provision of a new runtime
system, giving rise to several nmew combinations of
systems, would also require the production of an equiva-
lent number of new compilers. To avoid this prolifera-
tion of compilers the programming language is provided
with a type expression to which no explicit meaning is
attached. The translation of syntactic constructions
involving expressions only specifies the operations to be
performed on them, without reference to their particular
mathematical significance. At runtime, these operations
can be passed to the appropriate runtime system for
interpretation. It is then possible for the same pro-
gramming language to be used with any combination of
runtime systems and consequently only one compiler
need be produced.

The programming language in use with the Cambridge
Algebra System contains two types, index and expression.
The language is very similar to Titan Autocode, and con-
sequently the index and expression variables are given
single letter names. We next describe these variable
types:

Index variables Referred to by the names I, J, ..., T
alternatively as arrays I[m, n, ...}, ...,
T[m, n, ...]. An index variable may
take integral values in the range
|n] < 107,
Expression Called by the names A, B, .. H,
variables U, ... , Z or alternatively as arrays
A[m, n, ..}, ..., Hm, n, ...], Um,
n, ...], ..., Z[m, n, ...]. An expression
variable is used to denote a mathema-
tical entity upon which certain oper-
ations such as addition and multi-
plication are possible.

Program control in the language is provided by means
of For loops, conditional and unconditional jumps to
labels and a closed subroutine facility.

As we have indicated above, constructions involving
the type expression must be translated into a sequence

of calls to a runtime system which may subsequently be
obeyed causing the appropriate runtime system to be
entered. For example the statement

A=B+4C

causes the addition routine of the top level runtime system
to be entered with pointers to the structures named B and
C as arguments, and the pointer to the resulting sum
to be assigned to the variable A. In order to reduce
the space occupied by the user program, it is compiled
into a compact interpretive code rather than machine
code. This device provides a 50%, saving in space for
an average program with a negligible increase in execu-
tion time since the time spent in the user program is
small in comparison with that spent in the various
runtime systems.

Apart from control of arithmetic and other operations
on mathematical objects the programming language also
contains constructions to allow control of the interface
between the Algebra System and the Titan operating
system. Thus the user has control of all input/output
by the system and he may use magnetic tape or disc
backing store for the storage of both numerical and
algebraic data. Since the same compiler is used with all
combinations of runtime systems it is necessary for the
user to specify the combination of systems to be loaded
at the end of the compilation.

The programming language for the writer of a runtime
system

We have described earlier the classes of subroutines
that compose a runtime system and have indicated that
in general these subroutines manipulate a section of
data structure and make calls to runtime systems below
them in the hierarchy. It is, therefore, possible to write
a runtime system in the user’s programming language
provided that the manipulation of the data structure is
programmed with index variables and index arrays,
while the calls to the lower level are initiated by the use
of expression variables. A number of problems arise if
this procedure is adopted. Firstly, a runtime system will
in general spend a large proportion of its time on the
administration of its own data structure with compara-
tively infrequent calls to the subordinate system. It is,
therefore, no longer reasonable to interpret the index
arithmetic and hence those parts of the program must be
compiled into efficient machine code. Secondly, the user
programming language does not allow the programmer
access to an arbitrary quantity of machine store for
arrays of index variables, since the size of such arrays
is fixed at compile time. The programmer of a runtime
system clearly requires access to a variable amount of
space for his data structures drawn from the system’s
central space routines and consequently the programming
language that he uses must provide facilities to obtain
and relinquish this space. However, experience shows
that the runtime system programmer does not require
control over input/output facilities or backing store.

The above considerations imply that it would be more
convenient to use a separate version of the programming
language that contains instructions to access arbitrary
areas of store with the freedom that would normally be
available only to a machine code programmer, and a
separate compiler that generates both interpretive and
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direct codes. Such a variant of the language has been
produced as part of the Algebra System and a program
written in this language is compiled into machine code
and interpretive code with the latter type of code resulting
only from constructions involving expressions. The
machine code generated by the compiler is approximately
1259%, the length of the equivalent optimal hand-coded
program and could if necessary be further improved by
a code optimisation process.

