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Surfaces for interactive graphical design
K. J. MacCallum*

Centre for Computing and Automation, Imperial College, London SW7

Based on the work of Coons, several attempts have been made to develop programs for designing
surfaces using a computer driven interactive display. However, it is considered that the problems
of man-design interaction have not previously been solved successfully. In this paper techniques
are developed which allow manipulation of a surface without reference to its mathematical
definition and which allow modification to influence only local areas of design. Using an extension
of the Coons definition a bi-quartic patch is chosen as more suitable than the bi-cubic for design.
(Received December 1969)

1. Introduction
The description of surfaces has always played an
important part in most branches of engineering design.
A graphical description is normally provided by a set
of points on the surface or by a set of plane curves
taken through the surface. However, with the advan-
tages of speed, accuracy and flexibility that a computer,
especially when linked to a graphical display, can offer
to aid the design process, a need arises to provide
mathematical descriptions of surfaces suitable for the
design of engineering objects. Methods are also required
to interact with the surfaces in a natural way.

The most satisfactory way of manipulating a mathe-
matical description of a surface while maintaining a
visual control over it is to use an interactive display
terminal and some previous workers have used this
approach (e.g. Armit, 1969; Flanagan and Hefner, 1967).
Although Armit's Multipatch system is a powerful and
very flexible tool it appears to assume that the designer
has some knowledge of the effect of altering surface
coefficients. In its present form it also assumes that
the designer has some fore-knowledge of the object he
is designing. On the other hand, the 'surface moulding'
techniques developed by Flanagan and Hefner allow a
fairly natural control over the surface without involving
the designer in mathematics but unfortunately they deal
with a class of surface suitable only for designing aircraft
fuselages and other similar objects.

This paper describes a class of surfaces based on the
work of Coons (1964 and 1967) and introduces some
new methods to make surface design on the display
possible. The views expressed in the paper may be
biased by the application for which the techniques have
been developed. In particular the investigation has
assumed that the surface being designed needs continuity
no greater than the first derivative. Nonetheless, the
author has attempted to present the methods out of
context of the application since he feels they have
something to offer in other fields of surface design.

2. Coons surfaces
It was in 1964 that Coons first proposed a class of

surfaces for computer-aided design of space figures.
These surfaces are claimed to have advantages for this
purpose because they are well suited to display work and
can conveniently be 'matched' or made continuous with
adjoining surfaces of any type. More particularly their
advantages stem firstly from the fact that they are
parametric and secondly from the fact that they are
bounded.

The use of parameters allows the easy definition of
infinite real slopes as the ratio of two finite and com-
putable numbers. This is a particularly important point
in engineering surfaces since areas of rapidly changing
slope often cause trouble in a mathematical definition.
A parametrically defined surface also allows the defini-
tion of the three coordinate directions independently;
any surface modification can thus be made independent
of the orientation of the axis.

A bounded surface definition relates very closely to
the process of designing engineering surfaces in that the
boundaries form an integral part of the object. For
example, a blending surface joining two fillets of differing
radii is almost completely constrained by its boundaries.
Even the definition of a ship's hull relies to some extent
on the shape of certain boundaries or design curves.
However, the requirements of these surfaces do not
fully define the influence the boundaries have inside the
surface. In the Coons surfaces mathematical influence
or blending functions are chosen and constrained such
that continuity with other surfaces across the common
boundary can be defined up to any degree.

Although in Coons's earlier paper the emphasis was
on a particular member of the class in which the
boundaries and the blending functions between the
boundaries were parametric cubics, the class is much
more general and boundaries can take any definition
whatsoever. None the less, almost all implementations
and usages of the surfaces have been of this type. The
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choice of a cubic gives the lowest order polynomial which
can describe a space curve and can contain a point of
inflexion, and it would therefore appear to be eminently
suitable for design where continuity up to the first degree
is all that is required. Typical examples of attempts to
use the Coons bicubic patch are in ship design (Hamilton
and Weiss, 1965), car body design (Hogue, 1966) and
aircraft design (Eshleman and Meriwether, 1967, and
Sabin, 1968).

