
363

Numerical method for calculating the dynamic
behaviour of a trolley wire overhead contact system
for electric railways

M. R. Abbott
Mathematics Department, Royal Aircraft Establishment, Farnborough, Hampshire

A numerical method is described that has been used for predicting the dynamic behaviour of a
trolley wire overhead contact system when disturbed by the pantograph on the train roof. The
vertical motion of the trolley wire is given by the solution of a fourth order partial differential
equation and that of the pantograph is given by the solution of ordinary differential equations,
these two solutions being linked by the conditions holding at the contact point. Results obtained
from the method have encouraged British RaU to set up a test line of this equipment to see if
a trolley wire can be developed as a cheap alternative to the present more elaborate systems.

(Received September 1969)

The simplest and cheapest type of overhead system is the
trolley wire, in which the contact wire is suspended
directly from springs at widely spaced intervals A, the
span length. The system is depicted diagrammatically
in Fig. 1. In the more complicated systems in present
use the contact wire is attached by droppers at frequent
intervals to a catenary wire; only the catenary wire is
attached at the supports and the contact wire is approxi-
mately horizontal, the structure resembling a series of
suspension bridges.

Mathematical model of a trolley wire system
The contact wire is assumed to behave as a thin heavy

beam under tension. The contact force P acts vertically
and travels along the wire at the constant train speed u;
this force is variable and is to be determined. The
maximum value of the contact force occurs near the
supports and a design of the system is required which
keeps the maximum force down to a reasonable level,
and at the same time keeps the contact force at inter-
mediate positions above zero, to avoid separation
between the head of the pantograph and the wire. In
this work contact is assumed at all times, so that if
separation occurs it is shown by P becoming negative.
However, this has not occurred in any examples.

The vertical motion of the wire is described by the
equation

= P(t)8(x - u t - 4A). (1)

The dependent variable y(x, t) is the upward vertical
displacement of the wire measured from the undisturbed
equilibrium position, taken here as y — yo(x). The
variable x is the along-track coordinate and / is the time.
The quantities p, El and T are the linear density, flexural
rigidity and tension of the wire respectively, fi is a
damping coefficient, S the spring constant of the sup-

porting springs, and P(t) the contact force acting at the
point x = ut + ^A. This equation is in terms of vertical
forces per unit length of the wire, so that forces acting
at a point are represented by delta functions. The shear
force is discontinuous at the contact point x — ut -f iA
and at each of the supports x = rX, r = 0, 1, . . . , m.
Equation (1) is partly hyperbolic and partly parabolic,
or in other words the propagation of disturbances along
the wire is partly by wave motion and partly by diffusion.
The origin of x is taken at a support position, with the
contact point at a mid-span position x = |A at t = 0;
this starting position, together with the assumed initial
conditions given below, is found in numerical tests to
produce very small transients, the required steady forced
oscillation occurring very quickly. The contact point is
taken half a span length from the end x = 0 at t = 0 and
the motion is calculated until the contact point is about
one-and-a-half span lengths from the other end of the
wire at x = wA. Numerical tests show that taking
m — 6 gives results that are a close approximation to
those for a very long length of wire.

The pantograph is represented by the system shown
in Fig. 1. The vertical motion satisfies the equations

+ P(t) + mlg = 0 (2)
and

d2r) dt] (dY drj\
\dt ~ dt)

- rj) - m2g, (3)

where Y and rj are the vertical displacements of the
pantograph head and frame, respectively; mx is the mass
of the pantograph head and m2 that of the frame; y.x is
the damping coefficient for the motion of the head
relative to the frame and /x2 that for the frame motion,
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Fig. 1. Diagrammatic representation of trolley wire system and pantograph

it being assumed here that any vertical motion of the
train roof can be neglected; kx is the constant for the
spring between the head and the frame; P is the force
exerted downwards on the pantograph head by the
contact wire and G is the constant force acting on the
frame from springs on the train roof. The vertical
displacement of the pantograph head is measured from
the horizontal line defined by the undisturbed wire level
at the supports. The displacement of the wire from this
datum is given by the solution y(x, t) of (1), plus the
equilibrium displacement yo(x). The variation of the
latter quantity over a span is given by the solution of

