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A new approach to variable metric algorithms

R. Fletcher

Atomic Energy Research Establishment, Harwell, Didcot, Berkshire

An approach to variable metric algorithms has been investigated in which the linear search sub-
problem no longer becomes necessary. The property of quadratic termination has been replaced
by one of monotonic convergence of the eigenvalues of the approximating matrix to the inverse
hessian. A convex class of updating formulae which possess this property has been established,
and a strategy has been indicated for choosing a member of the class so as to keep the approxima-
tion away from both singularity and unboundedness. A FORTRAN program has been tested

extensively with encouraging results.
(Received October 1969)

1. Motivation

This paper deals with the problem of minimising a
function F(x) of n variables xT = (x;, X5, . . ., X,)
assuming that the gradient vector V,F = g(x) is available
explicitly, but that the hessian G is not (G;;=(32F/dx,;0x;)).
Superscript T is used to denote transposition. A type
of method which has achieved considerable success in
solving this problem is the variable metric method (VMM)
due to Davidon (1959), and simplified by Fletcher and
Powell (1963). The main feature of the VMM is that
an approximation H to G~! is kept, and is updated at
each iteration using the formula

667 HyYy'™H
H*=H + < —
8y  y"Hy

where 8 = x* — x and y = g* — g are the changes in
x and g made on that iteration, and superscript * denotes
values appropriate to the next iteration. The correction
§ is taken as a multiple a of a ‘direction of search’
s = — Hg chosen by analogy with Newton’s method, so
that

()

§ = as = — aHg. )

The multiple a is taken as the value of A which minimises
F(x + As), that is the function is minimised locally along
the direction of search. The method has a number of
important properties, for instance if the approximating
matrix H is initially chosen to be positive definite, then
this property is retained by subsequent approximations.
Also if the function to be minimised is a positive definite
quadratic form, then the iteration terminates in at most
n iterations. Moreover Powell (AERE report, to be
published) has recently produced a convergence proof
for a more general class of functions.

The algorithm has, however, some inconvenient
features. The main one is the need to solve the sub-
problem of finding a at each iteration (the ‘linear
search’). This is usually done by evaluating the function
and gradient for a number of different values of A and
interpolating according to some strategy, until a suffi-
ciently accurate minimum is obtained. Thus a consider-
able extra computing effort is required, above that for
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calculating y and updating H. (Computing effort is
most readily measured by the number of times F and g
have to be evaluated.) A further disadvantage is that
the linear search is hazardous to program because of the
many special circumstances which can arise (for instance
the minimum may not exist at all). This can lead at
worst to undetected program errors; at best to a prolifera-
tion of different programs for implementing the VMM,
giving rise to incompatibility in results. The linear
search can also often be a disadvantage when constraints
are present, because then the minimum along the line
may not be feasible, even though no constraints limit the
position of the ultimate solution. In this context, the
flexibility of being able to generate directions of search,
other than by s = — Hg, would also be convenient.

It is important therefore to consider whether the
linear search subproblem can be dispensed with. The
importance of the linear search is that it furnishes a
property which enables finite termination to be proved
for quadratic functions. The first point to examine
therefore is whether this termination can be proved for
variable metric algorithms not requiring linear searches,
and based upon updating formulae other than (1). Now
quadratic termination can be proved by requiring that
the successive matrices H satisfy a ‘hereditary property’
when the function is quadratic: that is not only must H*
satisfy H¥y = 8 (a natural property because G~!y=29),
but also H*y = 8 where ¥ Y and § are a pair of differences
from an earlier iteration. It is quite easy to show that
there is only one formula for which hereditary properties
can be proved without relying upon linear searches, and
for which the correction is of rank 2 in the space of
8 and Hy. This formula is

(8 — HY)(8 — HY)"

H* = H
+ Y7(é — HY)

)

in which the correction has degenerated to be of rank 1,
and which has attracted a lot of attention in recent years.
The formula was discovered by a number of workers, a
list of references being given by Powell (1969). Although
the formula does remove the need to solve the linear
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search subproblem, it unfortunately introduces a number
of unpleasant side effects. One is that the H matrices
no longer remain positive definite so that a reduction in F
cannot be guaranteed in a basic algorithm. Another is
that the correction is unbounded, even for quadratic
functions. A particularly nasty property is that if the
correction & = — Hg happens by chance to minimise F
along & (surely a good choice of & to have made) then H*
is automatically singular (or undetermined). Thus many
additions to the basic algorithm are required if the
updating formula (3) is used (see Powell (1969) for
instance). Even then no significant advantage in effi-
ciency has yet been reported for this method. Thus
algorithms based directly on (3) will not be considered
further in this paper.

