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Numerical solution of unstable initial value
problems by invariant imbedding*

Melvin R. Scott

Sandia Corporation, Albuquerque, New Mexico 87115, USA

This paper shows how a generalised Ricatti transformation, which grew out of the study of invariant
imbedding, may be used to convert certain unstable linear second order initial value problems into
equivalent initial value problems which are often quite stable.

(Received September 1969)

1. Introduction

The method of invariant imbedding was originally
developed on a ‘particle’ counting basis for investigating
the reflection and transmission functions of radiative
transfer and neutron transport (Wing, 1962). Later it
was recognised that the imbedding involved a perturba-
tion on the ‘size’ of the system. This led to more of a
‘mechanistic’ approach to the procedure, and allowed
the conversion of two-point boundary problems into
initial value problems independent of the physical origin
of the differential equations under consideration (Bellman
and Kalaba, 1961). In the process of numerical experi-
mentation, it was observed that the Ricatti equations of
invariant imbedding are generally quite stable. Several
papers have appeared which use this fact to convert
boundary value problems into stable initial value
problems (Bellman, Kagiwada and Kalaba, 1966 and
1967; Scott, 1969). In this paper we will show how a
generalised Ricatti transformation, which grew out of
the study of invariant imbedding, may be used to convert
certain unstable linear second order initial value problems
into equivalent initial value problems which are often
quite stable. In addition, we will discuss the applica-
bility of backward integration to certain types of unstable
problems.

There are several different cases in which initial value
methods are either directly applicable, undesirable, or
must be slightly modified. The direct forward integra-
tion is stable when the growth of the wanted solution is
the same or greater than the growth of the dominant
complementary solution. If it happens that both solu-
tions of the homogeneous equation rise faster than or
cdecrease slower than the true solution, then backward
integration may be more appropriate, since both comple-
mentary solutions then decrease faster or rise slower than
the solution which is sought and, hence, usually cause no
trouble. The case that usually causes the most trouble
is where the solution growth is between the comple-
mentary solutions. Here neither forward nor backward
integration is stable, and very special techniques may be
required.

Other excellent approaches for solving unstable initial
value problems which use boundary value techniques are
discussed in Fox and Mitchell (1957) and Greenspan

* This work was supported by the U.S. Atomic Energy Commission.

(1967). Although the problems of stability are often
eliminated in the boundary value techniques, the
questions of existence and uniqueness may be trouble-
some. For example, the initial value problem

'+ 7wty =0, (1.1
¥(0) =0, (1.2)
y{0) =1, (1.3)

has a unique solution over any finite interval, while the
boundary value problems defined by (1.1), (1.2) and
1) =0, (1.4
and (1.1), (1.2) and
yy =1, 1.5

have, respectively, infinitely many solutions and no
solution. Thus it is clear that, when using boundary
value techniques, care must be exercised.

2. Formal results

We shall first consider two first-order linear equations
of the form

w(2) = a@u(z) + b + o), (1)

—v'(2)= c(2)u(z) + d(z)v(z) + f(2), 2.2)

with the initial conditions
u0) = «, v(0) = B, 2.3)

where, for simplicity, « and B are real constants and the
functions a, b, ¢, d, e, and f are continuous and real
valued on (0, ).

From the method of invariant imbedding, we have the
relations

u(z) = Ry(z)v(z) + «Ry(2) + Ri(2), (2.4)
B = Q:(@(z) + «Q,(2) + O3(2)-  (2.5)

The reader is referred to Nelson and Scott (1969) for a
physical motivation of the above relations. We shall
now derive differential equations for the functions R,(z),
Ry(2), Ry(2), 0,(2), O(2), and Q4(z). If we differentiate
in (2.4) and use (2.1) and (2.2), we obtain
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v(2HR{(2) — b(z) — a(D)R(2) — d(2)Ry(z) — c(2)RY(2)}
+ a{R3(z) — c(2)Ri(2)RA2) — a(z)Ry(2)}
+ {R3(2) — c(2)R((2)Ry(2) — R(2)/(2) — e(2)
— a(z)R3(2)} = 0. (2.6)

