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Analysis of numerical iterative methods for
solving integral and integrodifferential equations

G. M. Phillips

Department of Applied Mathematics, University of St. Andrews, Scotland

An expository account is given of the application of the contraction mapping theorem to the
solution of certain integral and integrodifferential equations iteratively. An analysis is given
also of the errors incurred by using polynomial approximations for the iterates.

(Received July 1969)

1. Introduction

Recently in this journal Wolfe (1969) proposed certain
iterative methods for obtaining the numerical solution of
four classes of integral and integrodifferential equations.
The first two of these are the integral equation

b
¥ = f(x) + j g(x, 1; (1))t )

and the integrodifferential equation

b
Y (x) = h(x, y(x)) + jag(x, £ 9(0)dt; y(@) = . (2)

Following Noble (1964), I will refer to these as equations
of Fredholm type, although as a rule this term is more
strictly reserved for the narrower class of linear equa-
tions, which satisfy the Fredholm theory. That is,
equations in which g(x, 1; (¢)) = k(x, 1).y(¢), say. The
third and fourth classes considered are the Volterra type
of equations obtained from (1) and (2) by replacing the
upper limit of integration » by x. In each case, the
solution y(x) is required on the finite interval [a, b].
Equation (2) may be rewritten in the form

X b
¥ =+ [,y + f [ g 15 ponarau. 3)

The corresponding Volterra equation may be rewritten
similarly, so that all four types of equation are seen to
be particular examples of functional equations of the
form

y=Ty. ©))

For certain operators T, called contraction mappings, it
is well known that the equation (4) may be solved
iteratively by choosing an initial iterate yo(=y,(x)) and
calculating recursively

yn-’i—l:Tym nZO, 1,2,... (5)

A full discussion of contraction mappings is given in
Collatz (1966), Goldstein (1967) and Saaty (1967). An
admirable account of the long history of iterative
methods applied to integral equations is given by Wouk
(1964), where there is also a very extensive bibliography.
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As a gentler introduction to these ideas, one may well
wish first of all to become familiar with the notion of
contraction mappings as applied to the solution of
systems of nonlinear equations. See, for example, the
excellent account of this in Henrici (1964).

The present paper aims to do two things. The first
aim, on the theoretical side, is to give an elementary
exposition of the contraction mapping theorem applied
to the solution of the four types of integral and integro-
differential equations listed above. The need for this is
perhaps greater in the case of the integrodifferential
equations, which are not so commonly discussed in the
literature as the integral equations. Secondly, in
practice it is usually not possible to calculate exactly the
theoretical sequences {y,} which are generated by (5);
due to the need to evaluate integrals, we must work with
some computed sequences, say {y}}. The last section of
the paper analyses the behaviour of certain computed
sequences { y¥}.

2. Convergence of the iterative methods

For the integral equation (1), the iterative process
defined by (5) is

b
Yu @) =100 + [ gl 153,00t n=0,1,... (6)

Let us assume that f(x) and g(x, ¢; y(¢)) are continuous
functions of x, for a < x < b, and that g(x, ¢; y(¢)) also
satisfies a Lipschitz condition of the form

lg(x, 1; (1) — g (x, t; 2(1)| < L(x, 1). | y(1) — z(2)| (7)

for a < x, t < b and all functions y(¢) and z(#) belonging
to some set S. Initially, let S be the set of all continuous
functions defined on [a, b]. In what follows, ||y|| is
used to denote sup | y(x)|.

ag<x<b

From (6) we then have

Ilyn+1_yﬂ||<G“y’l_yll—IH’ €))
where

b
G = sup J-L(x, t)dt. )

ag<x<ba
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We may treat the corresponding Volterra integral
equation similarly. For the Volterra equation the
inequality (8) will hold, where G is given by (9), except
that the upper limit of integration » must be replaced
by x.

For both types of integral equations, if the appropriate
G < 1, the sequence {y,(x)} of continuous functions will
be a Cauchy sequence which will therefore converge
uniformly to some continuous limit function, say Y (x).
It is easily verified that Y(x) is a solution of the given
equation. To illustrate this for the integral equation (1)
we may write

b
Y() = /() — [ g, 15 YO)dt = Y(x) — y,, ()

b
+J [g(x, t; v, (1) — g(x, t; Y()]dr.

