255

SP/1—A FORTRAN integrated string processor

I. A. Macleod*

Department of Computing and Information Science, Queen's University, Kingston, Ontario

This paper describes a string processing system implemented by means of a set of routines embedded
in FORTRAN. The syntax of the operations provided is described in terms of a set of macros.
The system can, however, be usefully applied by the direct use of the embedded routines.

(Received November 1969)

In general, string processing systems deal with data which
is in the form of unstructured strings of characters.
COMIT (Yngve, 1962), SNOBOL-3 (Farber, Griswold
and Polansky, 1966) and SNOBOL-4 (Griswold, Poage
and Polansky, 1968) are three well-known string pro-
cessing languages. Typical of the types of operation
possible in these languages are matching, insertion,
replacement and concatenation of strings and substrings.
With the increasing usage of computers in many different
fields, the distinction between numeric and non-numeric
applications is becoming less apparent, as for example
in information retrieval problems. Consequently it
seems desirable that a single programming system should
incorporate efficient numeric and non-numeric capabili-
ties. The SP/1 system described here has been designed
and implemented as a string processing system embedded
in FORTRAN-IV.

To avoid adding to the diversity of programming
systems already in existence and since SNOBOL is a well-
known language whose syntax is readily adaptable to a
FORTRAN environment, the operations provided in
SP/1 are similar to those available in SNOBOL-3.
Unlike, for example DASH (Milner, 1967), which is a
string processing extension embedded in ALGOL, SP/1
is both a syntactic and semantic extension to FORTRAN.
The string processing statements can be represented by
a set of macros which are expanded into FORTRAN
statements by a macro generator (Macleod and Pengelly,
1969) prior to compilation. The macros have been
designed so that there is a close similarity between the
syntax of the corresponding SP/1 and SNOBOL-3
statements.

For example, the SNOBOL-3 statement
REPEAT E (" *V* ")’ =V /S (REPEAT)

deletes all the pairs of left and right parentheses from a
string E. The corresponding SP/1 statement is

100 E : (" & *V* & ")’ —>V GO TO 100

In addition, SP/1 provides a data type known as an
association which may have a range of alternative values
associated with it. This data type is in some ways
similar to the pattern type in SNOBOL-IV and the
assertion type in AXLE (Cohen and Wegstein, 1965).

A further distinctive feature of SP/1 is that strings are
stored as sequences of atoms where an atom is the

smallest meaningful unit of the string. The size of an
atom is determined on input as shown below, but
normally an atom may be regarded as a single character
symbol or as a group of consecutive alphameric charac-
ters. The latter could be the case for example in text
processing where one atom would be equivalent to a
word of text. This approach allows the processor to
operate on strings composed of text words while retaining
the capability to manipulate strings of individual symbols
where required. This provides faster operation with a
considerable saving in storage requirements in the text
processing types of applications where the smallest
logical unit of information is a word of text. Thus,
essentially, there are two modes of operation, character
and text, corresponding to the two types of storage. In
the current version of SP/1 mixed mode operations are
not allowable. The method of string storage, which
involves a hash table, is described elsewhere (Macleod,
1969a).

Statements of the language

The statements described below illustrate how the
formats of the macros representing the operations have
been designed. The macros are processed into routine
calls as is described subsequently. The system may of
course be applied directly by calls to these routines
without having recourse to the corresponding macros.
String and association names are implicitly declared
when they are assigned values. There is no explicit
name declaration statement.

Matching, insertion and assignment

These operations are fundamental to any pattern
directed string processing system and those defined below
are similar in effect to the equivalent operations in
SNOBOL-3. Assignment is a special case of replace-
ment and the most general form of the match and
replacement statement is as follows:

{match and replacement) ::= {string name) : {left
pattern){right pattern)[!; GO TO(<label)]
{string name) ::= (FORTRAN unit)
(FORTRAN unit) ::= (FORTRAN variable name}|
(FORTRAN array element)

where the expression [”x] of the meta language denotes
that the bracketed syntactic unit may occur from n up

* Work carried out in the Department of Computer Science, Queen’s University, Belfast

The Computer Journal Volume 13 Number 3 August 1970

20z Iudy 61 U0 1s9nB AQ 0BESHE/SSZ/E/E |/BIOIME/|UIWOS /WO dNO"ILSPEDE//:SARY WOl PAPEOIUMO(

256 1. A. Macleod

to m times. An indefinite upper limit is denoted by
replacing m with an asterisk.