y(iX + ut, t) + + ut) = Y(t). (6)

h l dx* (4)

having y0 = -T-^ = 0 at the supports. For numerical

values of current interest it can be shown that the
solution of (4) at points more than a few feet away from
a support is approximately

where £ is the distance from an adjacent support. But
at the supports y0 = 0, in agreement with the boundary
condition. Thus, y0 is given by the parabolic approxi-
mation for a perfectly flexible wire with small slope plus,
at points more than a foot or so from the supports, a
small constant upward displacement given by the last
term of (5). This displacement has the effect of reducing
the sharpness of the profile change at the supports. If
the finite difference space step Ax in the numerical
solution described below is taken very small, a more
accurate determination of yo(x) is necessary in the
vicinity of the supports.

The contact condition to be satisfied by the solutions
of the contact wire equation and the pantograph equa-
tions is

The initial conditions are taken as P = 0 with no
vertical motion of the pantograph and the wire at rest in
the equilibrium position, so that 7(0) = yo(%X). The
motion is started by applying a step change of G at t — 0
from G = (mx + m2)g, i.e. just sufficient to balance the
weight of the pantograph, to G = (m, + m2)g + P*,
where P% is a constant force. The effect of this step
change is transmitted to the wire through the two parts
of the pantograph. The wire oscillates and the contact
force varies as the pantograph travels along the wire, and
the behaviour of Y and P in the eventual steady oscilla-
tion is the important result for assessing the performance.

Outline of method of solution
The solution is obtained by numerical integration of

(1), (2) and (3) through time steps A/, using the following
sequence of operations at each new pivotal value of /:

(a) assume P{t) = P(t — A/);
(b) obtain the numerical solution of the wire equa-

tion (1) at time t for the assumed value of P{t);
(c) obtain the solution of the pantograph equations

at time t for the assumed value of P(t) [this
calculation is completely independent of step (b)
except for using the same value of P(/)]—the
contact condition will not be satisfied;

(d) change P(t) to P(t) + 1 lbf and repeat steps (b)
and (c)—again the contact condition will not be
satisfied;

(e) from the results of these two trial solutions obtain
by linear interpolation or extrapolation a third and
final value of P{t) which satisfies the contact
condition (6) exactly;

(/) repeat steps (b) and (c) to obtain the required
solution at time /.
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Dynamic behaviour of a trolley wire overhead contact system 365

The solution can then be found at time t + A/, and so
on, through as many time steps as required.

Step (b) is described in the following section. Step (c)
uses the trapezium rule to integrate (2) and (3) from
/ — Af to /; this is straightforward. Step (e) makes use
of the two values of the separation

y(\\ + ut, 0 + JoQA + irf) - Y{t)

found in the trial solutions for the two assumed values
of P(f), and depends on the fact that this separation is a
linear function of P as the system is linear.

Numerical solution of the partial differential equation
Between adjacent supports or, in the span acted on by

the pantograph, between the contact point and the
neighbouring supports, the vertical motion of the wire
is given by

Hy
(7)

A fully-implicit method with backward /-differences
permits the point forces at the supports and the contact
point to be included very simply. Part of the x, t plane
is shown in Fig. 2: n + 1 pivotal points are introduced
in the x-direction, labelled from 0 to n and Ax apart, in
such a way that supports occur at pivotal points. The
finite difference solution yh i = 0(l)«, at time t is to be
determined from the already computed solution at time
t — Ar, a, say, and from that at time t — 2Af, b-{ say.
The finite difference steps are chosen to satisfy

Ax = u&t, (8)

to ensure that the contact point always coincides with a
pivotal point.

We consider first the finite difference equations at

points neither at nor adjacent to the point forces. The
fully-implicit finite difference approximation of (7) is
taken as

>, - Idj + bj

- 4y,-_

- T (Ax)2

analogous to the fully-implicit finite difference repre-
sentation of the one-dimensional heat flow equation.
This equation in general relates five unknown values of
yh and can be written for brevity as
coJ;-2 + CiJ'i-i + ciyi •+" ci7;+i + coyi+2 =fai -\-fbi

= dh say. (10)

The constants c0, c,, c2,/and/' depend on the coefficients
of (9) and the quantity d, depends also on the previous
solutions dj and bt.