This discussion illustrates the dilemma which faces
numerical analysts in attempting to improve on the
VMM, in that some seemingly desirable feature has to
go in order to make progress. When looking for a
simple effective algorithm it is my view that retention of
positive definiteness in H is important, as it ensures a
reduction in the function value on each iteration. The
approach that is considered therefore is that of abandon-
ing the property of quadratic termination in order to be
able to replace the linear search process by a more
simple, and hopefully more efficient, way of reducing
the function at each iteration. This cannot be done
with impunity because quadratic termination is a feature
which guarantees the fast ultimate convergence of an
algorithm. It would seem desirable to retain some
guarantee that the H matrices tend to G~! so that
ultimate convergence for quadratic functions can be
proved. A suitable property has been defined in
Section 6 (where matters concerning theoretical develop-
ments have been collected) as Property 1, which requires
that for quadratic functions the eigenvalues of H must
tend monotonically to those of G—! in a certain sense.
In this section an important theorem is then proved
(Theorem 1) showing that the updating formula (1) of
the VMM satisfies Property 1, and thus becomes a
candidate for use in the sort of algorithm which is
envisaged.

The abandonment of linear searches also requires that
something is done to force a sufficiently large decrease
in F at each iteration to guarantee ultimate convergence.
However to assure the efficiency of an algorithm without
linear searches, it is necessary that only one evaluation
of F and g be made on each iteration, except on rare
occasions. The change AF in F on an iteration would
be expected by Taylor’s series to be approximately g78
when & is small, but much less than g78 in absolute value
when the position of the minimum along a line is over-
estimated. The change in F relative to g78 cannot
become arbitrarily small if AF/g76 > p where0 < pu < 1
is a preassigned small quantity. In fact if corrections
are determined by & = — AHg, then trying values of
A=1,w,w? wi ... (0 <w < 1)will eventually produce
a & which satisfies this test. In practice choices of
@ = 0-0001 and w = 0-1 have been made. Goldstein
and Price (1967) show that if H —~ G ! when converging
to the minimum of a non-quadratic function, then
eventually the choice A = 1 will always be taken, and
convergence will be superlinear. Although H — G~!
in their sense is not proved, it is expected that this
behaviour will occur in most cases and so the efficiency

of the method in eventually requiring only one evaluation
of F and g per iteration is justified. This has been amply
borne out in practical cases. To ensure convergence to
a solution it is also requisite that the step length A does
not tend to zero, a sufficient condition for which is
shown by Goldstein and Price to be that AF/g78<1— p.
However the way in which A is chosen, and the relative
magnitudes of w and p ensure that this condition holds
except in pathological cases. Although convergence for
any general class of non-quadratic functions is not
proved, it will be noted that convergence for quadratic
functions is an immediate consequence of Property 1 and
the way in which A is chosen.

Another property which is important is the retention
of strict positive definiteness by the approximating
matrices. Although this follows from Property 1 when
the functions are quadratic, for non-quadratic functions
it is necessary to update over an interval & for which
8Ty > 0. In fact, although 8 = — AHg where A =1
may not satisfy this condition, a & which does can be
found by looking at values of A larger than 1, so long as
the function is bounded below.

None of the conditions which are imposed in the two
previous paragraphs are very restrictive, and they are
simple to program. An algorithm based on these ideas
was implemented using the original VMM formula (1)
to effect the updating of H, on account of it possessing
Property 1. Although the results of limited tests were
very encouraging, one example was found in which
failure occurred because the H matrix became singular.
This tendency is reported by others in isolated cases with
the original VMM, and it seems that removal of the
linear search does not remove this tendency and in all
probability exacerbates it. It is necessary therefore that
if these ideas are to be used, a more satisfactory means
of updating H must be found, still possessing Property 1,
but without the tendency to singularity exhibited by (1)
alone.