The match and replacement statement causes the
concatenated elements of the left pattern to be matched
against the named string. If the match is unsuccessful
control passes to the next statement. Otherwise the
action specified by the right pattern is carried out as
described below and if the GOTO field is present, control
is passed to the referenced statement.

The left pattern is constructed as below:

(left patterny ::= (match list)|{null)
{match list) ::= (left element)] ANCHORC(left
element)|
(left element) & {match list)
(left element) ::= {string name)|(literal string)|
{string variable) |{multiple
association)|
{recursive association)

The effect of ANCHOR preceding a left element is
described below with the matching procedure. Associa-
tions are discussed in the following sub-section.

The right pattern takes the following form,
{right pattern) ::= —)insertion list)|—>{null)|<{null)
{insertion list) ::= (right element)|<{right element)> &
{insertion list)

<right element) ::= {string name)|{literal string)|
{multiple association)

except that both right and left patterns cannot be null.
Thus the statement can take the following general
forms:

i)S: L—>R
i) S: — R
(i) S : —
iv) S : L
v S: L=

In case (i), the substring L, if found in S, is replaced by R.
In case (ii), the previous contents, if any, of S are erased
and replaced by R., i.e. this is a string assignment opera-
tion. In case (iii), the contents of S are erased.

Case (iv) is purely a matching operation and may
serve as a conditional branch if the GOTO field is
present or as a method of assigning values to strings.

In case (v) the substring L, if found in S, is deleted
from S.

The GOTO field may be optionally present in any of
the five cases.

Literal strings are written as follows:

(literal strings) ::= ""[¥ {character)]”’
and string variables take one of the following forms
{string variable) ::= {simple string variable)|
(balanced string variable)|
<fixed length string variable)>
{simple string variable) ::= *(variable name>*
{balanced string variable) ::= *({variable name))*
<fixed length string variable) ::= *(variable name)|
(integer expression)*
{variable name) ::= {string name)|<{null)

A string constant in either a left or right pattern is

simply an occurrence of a string name. They are termed
constants in this context in that the substrings they
represent are defined before the matching process. The
same is also true for literals. On the other hand,
symbolic content of the substring matched by the string
variable is not predefined and is only determined during
the matching process. A simple string variable may
match any substring, including a null substring (i.e. one
with no symbolic content). A balanced string variable
may match any non-null substring which is balanced with
respect to left and right parentheses. Finally, a fixed
length string variable may match any substring whose
length in atoms is that given by the value of the integer
expression associated with the name.

The left pattern is matched against the named string
element by element and from left to right and a match
will succeed when each element has been matched
against consecutive substrings of the named string.
String variables may have values before matching and
where the left pattern cannot be matched, these values
will remain unchanged. In the case of a successful
match, the variable names will be assigned string values
equivalent to the substrings they have been matched
against. Where the variable name is null, the matching
process is unaltered but no values will be assigned to the
matched variables. In all cases matching is performed
atom by atom. The format of literals is independent of
the atom size as during matching all literals are auto-
matically broken down by the system into the same
format as the strings named in the match operation.
Further details of the matching procedure, including the
special case where a string constant and a string variable
with the same name appear together in a left pattern,
are described below.

Associations

Essentially an association is the term given to a data
type with which more than one value may be associated.
Where an association appears in a left pattern it will
match a sub-string identical to one of the set of values
associated with it. The value set is defined by an asso-
ciation assignment statement.

{multiple association) ::= {association name)
{recursive association) ::= {association name)!
{association name) ::= %(FORTRAN unit)
{association assignment) ::= <association name) :—»
{value set)
{value set) ::= <association value)|

{association value> &
(value set)
{association value) ::= (literal string)|
{string name)|
{association name)

In matching, attempts are made to match each value
of the association from left to right in the order in which
the values were assigned. An association appearing in a
right pattern is assumed to represent the substring
matched in the last successful match operation.