Therefore

b
sup | ¥(x) — f(x) — [ g(x. 1; Y(t))d|

a<xgb
<Y =¥uill + Glly, — Y|I. (10)

Since both terms on the right side of this inequality may
be made arbitrarily small by choosing # sufficiently large,
it follows that Y(x) is a solution of (1). It may be
verified also that the solution of (1) is unique. For

suppose (1) has two distinct solutions Y(x) and Z(x).
Then

b
Y(x) = Z(x) = [ [g0x, 15 Y(0) — g(x, 15 @)t

Therefore, from (7) and (9),
1Y —z|]| < 6||Y — Z|],

which provides a contradiction.

So far, we have imposed no restriction on the functions
which are produced by the iterative process and for which
the Lipschitz condition (7) holds. Similar results hold
for restricted »(x). In particular, for the integral
equation of Fredholm type we may state the following
result.

Theorem 1. Given two functions p(x) < g(x) on
[a, b], let S denote the set of continuous functions y(x)
such that

p(x) < y(x) < q(x), for a< x<b.

Suppose that y(x) € S implies that y*(x) € S also, where

b
Y = 09 + [ g, 13 y(@O)dr.
Also, let us suppose that
[8Cx, 150(0) — g(x, 15 2()] < L(x, )| (1) — (1)
for a < x, ¢ < b and all functions y(x) and z(x) € S, that

Jfand g are continuous in x, and that

b

G = sup L(x, t)ydt < 1.

agx<b *a

Then, for any yo(x) € S, the sequence {y,} defined by the
iterative method

g 1(x) = f(x) + ng(x, Ly ()dt, n=0,1,...,

converges uniformly to the unique and continuous
solution of the Fredholm equation which satisfies the
inequalities p(x) < Y(x) < g(x).

This result is a special case of the Banach theorem or
contraction mapping theorem of functional analysis.
See, for example, Goldstein (1967).

A further dividend from the contraction mapping
theorem is an estimate of the error at any stage,
Y(x) — y,(x). By repeated use of (8), we have

a1 = wall < G131 — poll.-
Therefore for any m >n> 0
msn = 2all < UYmsn = Vmsnnll
o a1 —
< (Gl 4G — ol
Thus
1Vmsn = 2ul| < G|yt — w0l /(1 — G). (11)

We may now write

|[Y_yn”<”Y_ym+nH+Hym+n_ynH' (12)

Letting m — oo, the first term on the right of (12) tends
to zero. We then obtain from (12) and (11) that

1Y = wall< Gy — yol /(1 = G). (13)

To provide an a priori bound for ||Y — y,|| without
requiring advance knowledge of the iterate yi(x), we
may replace (13) by

1Y = ll< G"llg — pll/(1 — G),

where p(x) and g(x) are the functions referred to above.

The integrodifferential equations may be treated in the
same way. For instance, the iterative process (5) applied
to the integrodifferential equation (2) is

V@) = ¢ + [, y,w)du

+['] g yO)rdu. (14)

We will assume that the function 4 satisfies a Lipschitz
condition

|A(x, () — h(x, 2(x)| < M (x).| p(x) — z(x)], (15)

for all y(x) and z(x) € S. For the iterative process (14),
if yeS= TyeS, it follows that successive iterates
satisfy the inequality (8), where

G = j bM(u)du 4 j ’ ij(u, 1)dt du. (16)

In the case of the Volterra integrodifferential equation,
we can see that successive iterates satisfy the inequality
(8). This time, G is given by

G = ij(u)du + j ’ juL(u, 1)dt du. (17)

Thus, for all four types of integral and integro-
differential equations considered here, we can write
down a theorem, as for the Fredholm integral equation
above. In what follows, S again denotes the set of
continuous functions y(x) such that p(x) < y(x) < q(x)
fora < x < b.
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Theorem?2. Ifye S = Ty e S, if the relevant Lipschitz
conditions (7) and (15) hold on S and the appropriate
G <1, then for any y,eS the iterative scheme
¥u-1 = Ty, converges uniformly to the unique solution
Y of y=TyonS. Further, for any n > 0,

1Y — yall< Gllg — plI/(1 = G).

3. Numerical examples

To illustrate these results, I will consider three
equations which have previously been considered by
other writers, including Wolfe (1969).