3. Extension of Coons surfaces
One of the advantages of restricting all the boundaries

of the surfaces and their blending functions to be of the
same form is that the surface equation can be put in the
very convenient tensor form

P = uMBM'v'

where for the cubic u = [ u3
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The H functions are the functions of m linearly
independent functions of the parameter u and are subject
to the following constraints:
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and the superscript t indicates the transpose function.
Typically in this notation a term such as (01)u represents
the derivative of the surface taken with respect to u at
the parameter values u = 0; v = 1. Thus this equation
represents a bi-cubic surface defined in terms of its four
corner points (parameter range is 0 to 1), the slopes
along the boundaries at these corner points and the cross
derivative terms (often called twists) at these corners.
Techniques are available for fast evaluation of this form
of equation. The development of this tensor form from
the basic equations depends only on the fact that the
boundaries can be defined as a blending of the boundary
conditions necessary for continuity. However, a slightly
different surface form can be produced by initially
assuming the tensor form of the surface, instead of the
basic form.

Consider first a general curve equation, f(u), which
could serve as a boundary to a surface, defined by m
different coefficients where the general form of a coeffi-
cient is

K,=
dupt

for i = 1, 2, . . . , m, the superscript /?, being the degree
of differentiation applied to the function. Note that the
w,'s need not all be different. The equation of the curve,

/(u), can then be written as a linear combination of these
77i coefficients multiplied by a corresponding blending
function. A blending function must be a function of
a set of m linearly independent functions of the para-
meter M. Hence the equation of the curve may be
written as

Au) = [HlUH2u Hmu]

duPi

for i = 1, 2, . . . , m

The vector H can always be written in terms of its
basic vector (i.e. the m linearly independent functions
of («)) and an m X m constant matrix M. Thus

f(u) = RK= QMK

Extending the argument, we can write the equation of
a surface as

J{uv) = HUKHB'

where Hu = [H{uH2u Hmu]

Hv = [HlVH2v Hnv ]
K =

with the coefficients subject to the conditions

U=°U{

v=vt

and the H functions subject to the constraints

du"< dvqi

1 if/ = i
0 otherwise

Now in the same way as the H vector in the_curve
equation can be put in terms of the basis vector, Hu can
be put in the form uMu where Mu is an m X m square
constant matrix and ffv can be expressed in the form
Mvv' where MD is an n X n square constant matrix. It
is usual in design work to let m = n and the two basis
vectors be the same in which case

Thus

Mu = M'v = M.

J[u, v) = uMBM'v'

It can be seen that this surface form can include
information internal to the surface as well as the boundary
conditions. The next Section shows how this property
can be used to advantage in surface design.

4. Dragging
The most important requirement when providing a

mathematical definition of surfaces for design is to
allow the designer to 'converse' with the surfaces in a
natural manner. Thus it is essential that the equations
involved should not be apparent to the user in any design
operations. An interface has to be provided between
the mathematics and the operations to which a designer
is accustomed; for example he should deal in terms of
points, slopes and lines on the surface. In previous
attempts to interact with Coons' surfaces the user had
been compelled to alter the coefficients describing the
surface equations, regardless of whether these have any
meaning to him. It is felt that with a computer-driven
interactive display the most satisfactory way of providing
the correct interface is to use a light pen or other pointing
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Fig. 1(a). Dragging a quartic curve—position a 

Fig. Kb). Dragging a quartic curve—position b 

Fig. 1(c). Dragging a quartic curve—position c 

device to indicate points to be altered. The designer 
can then proceed to move these points while allowing 
the program to relate alterations in points to altera
tions in surface coefficients. This moulding operation 
is called 'dragging'. With the class of surfaces under 
consideration a number of patches will be joined together 
at common boundaries with continuity across these 
boundaries. T o give the designer control over the 
extent of the change caused by a dragging operation, the 
operation should only alter one surface. However, if 
the constraints on dragging conflict with the continuity 
constraints, then the effect will be transmitted further. 
At most, however, the effect should carry into the 
neighbouring surface. The range of the change will be 
termed the 'effective segment'. 

The constraints which must be made on dragging 
operations are few but important. The first is that 
modifications to the surface should only occur in the 
plane of the display and no display depth coordinates 
should be affected. This virtually means that one is 
designing in two dimensions although if dealing with a 
rotated view of an object all three real dimensions are 
altering. The reasoning behind this constraint is fairly 
obviously that with two-dimensional displays only crude 
control can be provided over changes in depth. This 
constraint is, in fact, easily satisfied owing to the choice 
of surface description. Since the equations are defined 
parametrically the three coordinates can be modified 
independently of each other and the change in depth 
coordinate can always be held at zero. 

The second constraint on dragging is that the effective 
segment should, if possible, retain its character. 
Although this constraint is a subjective quality it can 
by experience be defined more precisely by the following 
conditions: 

(a) For a given dragging operation, the maximum 
distance of the curve from its first position to its 
final position should be small in relation to the 
length of the curve. This is a necessary condition 
for a curve to retain its character. It is important 
to note that intermediate positions of the curve 
should not affect the final position. 

