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Step size adjustment at discontinuities for
fourth order Runge-Kutta methods

P. G. O'Regan

Department of Electrical Engineering, University College, Cork, Ireland

With discontinuities in the differential equations of an initial value problem it is in general
necessary to alter the effective step size to evaluate the variables at the point of discontinuity.
Since this latter point is often determined by the values of some or all of the dependent variables
it would normally be observed by a checking procedure just prior to updating these dependent
variables. A method of calculating the fraction of the interval to the point of discontinuity
and of updating the values of the dependent variables to this point is given. The method which
will be subsequently referred to as the Alpha Method is third order, and no new evaluation of
the function is required. It compares favourably both for computational time and programming
with the normal method of continuing the tabulation beyond the discontinuity and employing
inverse interpolation.

(Received November 1969)

1. Mathematical discussion
Discontinuities can occur in the differential equations of
initial value problems for a number of reasons. The
closing or opening of a switch can lead to a completely
new set of differential equations and if the position of
this switch is a function of one or more of the dependent
variables these discontinuities cannot be anticipated by
any simple procedure. Saturation and backlash can also
lead to discontinuities. When using Runge-Kutta
formulae to integrate the differential equations a constant
step size (hi) would be employed until a checking pro-
cedure indicates that the discontinuity occurs in the
present interval of integration. This checking procedure
would normally occur at the end of the functional
calculations but prior to the updating of the dependent
variables. When a point of discontinuity occurs within
an interval it is necessary to:

1. Determine the fraction a. of the step h along the
independent variable to the point of the discon-
tinuity, and

2. Update the dependent variables to this point.

If the set of m simultaneous first order differential
equations are

dy, =

dx '
i = 1, 2, . . . , m (1)

and the condition for discontinuity is

<Kx,ylty2...yj = o (2)

the problem is to find the intersection of equation (2)
with the solution to equation (1). A single first order
differential equation will be considered and, apart from
error analysis, the extension to the system in equation (1)
is then straightforward. Equations (1) and (2) with
m = 1 and writing y and / in place of yx and fx,
respectively become

(3)

and
<Kx, y) = 0 (4)

The Taylor series for y(xn + ah) can be written in the
form

y(xn + och) = y(x) Df

where

= f(x,y)

/„ =f(xn,yn)

yn = y(xn)

(6)

and |n indicates evaluation at the point (xn, yn).
When the Generalised Fourth Order Runge-Kutta

method is applied to (3) the relevant equations are
4

s
where the PF,'s are constants and

K, = hf(xn + a,h, y,
i - i

jt—\

(7)

(8)

The parameter a, = 0 and the other parameters are
selected so that:

1. Equations (7) and (5) with a = 1 match up to and
including terms in h4.

2. The parameters are simple with many of them zero
as in the Classical Runge Method or a bound of the
error term is minimised as in Ralstons Method or
some other desirable feature is introduced.
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It will be assumed that this selection has been carried
out. Now suppose that the intersection between (3)
and (4) occurs between xn and xn+1 and furthermore
that a trial yn+1 must be computed before the test for
detection of the intersection can be applied. (Normally
it would be sufficient to compare the signs of <f>(xn, yn)
and <f>(xn+,, yn+0.) Hence the K,'s have been evaluated
and (7) must be replaced by

O'Regan

while for Ralstons Method (see Ralston, 1962; Ralston,

y(xn
/ - i

A,K, (9)

where the A;'s are new parameters which are functions of
a(Lim Ai = W^) so that (9) and (5) match as accurately
(Lim Ai = Wi)

as possible for all values of a. Since there are four free
A-t parameters the match can be accurate up to and
including terms in h3 (hence error term of 0(h4)) and the
equations for the A,'s then are:

1 1
a 3
~2

1
a4

1
0 a
0 a

LO 0
(10)