The algebra system compilers

We have indicated earlier in this paper that, by delay-
ing the interpretation of the type expression until runtime,
it is possible to design a programming language for both
users and runtime system programmers that will operate
with any combination of runtime systems. While this is
broadly true there are circumstances in which some
knowledge of the nature of the mathematical object
under consideration at runtime is required at compile
time. For example, the language must contain a syn-
tactic construction to denote differentiation if the system
is to be used with polynomials. However, when the
language is used to manipulate matrices whose elements
are numbers, the construction referring to differentiation
is no longer relevant. Thus, associated with each syntac-
tic construction of the language that refers to the
expressions, there is a list of the possible combinations
of subsystems for which that construction is meaningful.

The addition of a new runtime system to the algebra
system means, in general, that a number of new combina-
tions of systems become available. For these it will be
necessary to add syntactic constructions to the language
that have not previously appeared and it is also necessary
to label the existing constructions of the language that
remain relevant to the new combinations. It is desirable
that this complicated operation should be carried out
easily and the two compilers for the Algebra System are
therefore held in separate syntax tables. A new com-
piler is generated by presenting its syntax table to the
compiler-compiler Psyco (Irons, 1961, Matthewman,
1965).

Let us now examine in greater detail the syntax tables
that represent the two compilers. The syntactic con-
structions of the language may be divided into two
groups; those that are meaningful for all combinations
of runtime systems and the remainder. The first of
these groups is by far the greater and contains all con-
structions that do not refer to the explicit, detailed
structure of the type expression. It includes therefore
all constructions referring to:

(a) Program control.

(b) Index arithmetic.

(c) Communication with the Titan operating system.

(d) Communication with the Algebra System space
administration routines.

(e) All Input/Output.

(f) Arithmetic between expressions, e.g. B 4 C.

The remaining constructions are those that are only
meaningful for some combinations of runtime systems,
i.e. those which call the specialised routines in Class B
and all the Class C routines.

The constructions of the first group have the same
translation for all combinations of runtime system.

Those of the second group have the same translations
for all combinations of runtime system for which they
have meaning but are rejected as syntax errors if they
occur in a program using an inappropriate combination
of systems. The possibility of distinguishing between
separate translations for constructions in the first group
according to the combination of systems to be used was
discarded to reduce compiler size. It is this decision that
causes us to maintain two separate compilers for users
and runtime system programmers since otherwise the two
syntax tables could clearly be merged.

General remarks upon the operation of the system

It has been explained above that the Cambridge
Algebra System consists of a set of runtime systems
together with a compiler for users’ programs and a
compiler for runtime system programs. A program to
be run using the system is presented to the compiler, and
if successfully compiled, the resulting interpretive code is
loaded into store together with the relevant runtime
systems. Finally, the interpreter and a set of service
routines are loaded. The service routines comprise:

. A space administration system.

. Magnetic tape and disc control system.
. Various print routines.

A runtime trace facility.

A post mortem system.

OB

It will be noted that the machine dependent parts of the
whole algebra system are almost entirely included in the
first four of these. Thus at runtime there is present in
store

1. The user’s compiled program.
2. The interpreter and service routines.
3. Such runtime systems as are required.

The remaining store is initialised as the free store and
is administered by the space routines.

The space occupied by the several components of the
system is listed below in units of 1 block == 512 Titan*
words of core (a Titan word contains 48 bits).