2. A new formula

At about this time in the research, the possibility of
generating a new updating formula was realised, based
upon a very simple idea. The updating formula (1) is
one which forces the relationship H*y = & to hold.
If T" is defined as H ~!, then T" and I'* corresponding to
the H and H* of (1) would be related by

F*~(1ﬁY—8T)F(1 ZYT)+§—TY; “)

a formula which naturally forces I'*6 = y. Thus a way
is obtained of forcing a mapping of & into y. Now by
carrying out the simple interchange & <>y in (4), a
formula would be obtained which mapped v into 8, and
this could be used as a formula to update H thus

H*:(I— ) (1 YST) 8; ()
THY 88T

SyTH H YST
=H- 8Ty (1 8Ty
A new formula is thus obtamed in a way which could
also be used in other circumstances. A particularly nice

property is that if H is updated by (5), then the corre-
sponding updating formula for I' is obtained by per-
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forming the interchange y <> 8 in (1), to give

yy" TI'88'T
87y 878 ©)

Thus the formulae (1), (4) and (5), (6) may be considered
as dual in this sense. Another important result, proved
in Theorem 2 (Section 6), is that the new formula
possesses Property 1, showing that it can be used to
minimise quadratic functions in the sort of algorithm
discussed in the previous section. The same require-
ment (Y76 > 0) will also guarantee positive definiteness
in the general case (see Section 3).

Of course the new formula could be used in a con-
ventional way with linear searches. In this case it is also
possible to prove quadratic termination. The reason
that T do not do this is that I have heard very recently
from C. G. Broyden in a private communication, that he
has also come across this formula in a different way, has
also proved quadratic termination and other similar
properties, has compared it numerically against the
original algorithm, and is publishing his results con-
currently (Broyden (1970, Parts I, II)). This paper will
only be concerned with the properties of the formula in
an algorithm not requiring linear searches.

M'*=7T4-

3. A convex class of formulae

An obvious extension of the two formulae (1) and (5)
is to generate other formulae by taking any linear
combination of the right-hand sides of (1) and (5) such
that the coefficients sum to unity. Denoting the H*
in (1) and (5) by H§ and HT respectively, then a matrix

% can be determined from

Hy = (1 —¢)Ht + ¢HT ™

Substituting for H¥ and Hf gives a whole class of
formulae generated by the single parameter ¢. The
corrections to H all lie in the space spanned by & and Hy
and are therefore of rank 2. In fact analysis shows that
this class of formulae is related directly to that class
identified by Broyden (1967), based on a parameter S,
through the relationship ¢ = £87y.
An important new result is that (7) can be rearranged
as
H% = H§ + ¢vpT ®)

) Hy
— (vTHY)/2d — )
where v = (YTHY) { §7y T H‘y}

This shows that the difference between any two formulae
in the class is of rank one, and also that the difference is
orthogonal to y. In particular the rank one property
enables a number of useful results to be obtained by
invoking Lemma 1 of section 6.

In the present context, most interest lies in the
possession or otherwise of Property 1 by these formulae.
The important Theorem 3 shows that any formula for
which ¢ € [0, 1] will possess this property. Furthermore
Theorem 4 shows that however close ¢ is taken outside
the range [0, 1], for example ¢ = — e or ¢ = 1 + € for
small € > 0, then a quadratic function exists for which
Property 1 does not hold, and for which H can diverge
from G—!. Thus Property 1 can only be guaranteed if
the parameter ¢ is a convex combination of 0 and 1, and
so the importance of the convex class of formulae, given

by (7) with ¢ [0, 1], is established. Of course (1)
and (5) are the extreme points in this class.

Another useful result obtained directly from (8) and
Lemma 1, is that if the eigenvalues A, A" of any two
matrices H¥ and H?Y are arranged in decreasing order,
then ¢ > ¢’ implies A > X’ for any corresponding pair
of eigenvalues. One result which follows from the
discussion in Section (1) about the VMM formula, and
from this result, is that the matrices H¥ retain positive
definiteness if ¢ > 0. Another is that the determinant,
the L, norm, and the Frobenius norm of H7 are all
greater than or equal to the corresponding quantities
for HY.

In particular H¥ is ‘less singular’ than Hg, indicating
that use of HY in a variable metric algorithm might
counteract the tendency to singularity mentioned in
Section 1. However it may well be that use of Hf alone
might cause H to tend to become unbounded. The
flexibility given by a whole convex class of formulae
possessing Property 1 is obviously important, indicating
that algorithms which choose ¢ in a systematic way at
each iteration to counter both singularity and unbounded-
ness might be determined. For instance one possibility
would be to choose ¢ so that the product of the traces
tr(H %)tr(T'%) is minimised, this being an upper bound on
the condition number ||H3}||,||T'}||, of H*. Although
appealing, one reason for not using this might be that
the successive updating of tr(I") would lead to excessive
accumulation of round-off error. With this in mind,
the next section presents some analysis leading to
another attractive and even more simple means of
choosing an appropriate ¢.