Example 1. First let us examine the following
Fredholm integral equation (a particular case of Love’s
equation), which has been solved previously by Fox and
Goodwin (1953) and by Elliott (1963):

1
[
yx) =1 +7TJ1—;U_—X)2' (18)
—1
In this example,

1

1
Lt =275 a—»?

and from (9)
|

G 1 dt
= sup — |-
P G —xp

Thus

1
G=—tan 12 < 1.
v

Here, as for all linear equations, we may take S un-
restricted, as the set of all continuous functions defined
on [—1,1]. For this equation, the theoretical iterative
process will converge with any choice of initial iterate

Yo(X)-
Example 2. The Volterra integrodifferential equation

Y(x)=142x—y(x)+ jxx(l + 2x)e'x =0 p(t)dt (19)
0

has been considered by several writers, including Pouzet
(1960) and Day (1967). In this case

L(x, 1) = x(1 + 2x)e'™—1,
Mx)=1

and we may, as in the previous example, take S un-
restricted. It may be pointed out that there is, of course,
an essential difference between Fredholm and Volterra
equations. For an equation of Fredholm type, the
interval on which the iterates y,(x) have to be computed
must be at least that of the range of integration [a, b].
With the Volterra equation, which is an initial value
problem, we may seek to compute a numerical solution
iteratively on an interval, say [a, a + 8], for any choice
of 8 > 0. Therefore, for Volterra equations, we can
ensure that G <1 by choosing & sufficiently small.
Hence, certainly for linear Volterra equations, we can
always find an interval [a, a + 8] on which the iterative
process will converge to the solution. (For nonlinear
equations we have also to ensure that if ye S, Ty e S.)

For (19) then, on the interval [0, 8], we have from (17)

that
3 5 au
G=|du+ u(l + 2u)e'®=dt du.
[l ]

On [0, 1], for example, we see that G <1 and so con-
vergence follows. On [0, 1}, our sufficient criterion for
convergence, G < 1, is not satisfied.

Example 3. The Volterra integral equation
W) = 1 — x + [ (20 + e [y(OFdr (20)
0

has been solved by Laudet and Oules (1960) and Day
(1966). For this problem we must first find an appro-
priate set S. It may be noted that, for 0 < x < 1,
0 < y(x) < e® implies that 0 < y*(x) < e, where
y* = Ty. Thus, for S, we may take the set of continuous
functions y(x) such that 0 < y(x) < e, (In verifying
the right hand inequality, we happen to hit upon the
solution, y(x) = e*.) Therefore, on S, the integrand in
(20) satisfies a Lipschitz condition (7), with

L(x, 1) = 2(xe'™>=D 4 e="),
On the interval [0, 6],

G = sup J‘ 2(xe!>—0 + e~?)dt,

0<x<d Y

which gives

8
G = [ 2300 + e~y
0

We may check that for § =4, G < 1. The iterative
process will converge if we compute the iterates on the
interval [0,1], beginning with any continuous yo(x)
satisfying 0 < yo(x) < e¥ for 0 < x < 3.

For Volterra type equations, the interval on which
convergence is obtained need not be as small as we have
found here; see for example Tricomi (1957).

4. Approximation of the iterates

So far, in examining the iterative process, no account
has been taken of the problems involved in the practical
evaluation of the iterates y,(x). With this in mind, let us
now reconsider the integral equation of Fredholm type,
for which the iterative process is

b
Vi i) = () + [ gCx, 5, 0dr. @D

Wolfe (1969) transforms [a, b] onto [—1, 1] by means of
a linear change of variable. Each iterate is approximated
by a polynomial, expressed as a linear combination of
Chebyshev polynomials. Thus the theoretical sequence
{y,(x)} is approximated by the computed sequence, say
{y¥(x)}. The functions y; are polynomials of degree,
say, N. The functions f and g are approximated by
polynomials, say f* and g*; in the case of g*, thisis a
polynomial in the two variables x and 7.

Therefore the computed sequence {yi} satisfies the
recurrence relation

b
VEa() = @) + [ g% 5@, (22

forn=0,1,2, ..., with p§(x) = yo(x). The integration
is done exactly, neglecting rounding error. We may now
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write
g(x, 15 yu(1)) — g*(x, 15 yi(D)
= [g(x, t; yu(1)) — g(x, 15 yr ()]
+ [gCx, t; y7(0) — g*(x, 5 yu(1)]. (23)

Let us suppose that f and f* differ by less than some
positive number 8, and that the same is true of g and g*.
By taking the degree of the approximating polynomials,
N, sufficiently large, we can make & as small as we please,
if f and g are continuous. Then, from (21) and (22),

| Yns1(0) — Vi@ < [f00) —/*()
b
+f |8 Cx, 15 3(0)) — g*Cx, 15 ya(0)]dt

Using (23) we obtain

References

Va1 — Viall < 801 + b — a) + G|y, — »¥||.
From this it follows that
[|ye — ¥ill < 8(1 4+ b — @)/(1 — G) (29

for all values of n. This bound holds also for the
Volterra integral equation and a similar result may be
derived in the same way for the integrodifferential
equations. This demonstrates that the accumulated
error, obtained by working with polynomial approxi-
mations for the iterates, may be made as smali as we
please.
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