This fully-implicit finite difference scheme can be
proved to be unconditionally stable by substituting
exp ( V ~ 1KX)£J> where t — j At, for yh a, and bt in (9).
(We write V—T to avoid confusion with the use of i as
the subscript in yh etc.) This substitution leads to a
quadratic for £ and it can be shown that |£| < 1 for all
values of the ratio Ax: A?.

An alternative scheme with reduced truncation error
uses central /-differences and represents 7>4y/l)x4 and
^y/lx2 in terms of the a's. But this method is not stable
for a sufficiently wide range of Ax: At. In view of (8) it
is important to have a method that is free of stability
restrictions.

t-At

t -

Fig. 2. x, t plane
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366 M. R. Abbott

A third possible scheme, resembling the Crank-
Nicolson method for the one-dimensional heat flow
equation, represents 7i4yj7ix4 and 7)2y/'dx2 as the mean of
the finite difference approximations at t and t — 2At,
that is in terms of the y s and b's, respectively. But this
method leads to difficulties when considering the effects
of the point forces, and is discarded in favour of the
fully-implicit representation.

The next step is to take account of the contact and
support forces. At the points of application of these:

(11)
7)y y

y, r— and;—^ are continuous,
•r' 7>x 7)x2

and the discontinuity in shear force satisfies

R3vl
El TT-3 = — Sy at a support,

= P at the contact point,

= P — Sy at the contact point when
it coincides with a support.

(12)

Consider first a support, i = s, not coinciding with the
contact point, i = p. Fictitious values of y, are intro-
duced: y*s + \, y*+2 associated with the solution in
x Sis Ax and y* -2, yf-i associated with the solution in
x ^ sAx; see Fig. 3. The fictitious values are obtained
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Fig. 3. Mesh points and values in finite difference formulae at
i = s. Fictitious values are starred

from the finite difference expressions for the internal
boundary conditions (11) and (12). In fact, the con-
tinuity of Tsyfix and ̂ yfdx2, expressed by the 3-point
formulae

ys+l - -i =y*+i

and

gives yf+l=ys+1andy*_1=ys_l. (13)

The first condition of (11) has been taken into account
by using the common symbol ys. Hence, points
i = s — 1, s + 1 adjacent to a support contribute an
equation conforming to the general form (10), in all
respects. At a support position i = s w e have for the
solution at x = sAx—, that is just behind the contact
point,

Coy*-2 + Ciys-i + cxys + ctys+i + coy*+2 = ds, (14)

and for the solution at x = sA.x+, that is just ahead of
the contact point,

c0J*-2 + Ws-x + c2ys + ciys+i + cQys+2 = ds. (15)

Also, the first condition of (12), using the 5-point formula
for ^y/Ttx3 on each side of the discontinuity at i = s,
gives

Vs+2

-?•
Vs-i —2ys-:

4 ( A J C ) 3

or

where
y,-2 - y*-2 -

= - Sys,

= 2c(-Sys) (16)

c = (Ax)31 EL (17)

Multiplying (16) by c0 and adding to the sum of (14)
and (15) enables us to eliminate the remaining fictitious
values, obtaining

c0ys-2 + ctys-i + (c2 + cc0S)ys

+ c0ys+2 = ds.
ctys+i

(18)

Therefore the effect of each support is to add a term
cc0S to the coefficient of y, in the relevant finite difference
equation.

Similarly, at the contact point i = p relations (13)
to (17) hold with s replaced by p and the right-hand side
of (16) replaced by 2cP(t). Hence the finite difference
equation at the contact point is

i + c2yp + c, yp+1 + coyp+2

= dp, say. (19)

Therefore the effect of the contact force is to add a term
cc0P to the right side of the basic equation (10) for this
one point. At time / + A; the following equation is the
one modified in this way, and so on.