The simplest use of an association is as a multiple
association where an attempt is made to match each of
the set of values independently until a successful match
is found. Alternatively, an association may be employed

20z Iudy 61 U0 1s9nB AQ 0BESHE/SSZ/E/E |/BIOIME/|UIWOS /WO dNO"ILSPEDE//:SARY WOl PAPEOIUMO(

recursively, in which case once one value has been
matched an attempt may later be made to extend this
match by matching a second or further values of the
association. For example, if S1 contains the string
“ABC + BCD;” then if

O/OA :_—> IIAI’ & IIBII & IICII & IIDII
%B —> Y%A
S1: %A! & *SV* & Y%B! & "';"

would assign the value “4" to the variable SV and %A
and 9B would represent the strings “ABC”’ and “BCD”
respectively, in a replacement operation.

Associations have been developed as they would
appear to be useful in two distinct applications corre-
sponding roughly to the two modes of operation,
character and text. Firstly, an association can be used
to match groups of related characters. In the example
above the recursive use of %A allows character strings
consisting of any combination of any number of the
characters A, B, C and D to be matched. This recursive
usage would most often only be of interest when pro-
cessing strings of individual characters. An example of
the second type of application could be as a means of
representing synonyms in text processing.

Thus

%A —> "COMPILER"” & "TRANSLATOR”
would mean that %A would match any occurrence of
either COMPILER or TRANSLATOR in a match

operation. This type of application will probably be
most used when operating in text mode.

then

Input/Output

The 1/O operations are designed to resemble those of
FORTRAN. The facilities provided are quite extensive
and include the ability to input various types of string,
to control the atom size and to file or compact strings
into contiguous blocks for possible output to backing
store.

The input and output statements take the form

{input statement) ::= READ STRING (1, <label))
{name list)
{output statement) ::= WRITE STRING (2, <label))
{name list)
{(name list) ::= {string name)|{string name),
{name list)
The label refers to a labelled format statement which
is defined as
(format statement) ::= %FORMAT ({descriptor list})
{descriptor list) ::= {descriptor)|<{descriptor)
{separator){descriptor)
(separator) ::=, |/

The format statement is scanned in much the same
way as in FORTRAN and the descriptor separators have
the same function as in the FORTRAN FORMAT
statement.

On input the descriptors allowed are A, B and T
corresponding to fixed length, balanced and strings
terminated by a specified character respectively. The
maximum atom size is written after the descriptor and
can be omitted if it is 1. In A format the length of the

257

string precedes A and in T format the terminator
character follows the atom size.
For example

READ STRING (1,901) A, B, C
901 %FORMAT (T;, B4/60A8)

will input a character string terminated by a semicolon,
a balanced string of atom size 4, take a new card and
input a 60 character string of atom size 8.

On output A and B formats are allowed. Here the
length specification for A specifies the maximum number
of characters to be printed on each line and in B format
each parenthesised substring is output on a new line.

H and X formats are also allowed on output and these
have their usual FORTRAN meaning.

For example

WRITE STRING (2, 902) LIST
902 %,FORMAT (18H LISTING OF OUTPUT /// 30A)

prints the heading, skips three lines and outputs the
contents of LIST with up to 30 characters per line.

Atom size has no effect on output except that atoms
will not be split between lines, i.e. a new line will be taken
if the next atom to be printed will overflow the specified
line length.

A fuller discussion of input and output including filed
1/O is contained in Macleod (1969b).

Other operations

The interaction between string operations and the
FORTRAN arithmetic operations is small. The only
real area of overlap is in handling of strings representing
numeric quantities. Consequently two statements are
provided with which it is possible to convert numeric
quantities to strings and vice versa. These take the
following form:

¢string to numeric) ::= {FORTRAN unit)—>
NUMERIC(string name)
{numeric to string) ::= {string name)>—)
STRING <numeric)
<numeric) ::= {(FORTRAN unit)|{integer)|
(real)

The overflow register will be set, either if an attempt is
made to convert a non-numeric string or if the number
generated is outside the permitted range. Both real and
integer quantities may be converted and no floating or
truncation effects will take place.

Alphabetic ordering of strings may be obtained
through the application of the string comparison state-
ment. This takes the following form:

{string comparison) ::= IF STRING(string name).
{SOP) . {string name) GO TO
{label»
(SOP> ::= LT|GE

The LT comparison will hold where the first string
alphabetically precedes the second, and the GE compari-
son will hold if the converse is true or if the two are
equal. Where the string atoms are not single characters
the system accesses the individual characters of the atoms
during the comparison process.