1. Interpreter 1 Block
2. Service routines 3 Blocks
3. Runtime systems
(@) Arithmetic 1 Block
(b) Polynomials 3 Blocks
(contains (a))
(¢) Fourier series 6 Blocks

(contains (a) & (b))
(d) Elementary func- 10 Blocks
tions

(e) Tensors 7 Blocks

System (a) provides Integer, Rational, Real, and
Complex Arithmetic, in a single manipulator since the
individual systems are too small to make their separation
useful. The above runtime systems are frequently used
in one of the following combinations to give complete
manipulative schemes.

7 Blocks
10 Blocks (3)

1. Polynomials + Arithmetic
2. Fourier series + Arithmetic

* Titan is the prototype Atlas II.
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3. Elementary functions with poly- 17 Blocks (4)
nomial arguments. The poly-
nomials having numerical coeffi-
cients.

4. Tensor manipulator with poly- 14 Blocks
nomial elements.

5. Tensor manipulator with elemen- 24 Blocks
tary functions as elements.

Further details of the systems numbered 2 and 3 above
may be obtained from Barton, Bourne and Burgess (1968)
and Barton, Bourne and Fitch (1969).

Assuming that an average user program occupies 2
Blocks we have only 26 Blocks allocated to the program
using even the most complicated combination of runtime
systems available, namely 5, while the program to mani-
pulate polynomials will occupy just 9 Blocks. In
practice both of these figures are reduced by two blocks
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Book Review

Memory and Attention, by Donald A. Norman, 1969; 201
pages (London: John Wiley & Sons Ltd., £4-20. cloth, £2-20

paper)

This book is divided up into nine chapters which start with a
statement of the problem and finish with the conclusions. In
between we consider a number of important and related topics
which are built up, in seminar fashion, around the writings of
various scientists. In a sense this is a book with a difference,
since it does not collect papers written by other people but
rather abstracts them and suggests them as a text and then
with references and sections on suggested reading, builds
up a picture of each of the many central features of what is
connected to human information processing. It should be
noted that the sub-title of the book is ‘An introduction to
human information processing’. Let us say right away
that the book is an extremely readable one and is very well
produced physically, and that it is insightful in its analysis of
some of the thornier problems involved in human information
processing. In fact, the problems considered are central to
the whole issue, since they include such major subjects as
attention, recognition, particularly pattern recognition, mem-
ory and the computer simulation of these various cognitive
features.

The author divides memory into primary and secondary
components, and in so doing is well in step with later views on
this subject. He presents a number of models which purport
to provide some picture of the memory process. This includes
well-known models such as those of Miller, Galanter and
Pribram who worked on plans and totes. Less familiar
models such as that of mnemonics in the context of the ‘Greek
art of memory’ are also included. One of the points that is

brought out quite clearly here is the fact that much of what we
now understand about memory was understood a very long
time ago. However, the computer simulation of many of
these processes holds out high hopes for considerable future
development in the field.

One of the most important issues raised by Dr. Norman is
that between the ‘active’ and ‘passive’ theories of pattern
recognition. In the first place he draws attention to the vital
importance of attention. Attention is the process which is
clearly linked to perception, conception, discrimination, and
remembering. This process of extracting he compares, in
Broadbent’s writing, to that of having an active filter. This
is also a process of selecting, and Dr. Norman sees that the
sort of stimulus analysing mechanism suggested by Sutherland
is appropriate to the process. The main point he is making
here is that the process of remembering and pattern recog-
nition are active reconstructional processes rather than
passive acceptance processes. This distinction between active
and passive cognitive processes, and Dr. Norman like most
other people in the field at the moment accepts that both are
probably available to the human processing systems, is
reminiscent of the difference between merely looking up, say,
log tables in a book, as opposed to generating log tables as
they are needed.

By and large, most people will accept the broad sweep and
philosophy of this book and would accept it as yet another
link in a chain which is gradually building up showing fairly
clearly and explicitly how the cognitive processes operate. I
would regard the book as thoroughly worthwhile. Certainly
it is very readable and I think it is fair to encourage all people
interested in the central cognitive activities to buy a copy.

F. H. Georage (Uxbridge)
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