4. The rank one formula

The rank one formula (3) is also a member of the
general class of formulae (7) because the rank one
correction is in the space spanned by & and Hy. In fact
it can be identified as the formula H; where ¢ = 8Ty/(8T
—Y'HY). A significant observation which arises from
this is that if H is positive definite, and 8Ty is restricted
to be strictly positive (as in section 1), then qS cannot lie
in the range [0, 1]. Thus the rank one formula cannot
be a member of the convex class of the previous section.
In fact if 87y > yTHy, then$ > 1;and if 87y < yTHy
then qS < 0. The rank one formula plays an interesting
role in that it is a formula which does not restrict the
eigenvalues of H* in any way, and thus permits an
approx1mat10n to any G~ ! as closely as possible. The
position of 96 in the range (— o0, o0) could therefore be
taken as an indication of which member of the convex
class touse. That isif¢ > 1, then use of HT isindicated,
and if $ <0 then H§. This test (i.e. whether 87y > y"Hy
or not) has been used with some success as described in
the next section. However more detailed examination
of it, when the function is quadratic, shows an even more
simple interpretation. On replacing & by G~ 'y then
the relation becomes y7G~'y > yTHy. If true the
indication is that H is ‘smaller’ than G~! in this sense,
so that the ‘larger’ formula HY is used. If however
vy7G 'y < yTHy then H is ‘larger’ than G ! and so the
‘smaller’ formula HZ is used. In fact if equality holds
then no indication is given of which formula to use; in
this case it was decided to use Hf on account of the
importance of avoiding singularity in H.
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Before leaving this section another result will be noted.
This is that if the formula for updating the inverse I'" of
the matrix H in (3) is considered, and if the interchanges
I'<> H and & <> y are performed, then the original
formula (3) is restored. Thus the rank one formula is
self dual in the sense of Section 2.

5. An algorithm

An algorithm based upon choosing corrections as in
Section 1, and using either updating formula (1) or (5)
depending upon the test of Section 4, has been written
and tested extensively. Two other additions have been
made which do not materially affect the complication of
the program, but contribute to efficiency. One is that
if A = 1 is not successful in reducing F sufficiently, then
a A determined by cubic interpolation would be calcu-
lated, and the largest of this value and 0-1 would be
used. Thus the possibility of obtaining a local mini-
mum along a line is retained when it is necessary for
other reasons to use more than one evaluation of Fand g
in an iteration. This feature also helps to inject an
element of independence into the successive & and thus
to improve the adequacy of the approximation to H.

Another detail is included because the algorithm can
be inefficient if H is chosen initially to be much greater
than the local G~!. Then any § which reduces F would
be considerably less than —Hg and a considerable
number of extra function evaluations would be required
at each iteration. This only occurs at up to and includ-
ing the nth iteration, after which a step of —Hg is
almost always successful. One possibility which was
not adopted, mainly because of the problems of guaran-
teeing positive definiteness, is to set up H by differences.
In practice a running step length A has been kept, derived
from the value used on the previous iteration, and used
to generate an initial & of —AHg. However the program
reverts to the basic algorithm of Section 1 after the
nth step. In a similar vein, the program uses a lower
bound F on the least value of F to estimate a suitable
step length on the basis of a quadratic function passing
through the current point. This step length, if less than
that above, is used in preference to it.

/
a0 &g
// \?\g
T 4 '
e’9\.\ ,/ :
~_." i
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F e
oo >k >\>

Fig. 1

The algorithm is terminated when |8| < € a tolerance
vector, which was 0-00005 in all tests. There are also
two error exits, which might occur either by the tolerance
being set too small relative to the effect of round-off, or
by incorrect programming of gradients. One is an exit
when &7g > 0; the other an exit when for some §,
F* > F and 87g* < 0. This latter situation is illustra-
ted in Fig. 1 and can be caused either by an unusual
variation of the function on an early iteration or by
rounding error in the region of the solution. To cater
for both cases, an error exit is only taken in this situation
if the iteration count is also greater than n.