Finally, the size of a string given as the number of

20z Iudy 61 U0 1s9nB AQ 0BESHE/SSZ/E/E |/BIOIME/|UIWOS /WO dNO"ILSPEDE//:SARY WOl PAPEOIUMO(

258 1. A. Macleod

atoms in the string may be determined by the following
statement :

¢stringsize) ::=({FORTRANunit)—>SIZE{stringname)

Note that strings may be copied by matching a string
against a left pattern consisting of a single string variable.

Example:

The small example of Fig. 1 program converts
FORTRAN II PRINT and READ statements into the
FORTRAN 1V equivalents. No allowance is made for
statements punched starting other than in column 7 but
continuation cards are generated if necessary. Anchored
mode matching is used to improve efficiency.

The program inputs strings in character format since
the length in characters is needed in order to recognise
the need to generate continuation lines. The program
ends when a FINISH statement is encountered.

The matching procedure

There are two further statements which affect the
matching procedure. These are defined as follows:

{mode declaration) ::= MODE ANCHOR|
MODE UNANCHOR

Normally a match for the left pattern is attempted
starting at the first atom of the named string and if this
fails a further match is attempted from the second atom
andsoon. However, if the statement MODE ANCHOR
appears, then all subsequent matches must either succeed
starting from the first atom or else they will fail. For
example, if S1 contains the string ABCDE, then

S1 : “BCD” GO TO 4

would succeed and cause a branch to label 4. But
MODE ANCHOR
S1 : "BCD"”” GO TO 4

MASTER CONV
MODE ANCHOR

would fail and the succeeding statement would be
executed. Once the mode has been set in this way it
will remain set until a subsequent MODE UNANCHOR
statement is encountered. Alternatively, local anchoring
is permitted in which case the mode is only set for that
element. An element anchored this way is written as
ANCHOR (left element) as shown earlier. So in this
case

S1 : "BCD” GO TO 4
would succeed and
S1 : ANCHOR ""BCD"”” GO TO 4

would fail, but the anchor mode would not be set for the
subsequent statement.

In general, the matching procedure is outlined by the
following set of rules.

1. Each element proceeding from left to right, of the
left pattern, must match consecutive substrings of
the referenced string.

2. Initially, matching is attempted starting from the
first atom of the referenced string. Where this fails
a new match will be attempted at each subsequent
atom either until a match is found or the end of the
referenced string is reached. If matching is in
anchor mode the match can only be attempted from
the first atom.

3. When an element cannot be matched a re-match is
attempted for the preceding element.

4. Once a locally anchored element is matched none
of the preceding elements can be rematched.

5. The last element of a left pattern will always match
the longest substring possible.

A string constant, i.e. a string name, will only match a

10 READ STRING (1,901) LINE

901 %FORMAT (72A)

LINE : *L/6* & "PRINT” & *LAB* & ", & *LIST*

1 —> L & "WRITE (2, & LAB & ") & LIST GO TO 30
C REPLACES PRINT WITH WRITE STATEMENT

LINE : *L/6* & "READ" & *LAB* & ", & *LIST*

1 —> L & "READ (1,” & LAB &)" & LIST GO TO 30

a0

REPLACES READ STATEMENT
ADJUSTS FORMAT OF READ STATEMENT

LINE : *L/6* & "FINISH” GO TO 40
C TEST FOR FINISH STATEMENT
20 WRITE STRING (2,901) LINE

GO TO 10
30 N —) SIZE (LINE)

IF (N.LE.72) GO TO 20

BRANCH UNLESS STATEMENT LONGER THAN 72 CHARS
Xll

REPLACE FIRST 72 CHARS WITH CONTINUATION

C
LINE : *L/72* —> "
C
WRITE STRING (2,901) L
C OUTPUT FIRST 72 CHARS
GO TO 20
C OUTPUT CONTINUATION LINE
40 STOP
END
FINISH

Fig. 1. Example to convert PRINT and READ statements to equivalent FORTRAN 1V statements

20z Iudy 61 U0 1s9nB AQ 0BESHE/SSZ/E/E |/BIOIME/|UIWOS /WO dNO"ILSPEDE//:SARY WOl PAPEOIUMO(

SP/1

substring whose atomic content is identical to that of the
constant. This is also the case with literals. A fixed
length variable will match any substring whose length is
that specified in the variable.