Equation (2.4) will be satisfied if each term in the

braces is set equal to zero. That is,
R{(2) = b(2) + [a(z) + d(@)]R,(2) + c(2)R}(2), @7
Ry(z) = [a(2) + c(2)R\(2)]Rx(2), (2.8)

Ry(z) = [a(2) + c(2)Ri(D)]R3(2) + f(2)R((2) + e(2). 2.9)

Suitable initial conditions, suggested by (2.3) and (2.4),
are

The differential equations satisfied by Q,(z), Q.(z),
and Q,(z) (derived in an analogous fashion) are

01(2) = [d(2) + c(2)R\(2)]1Q\(2), 2.11)

01(2) = c(2)Q@1(2)R(2), (2.12)

03(2) = [c(2)Rs(2) + f(2)]Q1(2), (2.13)
with the suitable initial conditions

0:(0) = 1, 0(0) = 0, 05(0) = 0. (2.14)

It is easy to show that the above process does indeed
solve the original linear problem. Define functions #i(z)
and ¥(z) by the relations

#(z) = Ry(2)i(z) + aRy(2) + Ry(2),  (2.15)
B = 0i(2)3(2) + aQy(z) + Qs5(2),  (2.16)

where Ry(2), Rx(2), Rsy(2), Q,(2), Q(2), and Qs(2) satisfy
the differential equations (2.7-2.14). By differentiating
in (2.15) and (2.16) and using (2.7-2.14), we see that the
functions #(z) and #(z) satisfy (2.1-2.3).

Thus our algorithm involves solving (2.7-2.14) and
then using (2.4) and (2.5) to get u(z) and v(z). At first
sight it appears that we are going to a great deal of effort;
however, as we shall see in the next section, the equations
defined by (2.7-2.14) are quite stable for many problems
which are unstable as classical initial value problems.
In addition, we see that once we have solved (2.7-2.14),
we can solve (2.1) and (2.2) for various values of « and B

by using (2.4) and (2.5).
Depending on the form of the initial conditions in (2.3),
we may wish to write (2.4) and (2.5) in the form

uz) = S)(Duz) + BSH(2) + Si(2), 2.17)
a = Ti(2)u(z) + BTy(2) + Tx(2). (2.13)

The differential equations satisfied by the S and T
functions are

—8i(@) = c(2) + [a(2) + d(2)]S\(2) + b(2)ST(2),
(2.19)

—82(2) = [d(2) + b(2)S\(2)]55(2), (2.20)
—83(2) = [d(2) + b(@)S(2)]S5(2) + e(2)S1(2) + f(2),

(2.21)

—Ti(z) = [a(z) + b(2)S1(2)]T(2), (222

—Tx(z2) = b(DT(2)S(2), (2.23)

—T3(2) = [K(2)Sx(2) + e(2)]T(2), (2249
with the initial conditions

S§,(0) = 0, S$,(0) =1, S3(0) = 0, (2.25)

T(0) = 1, T,(0) = 0, T5(0) = 0. (2.26)

In order to apply the above technique to second-order
equations, we first convert the second-order equation
into two first-order equations and then apply the method
of invariant imbedding as described above.

3. Numerical results

In order to illustrate the advantage of the invariant
imbedding over the classical technique, we shall consider
two examples of unstable initial value problems.

Example 1: Our first example (also solved in Greenspan
(1967) using boundary value techniques) is

y'(2) — (22 — Dy(z) =0, (3.1)
¥0) =1, y(0) = 0. (3.2)
The general solution of (3.1) is given by

Wz) = Ae=*P + Be=#P [ edt (.3)
()
and with the initial conditions (3.2), the desired solution

Table 1
y(2) INVARIANT CLASSICAL BACKWARD
z EXACT IMBEDDING INITIAL VALUE INTEGRATION
0 1-0 1-0 1-0 1-0
1 6-065307 — 01 6-065307 — 01 6-065307 — 01 6-065306 — 01
2 1-353353 — 01 1-353353 —01 1-353353 — 01 1-353353 — 01
3 1-110900 — 02 1-110900 — 02 1-110900 — 02 1-110900 — 02
4 3-354626 — 04 3-354626 — 04 3-354648 — 02 3-354627 — 02
5 3-726653 — 06 3-726653 — 06 3-879808 — 06 3-726653 — 06
6 1-522998 — 08 1-522998 — 08 3-103631 — 05 1-522998 — 08
7 2-289735 — 11 2-289735 — 11 1-761642 — 02 2-289736 — 11
8 1-266417 — 14 1-266417 — 14 2-780004 — 01 1-266417 — 14
9 2-576757 — 18 2-576758 — 18 1-212432 + 05 2-576759 — 18
10 1-928750 — 22 1-928752 — 22 1-456040 4 09 1-928756 — 22
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is
¥(z) = e=#P, (3.4)