Further, by virtue of (13), it can be verified that these
effects continue to apply when the contact point coincides
with or is adjacent to a support. The point forces are

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/363/540347 by guest on 19 April 2024



Dynamic behaviour of a trolley wire overhead contact system 367

thus taken account of very simply. In fact it can be
shown from the values of the c's that the finite difference
approximations used above are equivalent to spreading
the point forces P and —Sy over one space step Ax, so
that there is a distributed force P/Ax per unit length of
the wire over a total length Ax from pAx — ±Ax to
pAx + iAx; and similarly for the spring forces at the
supports.

The n -\- 1 finite difference equations can be written

Cy = d (20)

at each value of t, where y is the column vector of the
required finite difference solution and d is the column
vector formed by the known values of the dt. The end
conditions are taken as

y-2 = y-i = = o. (21)

The matrix C is symmetric and quin-diagonal, the non-
zero elements in each row are in general

Co, cu c2, cu c0;

but for a pivotal point coinciding with a support (e.g.
every 36th) the non-zero elements in the row are

c0, cu c2 + cc0S, cu c0.

There are obvious differences in the first two and final

two rows of C. In practice the order of C may be many
hundred.

Equation (20) is solved by factorising C into a lower
triangular matrix L and an upper triangular matrix U,
each having three non-zero diagonals. Since C is
independent of t this factorisation is only required at the
start of a calculation, the elements of L and U being
stored; this permits the solution of (20) to be obtained
quickly at each pivotal value of r for the various values
of P.

In summary, the method of this section gives the finite
difference solution of the wire equation at time t for a
specified contact force. Two trial solutions and a final
solution are required at each pivotal value of t.

Application and extensions
About forty examples have been computed for British

Rail, to examine the effects of changing the various
parameters of the wire and pantograph at selected train
speeds. These preliminary results were encouraging and
British Rail have taken over the computer program and
examined further cases as well as setting up a full scale
test line of this equipment. This account concentrates
on the basic numerical method, and just one example is
given in Fig. 4. This shows how quickly the steady

0-2

Fig. 4. Numerical results for a trolley wire system
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368 M. R. Abbott

forced oscillation is set up with the selected starting
position and initial conditions.

The values of the constants in this example are:

p = 0-644 lb/ft, El = 600 lbf ft2,
T = 4,000 lbf, IM = 0 • 002 lbf s/ft,
S = 240 lbf/ft, A = 160 ft,
M = 110ft/s(=75mile/h),

m, = 20 lb, m2 = 38 lb,
ix i = 9 lbf s/ft, /t2 = 0 • 2 lbf s/ft,
fc, = 560 lbf/ft, G = 78 lbf;

using Ax = 3 • 33 ft, A/ = 0 • 033 s.

The numerical method has been extended to examine
ways of reducing the peak value of the contact force
occurring near the supports. For example, the use of a
pantograph comprising three masses instead of two, with
a very light head mass. Also, the approximate effect has
been computed of smoothing the equilibrium wire
profile at the supports by spreaders, and of the use of
double springs at the supports separated by a few feet in
the along-track direction. It requires only a minor
change to the program to include springs at two or more

adjacent mesh points, as just the main diagonal of the
matrix C has to be changed. Also, a non linear situation
has been examined approximately, in which the spring
constant S is variable and depends on the local displace-
ment of the wire. Finally, the effect of multiple panto-
graphs can be obtained; this just requires additional trial
solutions.

The present more complicated type of overhead system
in which the contact wire is suspended by droppers from
a catenary wire can be approximated by a related pro-
gram in which, following Gilbert and Davies (1966), the
contact wire is assumed to be suspended from a con-
tinuous elastic support of given modulus, which varies
with x. The details of the catenary, droppers, main
supports, and auxiliary catenary and stitch wires, if any
are not included explicitly, but enter implicitly through
the value of the modulus of the elastic support, which is
a periodic function with wave length equal to the span
length to be determined from static tests or a subsidiary
calculation. The term SSj;S(;t — rX) in (1) is now
replaced by S(x)y and in the finite difference representa-
tion there is a spring force at each pivotal point. Further
details of this case are given in Abbott (1967). An
example for a simple catenary system is shown in Fig. 5.

0-8
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Fig. 5. Numerical results for a catenary system
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