(b) The effective segment should retain its end points 
and end slopes for continuity of the first derivative 
and by definition nothing outside the effective 
segment should alter. 

(c) The deviation from the original curve should be a 
maximum at the dragged point. This condition is 
not so stringent as the others although large 
variations from it cannot be tolerated. 

(d) The deviation from the original curve should be 
of one sign, or in other words, the new curve 
should lie totally on the same side of the original 
curve. 

Since the choice of boundaries for Coons ' patches has 
been almost exclusively cubics it is important to consider 
their capabilities in dragging. The single cubic is com
pletely defined by its two end points and two end para
metric slopes. By condition (b), for a single cubic to 
be an effective segment, the end points and end real slopes 
must remain the same. I t would appear that this 
would allow a scale factor to be applied to the cubic's 
parametric end slope to satisfy the dragging constraints. 
However, it can be shown that, when considering con-
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Fig. 2. Single surface patch before spurting 

8(A) = mw^ 
It is found that when the point being dragged is central 
to the curve the variation from condition (c) is almost 
unnoticeable. When the point being dragged is close 
to the end of a single curve segment the deviation from 
condition (c) becomes unacceptable and some other 
algorithm must be used. It is, however, not enough for 
the end slopes to be changed without changing the end 
points since any other curve to which it is adjacent will 
change in the opposite direction. This will obviously 
contradict condition (d). To satisfy constraint {d) the 
common end point must be changed together with the 
slope at that end point, and hence the effective segment 
becomes two curve segments. Since for dragging pur
poses the two equations will act as a single segment the 
required alteration to the end point and end slope can 
be found by adding a single quartic curve over both 
segments. If the two curves have parametric scale 
factors of r , and r2 (normally bo th 1 for independent 
curves but see Section 5 on surface splitting) then the 
effective parameter value at the join is 

tinuity across boundaries of surface patches, this scale 
factor would have to be applied across the patch. Thus 
dragging a boundary curve in this way would affect the 
opposite boundary. It follows that if the condition is 
enforced that a single curve can be the effective segment, 
the cubic curve is unsatisfactory. 

To allow the dragging of a single curve segment an 
extra degree of freedom is required over the cubic. The 
quartic is the most satisfactory curve type which provides 
this. The extra degree of freedom can be used to satisfy 
the dragging constraints while maintaining the other 
four degrees of freedom in order to satisfy the continuity 
conditions. In practice it is found that all the dragging 
conditions can be satisfied except condition (c): still 
more degrees of freedom are required to ensure that the 
maximum deviation occurs at the dragged point. How
ever, the higher the order of the curve chosen the larger 
the number of points of inflexion which can be introduced 
and the more unsuitable the curve is for design. Using 
the terminology of Section 3 the quartic can be defined 
in terms of its end points, end slopes, and point at 
parameter = i , i.e. 

"(0) 

f(u) = [HlUH2uH3uH4uHsu] 
(1) 
(0). 
(1). 
.00 

where h indicated the parameter at value 
method of differentials 

i . By the 

8/(1/) = 8(0) .H,u + 8 (1) . H2u + 3(0). . H3u 

+ 8(1). . H^u + 8(h) . H5u +/'(«) • S" 

To keep the end points and end slopes constant 

8(0) = 8(1) = 8(0). = 8(1). = 0 

It can also be assumed that 8w = 0 
Hence Sf(u) = 8(A) . Hsu 
Thus the algorithm for dragging the central portion of 
a quartic curve is given by 

?i + r2 

If the same H5 blending function is used as for quartic 
dragging then its value at the end point (parameter up) 
is Hp and at the dragged point is Hd. The change in 
the end point is then given by 

8/1"), = Bf(u)d. 
Hj, 

In a similar way the change in the end slope is given by 

«/'(«), = &M< 

The equation of the quartic surface is given by 

Fig. 3. Surface after splitting showing the effect of dragging 
a corner point 
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Fig. 4. Six patch surface (patch boundaries are displayed 
brighter) 

f(u, v) = uMBM'v' 
- 8 - 8 - 2 2 16 
18 14 5 - 3 - 3 2 

-11 - 5 - 4 1 16 
0 0 1 0 0 
1 0 0 0 0 

where M 

a n d B = 

(00) (01) (00) , (01) , (OA) 
(10) (11) (10) o (11) , (1A) 
(00)„ (01)„ (00) H O ( 0 1 ) „ (OA). 
(10)„ (11)„ (10) B O ( l l ) u „ (1A)„ 

|_(A0) (hi) (h0)B (hl)B (hh) 

where A indicates the parameter at value = \ . It is 
interesting to note tha t by using quart ic boundaries not 
only d o the boundar ies have extra degrees of freedom 
for dragging bu t the surface has a coefficient (AA) which 
can be altered without affecting any neighbouring 
surfaces. Fo r dragging a surface the techniques used 
for dragging curves can be simply extended. 