A simple string variable initially matches a null sub-
string. A balanced string variable will match the
shortest non-null substring balanced with respect to left
and right parentheses. A multiple association will match
the first substring which is identical to one of its values,
and attempts are made to match these in the order in which
they were assigned. This is also the case for recursive
associations.

Where a string name appears first as a variable and
then as a constant, it is said to be back referenced and the
constant will be matched against a substring equal to
that of the substring matched at that time by the corre-
sponding variable, irrespective of the previous content,
if any, of the constant.

By rematching is meant an attempt to match the
element against an alternative substring of the string
reference. Rematching follows the rules below:

1. String constants, literals and fixed length variables
can only match one substring from any given atom
and therefore cannot be rematched.

2. Simple string variables are rematched by extending
the previous match by one atom.

3. Balanced string variables are rematched by extend-
ing the previous match by the minimum number of
atoms required to maintain a balanced match.

4. A multiple association can be rematched if any of
the succeeding association values can be matched
in place of the current matched value.

5. A recursive association can be rematched if the
current match can be extended by matching any of
the association values.

For example, if
YMA:—>"A"” & "B” & "'C”
%RA:—>"X" & "Y" & "Z"
and the string T contains “ABAXYA”, then the matching
operation,

T: *S* & YMA & *V* & YRA! & V
would proceed as follows (assuming character mode):

S = null, MA = “A”, V = null, RA fails
V= “B”, RA fails
V = “BA”, RA = “X”,
V fails
RA = “XY”,
V fails
RA fails
RA = “Y”,
V fails
RA fails
V = “BAXY”, RA fails
V = “BAXYA”, RA fails

V — “BAX”,

V fails
MA fails
S =“A”, MA = “B” V = null, RA fails
V — ‘GA”, RA — “X”,
V fails
RA — “XY”’
V — 6‘A”

259

and the match finally succeeds. This example illustrates
the use of both types of associations and-also of back
referencing.

A further example is given by the following statements
which transform the fully parenthesised expression in E
into Polish form.

%OP___> 1kt & It & ///H & 1/+n & e
1 E . ’” (r/ & * (U—) * & %OP & * (V) * & //) 1"
—%O0P & U & V GOTO 1

The statement labelled 1 would be repeated until the
match no longer held and if, for example, E held the
string ((A*B) + (C/(D-E))) this would be transformed
by the successive match and insert operations as follows:

+(A*B) (C/(D-E))
-+*AB(C/(D-E))
+*AB(C/-DE)
+*AB/C-DE

When the final parenthesis free string is reached, the next
successive statement is automatically executed.

Implementation

SP/1 has been implemented on an I.C.L. 1907 compu-
ter. The routines used are mostly written in PLAN, the
1900 assembly code, mainly because character handling
in FORTRAN can be extremely inefficient. Matching
and insertions are the most complex of the routine set
which also includes input, output and storage admini-
stration routines.

Match operations are carried out by a routine
MATCH, and this is called by a statement of the form

CALL MATCH (S, N, E;, T;, Es, Ts, . . ., En, Ty)

where S is the string reference and the elements of the
left pattern are each represented by an E; T, pair
generated by the macro processor. The E; are either
names or literals and the T, are integers specifying the
type of each element. In addition, fixed length variables
generate a third parameter giving the length of the
variable.
For example, the statement

A X & *Y /3 * & %Z!
is transformed by the macroprocessor to the form
CALL MATCH (A, 3, X, 1, Y, 4, 3, Z, 8)

where the integers 1, 4 and 8 identify constants, fixed
length variables and recursive associations respectively.
The parameters are held in three word entries in a
table and each entry contains the parameter name, type
and the address of the current position on the string
currently matched by this element and this latter is set
for each element after it has been successfully matched.
Internal routines, appropriate to each element type,
perform the matching and when all the parameters have
been matched the parameter table is rescanned and all
string variables and associations have string values
assigned to them identical to the substrings they match.
The insert routine performs both the insertion and
assignment operations. It is generated in the form