A FORTRAN subroutine has been written embodying
all these ideas. The testing has been done on two types
of function; problems in relatively few variables which
might prove difficult to minimise (including Rosenbrock’s
(1960) parabolic valley, Powell’s (1962) function of
4 variables, Wood’s function of 4 variables (Colville,
1968) and Fletcher’s, (1965) Chebyquad functions for
n=2,4, 6 and 8); also possibly more simple problems
in larger numbers of variables, in particular Fletcher and
Powell’s (1963) trigonometric functions for n = 2(2)10,
20, 30, 40 and 60. The results of these tests are given in
Table 1. In all cases the problems have been solved
satisfactorily, excepting possibly that the full accuracy
asked for has not always been obtained, a feature

Table 1
Comparative testing of the new algorithm

PROBLEM NEW ALGORITHM FLEPOMIN
n
ITERATIONS |EVALUATIONS| ITERATIONS | EVALUATIONS|
Parabolic Valley
2 39 47 22 64
Powell’s function
4 42¢ 43¢ 21¢ 64
Wood’s function
4 1225 136 45 154
Chebyquad
2 7 8 2 6
4 10 13 6 22
6 22 27 10 29
8 21 23 18 50
Trigonometric
functions
2 8 9 4 15
4 13 19 10 30
6 13 15 10 38
8 14 15 11 40
10 17¢ 18¢ 17¢ 58¢
20 50 51 32 93
30 71 75 414 1324
40 99- 102 584 160
60 1334 1494 854 2454

a Full accuracy not obtained—see text.
b Double length—see text.
¢ FLEPOMIN and new algorithm find a different solution.
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discussed later. Another test was to consider the failing
case of the version of algorithm using only formula (1)
as described in Section 1. The quantities x, g and H
(nearly singular) were taken from an iteration near to
where the algorithm stopped, and the new algorithm was
started with this data. The new algorithm was com-
pletely successful in rescuing the situation and causing
convergence to the correct solution.

Comparative testing of the new algorithm has been
done against a FORTRAN version of the ALGOL
procedure FLEPOMIN (Wells, 1965; Fletcher, 1966), in
which a few small errors have been corrected, and which
is an implementation of the original VMM.  The results
are again given in Table 1 and it is immediately obvious
that the new algorithm gives uniformly better perform-
ance than FLEPOMIN, as measured by the number of
evaluations of F and g. One particularly significant
feature is that the improvement is most noticeable as n
becomes large, a most encouraging result. Although
the number of iterations of the new algorithm is about
509 higher, the average of little more than one function
evaluation per iteration tips the overall scale considerably
in favour of the new algorithm.

The only cases in which the requested accuracy has
not been realised have been common to both the new
algorithm and FLEPOMIN and are not considered
serious. On Powell’s function, although an error exit
due to round-off is taken, this is caused by the slow rate
of linear convergence to the solution which occurs on
account of the singular Hessian there. On the trigono-
metric functions it is due solely to the effect of round-off
error which becomes serious for n > 30. This is not
surprising however in that the calculations have been
carried out on an IBM 360/65 with only 6-7 significant
decimal digits. A different fault arises with Wood’s
function. Here there is a region remote from the solu-
tion which is nearly a stationary point and which causes
small steps to be taken for a number of iterations. With
the new algorithm one of these steps was sufficiently
small as to cause the ill-definition of F and g typified by
Fig. 1. 1In fact both algorithms were taking steps of
magnitude about 0-00005 in this region. When the new
algorithm was run in double length with slightly smaller
tolerance, then no trouble was obtained. However one
particularly encouraging feature of the single length run
was that the eigenvalues of the H matrix showed no
tendency to singularity as the stationary point was
neared, and is a result which gives confidence in the way
in which the matrix is updated.

Another observation which also gives rise to confi-
dence in the new algorithm occurred as the program was
being developed, and small changes in strategy or
different values of parameters (u, w, etc.) were tried.
The experience with the new algorithm has been that
such changes have caused very little variation in the total
run times. This is taken as a very encouraging feature—
firstly in that it suggests that the algorithm is robust, and
secondly in that it seems likely that the improvements
shown in Table 1 are representative of what can be
obtained in practice and are not just caused by a freak
choice of adjustable parameters.

To sum up then, a variable metric algorithm has been
developed in which the linear search sub-problem is no
longer necessary. The property of quadratic termina-
tion, whose relevance for general functions has always

been questionable, has been replaced by a property in
which the approximating matrix H has to tend to the
inverse hessian G ~! in a certain sense. A convex class
of formulae for updating H, which has this property,
has been established; and a strategy has been described
which indicates how to choose a member of the class.
A FORTRAN program has been tested extensively and
the results indicate that the improvements which had
been hoped for have been realised.