which is clearly the minimal solution. Thus standard
initial value techniques will have difficulty in accurately
approximating the solution over an interval of any
appreciable length. Also, since e~*/2 is dominant with
decreasing z, a backward integration scheme should be
feasible.

In order to apply the invariant imbedding approach,
we first convert (3.1) into the two first-order equations

u'(z) = %(2), (3.5)
—v'(z) = — (22 — Du(z), (3.6)
u(0) = 1, v(0) = 0, (3.7

where #(z) = y(z) and v(z) = y’(z). There are infinitely
many ways to convert a second-order equation into a
pair of first-order equations. It is possible that some
ways may be better than others for numerical computa-
tion.

The form of the initial conditions in (3.2) and the
coefficients in (3.5) and (3.6) indicate that the relations
(2.17) and (2.18) are most convenient and, since e(z) and
f(2) are identically zero, the functions S5(z) and Ts(z)
are identically zero. In addition, since B = v(0) = 0,
there is no need to solve for S,(z) and T(z). Thus our
algorithm for this example becomes

—Si(@) =— (22— 1) +S}2), 5,(0) =0, (3.8)

—Ti(z2) = $i(2)T(2), T,(0) = 1, (3.9)
or

—8i(@) = — (@ — 1) + S}(2), $,(0) = 0, (3.10)

uw'(z) = S1(2)u(z), u(0) = 1. 3.11)
For the backward integration scheme, we take
W2)=1,y(2)=0,Z> 10, (3.12)

and integrate backward from z=Z to z= 00 and
normalise all tabulated values by y(0). Repeat for
Z’ > Z and compare answers. However, unless the
asymptotic form of the solution is known, the backward

integration scheme may be difficult to apply. For
example, a suitable set of starting values such as (3.12)
may not be easy to obtain and, in addition, the process
may have to be repeated for several values of Z’.

The original problem (3.1-3.2), the second of the
invariant imbedding algorithms (3.10-3.11), and the
backward integration scheme were solved on a CDC-6600
using a fourth-order Runge-Kutta integration scheme
with Az = 0-005. The results are displayed in Table 1,
and clearly demonstrate the advantage of the invariant
imbedding and the backward integration schemes.

Example 2: Our last example was discussed very briefly
in Fox and Mitchell (1957). The problem is

Y — 11y(z) — 129(2) + 22ez =0, (3.13)
¥(0) =1,y (0) =1, (3.14)
which we write in the form
w(z) = v(2), 3.15)
—v'(z) = — 12u(z) — 11v(z) + 22e7, (3.16)
u(0) = 1, »(0) = 1. 3.17
The general solution is given by

Wz) = Ae—2 4 Be'?s 4 7, (3.18)

and the initial conditions yield the solution
Wz) = e~ 3.19

This problem is difficult to handle with any initial
value technique on the original equation, since the exact
solution e grows at a rate between e~ and e!%2. With
forward integration, e!'? will eventually take over while
e~ % grows on backward integration overtaking e?, which
decreases on backward integration.