A single quart ic curve with a central point dragged 
to a n u m b e r of positions is shown in Figs. 1(a), (b) and (c). 

5. Splitting 
The previous section has described a method of 

designing with curves and surfaces while controlling the 
extent of the alteration. In practice, as a design pro
gresses the range of an alteration will become smaller 
and more local. The corresponding technique which can 
be used in designing surfaces with patches is that initially 
the complete design surface is described by a single 
pa tch and hence any dragging will affect the complete 
surface. As the design develops a requirement for 
more flexibility in the surface and a more local area of 
design is felt. T o satisfy this need the surface is 'split' 
a long some line lying on the surface: the result is two 
patches , which are constrained to be continuous across 
their c o m m o n boundary , instead of the original single 
pa tch . The two patches now provide the extra degrees 

of freedom and the local area of influence required for 
further dragging operations. The designer can progress 
in this manner successively splitting patches and sub-
patches and dragging more and more local regions. 

The only constraint on splitting is a simple one: 
identity. In other words, the result of splitting a patch 
into two parts should be that the two sub-patches should 
initially be identical to the single patch. If this is not 
the case the splitting process will not be a convergent 
one. Since the line about which a patch is to be split 
must therefore become a new boundary curve and the 
two new patches should be of the same type as the 
original, this line must be an iso-parameter line on the 
original patch. 

If the split is made along a line of constant parameter, 
u, at value u = r, and the new sub-patch between u = 0 
and u = t represented by 

A', ») 
then v = st 

and / (10) =fitO), / ( l l ) =Atl) 
7,(00) = / ./„(00), 7(01) =t.fu(0\) 
/s(io) =t.fu(t0), /,(ii) =t.fu(ti) 
fsv(oo) = t ./u„(oo),/™(oi) = t .fuM) 
fSB(l0) = t .fuv(t0), fsv(U) = t .fUB(tl) 

If all the other values remain the same as on the global 
patch it can be shown that for the tensor form of the 
surface 

f(s, v) = f(u, v) 

i.e. the two surfaces are identical in their mathematical 
form. It is useful to consider that the new patch is the 
same as the original patch with a scale factor t applied 
in one parametric direction. The residual patch is also 
identical with a scale factor of (1 — t). Fig. 2 shows a 
single surface patch before splitting. In Fig. 3 the 

Fig. 5. Example of irregular splitting of surface 
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Fig. 6. Two patches before joining 

surface has been split and it can be seen that the effect 
of dragging a corner point is localised to a single patch. 
Fig. 4 shows a surface which has been split into six 
patches. The implications of the proof of splitting can 
be quite significant. A very important condition of this 
proof is that all the terms in the tensor must be present. 
In published work on the development of bi-cubic 
surfaces what Coons refers to as the first canonical 
form and the first correction surface have been treated 
separately and then added together to form one surface 
equation. In some work the importance of including 
twist terms in the correction surface has been neglected 
by making them equal to zero (Ferguson, 1963). How
ever, for splitting a surface, since the twist terms of the 
sub-patch at the end of the operation are non-zero, the 
full tensor form must be used. Thus the need for 
splitting has shown that Coons ' canonical and first 
correction surface should always be treated as one 
combined surface. 

Since the constraint of identity of splitting is satisfied 
there is no need to have a rectangular mesh of patches 
describing a surface. It is perfectly possible to split 
sub-patches into several smaller units and so produce 
an irregular surface such as is shown in Fig. 5. This 
capability is extremely important since it truly allows the 
designer to deal with local areas of the design. In a 
region where more detail is required it is possible to have 
more patches and because of the dragging constraints 
modifications will be local to that area. This does not, 
however, stop other regions being treated in a less 
detailed manner. 

6. Joining 
Having illustrated the requirement for splitting patches 

in order to converge on a design, the requirement for 
joining patches should not be neglected. It was stated 
in the last section that the approach to be used in design 
is first to approximate the complete surface with a single 

patch and then to converge towards design satisfaction 
from that point. There are situations though, when it 
is more useful to be able to join surfaces before the 
convergence begins. 