6. Some theorems

Lemma 1: If symmetric matrices A and A* differ by a
matrix of rank 1, then their eigenvalues A and N* interpo-
late each other in a weak sense.

In particular, if A* = A4 4 ovvT where o = £ 1,
andif A\, > A, > ...> A, and if A} > A3 > ... > A,
then

Difo=+LA>L=>M8=0L>...> 0>,
(i) ifo=—1L,4=>A>L>M8>...>2 2>,

Proof: See Wilkinson (1965), pp. 94-98.

Property 1: A measure of the difference between the
approximating matrix H and any inverse hessian G -lis
given by the difference between the K = G'/>HG'/? and
the unit matrix (see also Broyden, 1970). This is
equivalent to transforming the problem so that the
inverse hessian in question is a unit matrix, and K is the
approximation to it.

Definition: An updating formula for positive definite
matrices possesses Property 1 if, for a quadratic function
with G strictly positive definite, the eigenvalues of K
(arranged in order) tend monotonically to 1 for any se-
quence of vectors & (but not necessarily strictly mono-
tonically.)

Property 1 implies that the L, norms of both K and
K —! tend monotonically to 1. It also implies that both
the L, and Frobenius norms of both K — I and K-1'—1
tend monotonically to zero. Note however that
although convergence to these limits is likely, only non-
divergence is actually implied by Property 1.

Reference to the positive definiteness of H and H*
has already been made. This implies the positive
definiteness of K and K* if G is non singular, and
vice versa.

Theorem 1: The formula (1) possesses Property 1.
Proof: Making the substitution z = G'/28 and using
y = G& = G'/?z, then (1) can be rearranged as

KzzTK  zzT
zTKz zTz

Now K = K — KzzTK/zTKz has one zero eigenvalue
(eigenvector z) and by Lemma 1, its other eigenvalues
interpolate those of K in the weak sense. Addition of
the term zz7/zTz changes the zero eigenvalue of Ktoa
unit eigenvalue and leaves the others unchanged. Now
each non-zero eigenvalue of K (and hence of K*) lies in
a closed interval of two eigenvalues of K and so can be
paired up with one which is more remote from 1 but is
the same side of 1. The remaining eigenvalue of K can
be paired with the unit eigenvalue of K*. This pairing
up ensures the monotonic tendency of eigenvalues to 1
and so proves the theorem. The situation is illustrated
in Fig. 2.

K$ =K —
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— x eigenvalue of K
Ounit eigenvalue of K*

- e eigenvalue of both
- K and k*

Fig. 2

Theorem 2: The formula (5) possesses Property 1.

Proof: If HY is obtained from (5), then its inverse is
obtained from (6) by virtue of the duality. Define
M = G~'2T'G~1/2, whence M is updated by

MzzTM  zzT
zTMz 2Tz

Thus the formula for changing M satisfies the equivalent
of Property 1 from Theorem 2. But M is the inverse
of K, so the eigenvalues of K are the inverse of those
of M. Thus, because M and K are both positive
definite, the updating formula (5) satisfies Property 1.
Theorem 3: The updating formula (7) with ¢ €0, 1]
satisfies Property 1.

MP=M—

References

Proof: By Lemma 1 and by virtue of (8), each eigenvalue
of K% cannot lie below the corresponding eigenvalue of
K§ nor above the corresponding eigenvalue of K¥. The
theorem follows from Theorems 1 and 2.

Theorem 4: The updating formulae with ¢ = — e and
é =1+ ¢, where 0 < e < 1 is a given small number, do
not satisfy Property 1.

Proof: Consider a strictly positive definite quadratic
function for which

o=(y" %)

If H is taken as the unit matrix, then K= G. The
eigenvalues of K are n and 1 + 2 e — n where 7 is a
strictly positive term of order €2. If 8§ is chosen so that
zT = (0, 1) then it can be verified on substitution that

(00 ik ()

Thus in both cases an eigenvalue has diverged from 1.
For K* . the smallest eigenvalue has gone from 7 to zero,
and for K%, the largest eigenvalue has gone from
14 2¢— 17 to 14 2 Thus a counter example has
been produced and the theorem is proved.
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