Our relations in this case will be (2.4) and (2.5), and
this leads to the equations defined by (2.7-2.14). The
results of solving (3.13-3.14) and (2.7-2.14) are displayed
in Table 2. Although both techniques are beginning to
show deterioration, the invariant imbedding is consider-
ably more stable. This particular problem would

Table 2
SINGLE DOUBLE SINGLE DOUBLE
PRECISION PRECISION PRECISION PRECISION
¥(z) INVARIANT INVARIANT CLASSICAL CLASSICAL
z EXACT IMBEDDING IMBEDDING INITIAL VALUE INITIAL VALUE
0-0 1-0 1-0 1-0 1-0 1-0
0-2 1:221403 1-221403 1-221403 1-221403 1-221403
0-4 1-491825 1-491825 1-491825 1-491825 1-491825
0-6 1-822119 1-822119 1-822119 1-822119 1-822119
0-8 2-225541 2-225541 2-225541 2-225539 2-225539
1-0 2-718282 2-718282 2-718282 2-718258 2-718258
1-2 3-320117 3-320118 3-320117 3-319851 3-319851
1-4 4-055200 4-055211 4-055200 4-052266 4-052266
1-6 4-953032 4-953166 4-953035 4-920689 4-920691
1-8 6-049647 6-051146 6-049675 5-693119 5-693140
2-0 7-389056 7-407488 7-389360 3-458983 3-459217
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probably be best solved by using an implicit finite
difference boundary technique.

5. Conclusions

The process described above may also be applied to
N-dimensional equations. For a discussion of the
application of invariant imbedding to N-dimensional
systems, the reader is referred to Scott (1969).

‘We have shown that the method of invariant imbedding
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Book review

Machine Intelligence, Vol. 5, Edited by B. Melzer and
D. Michie, 588 pages. (Edinburgh University Press,
£7-00)

This volume is the proceedings of the Fifth Annual Machine
Intelligence Workshop held at Edinburgh University in the
autumn of 1969. Readers of the proceedings of previous
Workshops will know that the term ‘Machine Intelligence’ is
taken to encompass a wide range of computing activities.
What is important to readers of 7he Computer Journal is that
these Workshops have become one of the most notable plat-
forms for presenting the latest advances in the Theory of
Programming. It is a strange fact that in the vast number of
computing meetings held all over the world papers on the
fundamentals of programming are scarce. Yet it is on
programming that most computing activity basically depends.

There are four accepted ways of approaching programming
theory—via recursive function theory, algebra, set theory or
logic. All four methods were represented in this Workshop,
which definitely counts as a vintage year. R. Milner
associates recursively enumerable sets with program schemas,
he shows that various forms of equivalence between schemas
can be examined by comparing these sets. P. J. Landin
gives a new, and original, treatment of program execution by
using Universal Algebra. The successive states of a computa-
tion caused by one machine operation after another, and the
succession of instructions in the program which cause the
machine operation are linked in an interesting way, which
Landin illustrates by an ingenious analogy. R. M.
Burstall gives an axiomatic specification of a sub-set of ALGOL
60. Here the constructs and data operations of the language
are described by axioms. Such descriptions of the semantics
of programming languages are likely to become of practical
significance in the future. Two authors who have done much

to pioneer the logical description of the properties of programs,
Z. Manna and J. McCarthy, formalise the properties of
recursive programs and show the effect of different evaluation
rules. D. Park in an important new paper shows how the
functions computed by programs are associated with the
recursive definition of sets. His approach uses the step-by-
step nature of program execution to carry out inductive proofs
of program properties. It is the step-by-step action of com-
putation which so sharply distinguishes programming and
mathematical notation, here is mathematics which goes to the
heart of the problem. This paper must be read.

While the papers on programming alone make this book
worth buying there are, in fact, 24 further papers covering
topics like theorem proving, heuristics, and pattern recogni-
tion. There is space to mention only a few of the contribu-
tions. K. A. Paton and D. Rutovitz give detailed
reports of the progress of work being done on a project for
automatic chromosome analysis, which is sponsored by the
Medical Research Council. Progress is steady, and as in
previous reports from this group, it is seen that success is due
to carefully adapting techniques to the specific problem. The
Department of Machine Intelligence at Edinburgh itself is
much in evidence, and their strong interest in heuristics has
now moved towards feedback situations involving robots.
They seem to be converging on the related problems from
many angles, and are using techniques ranging from logic to
the construction of mechanical arms. Readers interested in
Theorem Proving will have to look at this book for themselves,
it will be well worthwhile. An additional pleasure is the
opportunity to read a paper written by A. M. Turing in
1947, now published for the first time, entitled ‘Intelligent
Machinery’. This paper gives a sobering measure of progress
in 23 years, but is also inspiring.

J. J. FLoreNTIN (London)
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