The first of these situations is when the complete 
surface has a discontinuity in slope such as would occur 
at a knuckle or chine on a ship. The line of discontinuity 
is a design constraint in the same way as the overall 
boundaries, and it will always be configured as a patch 
boundary. It is useful in this case, therefore, since the 
influence of one side of the discontinuity on the other is 
minimal, to design both parts separately and join them 
together at a later stage. 

Another situation in which it is more useful to join 
surfaces is when the continuous surface is composed of 
two distinct objects joined by blending surfaces. An 
example of this would be an aircraft fuselage and wing 
with the wing fillet as the blending surface. Although 
this forms one continuous surface it is important that 
the designer should consider the wing separately from the 
fuselage and should leave the blending problem until 
later. 

The problem of joining surfaces is more straight-
foward than that of splitting and the only constraint 
which can be applied is that one of the patches (the 
principal patch) does not change. In splitting surfaces 
it was seen that a patch has associated with it a scale 
factor in each parameter direction relating the surface 
coefficients to a common parametric space. In joining 
surfaces the two parametric spaces of the surfaces are 
distinct and do not have a common factor. The most 
satisfactory solution is found by keeping the scale factor 
in both the principal patch and the subsidiary pa tch 
constant while altering the slopes in the subsidiary 
patch for first order continuity satisfaction. Fig. 7 
illustrates the result of joining the two surface patches 
shown in Fig. 6. 

Fig. 7. Two patches after joining with slope continuity at one 
end of the common boundary 
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7. Conclusions
This paper has described a class of surfaces, based on

those of Coons, suitable for interactive design work.
Techniques have been developed which allow the designer
to modify the surface in a natural way and to introduce
in the design process an implicit definition of the range
of any alteration. Thus the designer can start with a
general concept of his design and as he progresses and
his ideas develop he can converge on his requirements,
introducing more flexibility and detail into local areas.

The type of surface chosen is a bi-quartic as opposed
to the bi-cubic used by previous workers. The choice
of this degree follows from the requirements for dragging
curves without the effect propagating over a number of
patches. Using the bi-quartic it is possible to change
the inside of the surface without affecting any neighbour-
ing patches.

The type of surface described is most useful in applica-
tions where free-form surfaces are present. Where the
surface is entirely constrained by design considerations
there is little creative work to be done. In many

applications, however, such as ship hull design, car body
styling, and blending surface design, the constraints
indicate only the general shape of surface required.
Creative design based on aesthetics, experience, or a
number of empirical rules, is still required in these
applications. It is here that the use of an interactive
display can provide important advantages over tradi-
tional techniques.
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Book review
Sparse Matrix Proceedings, Edited by Ralph A. Willoughby,

1969; 184 pages. (IBM)

This book consists of papers (or more often extended abstracts
thereof) presented at a symposium on sparse matrices and
their applications organised by IBM. The papers may be
divided into four groups, namely those concerned with

(a) Establishing the equations,
(b) Manipulative techniques,
(c) Computational techniques,
(d) Reviewing the field.

The first group contains papers showing how problems in
structural engineering, electrical power system analysis, etc.,
give rise to large sets of linear and nonlinear algebraic equations
involving sparse matrices, and papers in the second group
describe methods of sorting and ordering the equations to
reduce either the matrix bandwidth or the subsequent 'fill-in'
of zero elements when performing an LU decomposition.
Many papers in this group lean heavily upon graph theory
although the most complete and self-contained of these (by
Tewarson) only uses matrix algebra. The papers in the third
group describe essentially programming devices to handle
either the raw or processed matrices. List-processing and bit-
map techniques are discussed and compared and several
papers describe what amount to special-purpose compilers

that determine the non-zero elements in the factors L and U
and then generate a fast program (sometimes at machine-code
level) to compute these and only these elements explicitly.
The fourth group consists of three eminently readable papers
by Wolfe, Orchard-Hays, and Danzig et al., which survey the
field of linear programming and the development of sparse
matrix packages. The final item is the edited transcription of
the panel discussion at which the point was made with some
force that operating systems and manufacturers' software
often prevent efficient implementation of the algorithms des-
cribed by the various authors. The consistency and continuity
of this final piece of reporting is indicative of the trouble taken
by the editor, Ralph Willoughby, in carrying out his task.
Copies of the proceedings may be obtained, while stocks last,
from

Ralph A. Willoughby, Editor,
International Business Machines Corporation,
Thomas J. Watson Research Center,
Post Office Box 218,
Yorktown Heights,
New York 10598,
U. S. A.

and anyone concerned with sparse matrices should take
advantage of this free offer.

C. G. BROYDEN (Colchester)
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