CALL INSERT (K, SI, N, E;, T\, E5, Ts, . . ., Ex, Ty)

The parameters generated are equivalent to those in the
MATCH routine except that K is either a flag with the

20z Iudy 61 U0 1s9nB AQ 0BESHE/SSZ/E/E |/BIOIME/|UIWOS /WO dNO"ILSPEDE//:SARY WOl PAPEOIUMO(

260 1. A. Macleod

value —1, indicating assignment, or a call to the match
routine. The latter returns a value of zero for an
unsuccessful match, in which case no insertion takes
place, and 1 for a successful match, in which case the
concatenated string value of the parameters is substituted
for the matched portion of the string. The position of
the matched substring is indicated by pointers held in a
common block of store.

For example,
A—X &Y
is generated as

CALL INSERT (—1, A, 2, X, 1, Y, 1)
and
A YX!— Z &Y

is generated as
CALL INSERT (MATCH(A, 1, X, 8), A, 2,Z,1,Y, 1)

Routines appropriate to each element type then insert
each substring associated with each of the elements.

The use of these statements as simply FORTRAN
calls is of course possible whether or not the code is
being preprocessed. This has the advantage that the
number of significant elements in a match or insert
operation and even the type of these elements can be
altered dynamically during the execution of the program
if required.

For example,

CALL MATCH (Sl, N, E1, 11, E2, 12)

would, with N = 2, I1 = 1 and 12 = 5, be equivalent to
the statement
S1 : El & *E2*

while, with N =1 and Il = 6, this same statement
would be equivalent to

S : *E*

References

Descriptions of storage administration and other
operations are given, together with a fuller discussion of
the system, in Macleod (1969b).

Summary

The system is in principle similar to SNOBOL-3.
Two major additions are the provision of the association
data type and the option of treating data as strings of
either characters or text words. It is hoped that these
additions will noticeably enhance the system although
their true worth can only be gauged after considerable
experience.

An important SNOBOL feature which has been
omitted is the indirect referencing facility. In SNOBOL,
if S1 is the string “ABC” then $S1 refers to the string
whose name is ABC and $ (8S1) refers to the string whose
name is the contents of the string ABC. This allows
strings to be referenced indirectly during the execution
of a program. Because SP/1 uses FORTRAN names,
the symbolic content of string names is lost after compila-
tion and thus there is no correspondence between a string
name and a string with the same symbolic content as the
name. It would be possible to give strings literal names
but this would increase considerably the time required
to locate a particular string and since string names can
be represented by FORTRAN array elements a degree
of indirect referencing can still be retained.

As well as providing a useful extension to FORTRAN,
this system also illustrates how a suitable macroprocessor
can be applied to give a considerable syntactic extension
to an existing high level language.

Acknowledgements

Thanks are due to Dr. R. M. Pengelly for many
helpful suggestions given during the course of this work,
and also to the referee for several useful criticisms.

CoHEN, K., and WEGSTEIN, J. H. (1965). AXLE: An Axiomatic Language for Symbol Manipulation, CACM, Vol. 8, pp. 657-666.
FARBER, D. J., GrRiswoLD, R. E., and PoLANSKY, I. P. (1966). The SNOBOL-3 Programming Language, Bell System Technical

Journal, Vol. XLV, pp. 895-944.
GRiswoLD, R. E., PoAGE, J. F., and PoLANSKY, 1. P. (1969).

The SNOBOL-4 Programming Language, Prentice-Hall.

MAcLEOD, 1. A. (1969a). A Method of String Storage, Quarterly Bulletin of the Information Processing Society of Canada, Vol. 9,

pp. 13-17.

MACLEOD, I. A. (1969b). An Information Processing Language, Ph.D. Thesis, Queen’s University, Belfast.
MaAcLEoD, 1. A., and PENGELLY, R. M. (1969). The MP/1 Macroprocessor (unpublished).

MILNER, R. (1967). String Handling in ALGOL, The Computer Journal, Vol. 10, pp. 321-324.

YNGVE, V. H. (1962). COMIT as an IR Language, CACM, Vol. 5, pp. 19-28.

20z Iudy 61 U0 1sonB Aq 06ESHE/SSZ/E/E |/BIOIME/|UlWO0/WOo" dNO"dIWEPEDE//:SARY WOl Papeojumod