These equations when inverted can be written in the
form

A,
A2

A3

A4

a.
<x2/2

<x3/3

<x3/6

Ai

A2

A3

A4

•1

0
0

.0

where wi th

D = <x3(<x3 — <x2)(a2£42

the Cjj coefficients can
sequence

C 4 2 = (a 2 £ 3 2 i

C43 = {«3(«3

c32 —

2(^4

C\2 Ci3~
«^22 '-'23

^32 *^33

c42 c43_

+ a3^43) — a2i

be evaluated

I2D

a

a 2

a 3

932a4(o

in the

- «j) - 2«2)832}/6JD

?42 + «3i843]
ID

— a («

(11)

:4 — a2)

(12)

following

- a 2 )

6D

C22 = + l/a2(£ — <x3C32 — «4^42)

C23 = — l/a2(a3C3 3 + a4C43)

O j 2 — — V. 22 i~ ^32 ~~t ^ 4 2 /

C\3 = — (C23 4" C33 + C43) (13)

As an example in the case of the Classical Runge Method
(a2 = a3 = j921 = j832 = 1/2, a4 = jS43 = 1, all other
J3y = 0) the Coefficient Matrix in (11) becomes:

• 1

0
0

.0

- 3 / 2
1
1

- 1 / 2

2/3-
- 2 / 3
- 2 / 3

2/3-

1965) it is:

'1
0
0
.0

-1-42715746
-2-31621878

4-25693059
-0-51355434

0-60191774
1-76473812

— 3 05139499
0-68473912J

Equation (9) can now be written in the form

y(xn + ah) = yn+ .£ K, .S Ca^t + 0(«/i<)

(15)

(16)

if Cu = \ and C21 = C31 = C41 = 0. Equation (16)
can in turn be written in the form:

y(xn + ah) =yn

KiCi2 + a? S K,CI3 + e4 (17)

where e4 is the error term containing (a/1)4 and higher
terms. Clearly since (17) and (5) match for terms up to
and including terms in a3 the coefficients of the powers
of a must be identical and so

Kx = 0(h)

and

(18)
1 = 1

Assuming ^ ^ 0 it is possible to rewrite (17) in the form

a = A - Bcc2 - Co? - ulK, (19)

where

2} = - i
A
-i 2 Kfin
A, /=1

c = 11 s Jf,Q3
Ai i=l

= 0(/0

= 0(h2) (20)

and neglecting the —e4IKx term a solution to (19) can be
written in the form

a = A - BA* + (2B2 - QA3 - 5A*B(B* - C)
- 3C2) + 0(/J5) (21)

where the terms in this solution are sequentially 0(1),
0(h), 0(/J2), . . . This solution is explicit only if
y(xn _|_ ah) is independent of a, i.e. if the discontinuity
occurs at

y = yd (22)

where yd is a constant whereupon

(14)

Also equation (21) cannot be applied if Kx = 0 and as
will be illustrated in the example in Section 3 it suffers
from the serious disadvantage that it is not always
rapidly convergent. Hence it is recommended that (17)
be solved by an iterative procedure and if Newton's
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method is employed the iteration equation is

yn — y(*n + ajh) + Ktaj + Pa) + Qa )

where

-hm(<xj)

P =

3Q<x]
(23)

KjCi2

miccj) — j
CIX

and y(xn +

Q = .S K,C,3

Wbx

<xjh) is obtained by solving

<f>{xn + ah, y(xn •+- ah)} = 0

(24)

(25)

(26)

with a = ay. The initial value a0 for a can be obtained
from the relation

«o = fan, yn)/{<Kxn, yn) - <j>(xn+„ yn+,)} (27)

When the iterative procedure in (23) converges to ae
(i.e. Lim a,- = as) then because the error e4 in (17) is

j = > CO

neglected there is an error ea in the estimate of a.
If the correct value of a is a, then

(28)= a, — ae

(29)

Since ae satisfies (17) with e4 neglected

y(xn + aeh) =yn + aeKx + a\P + a\Q

and since a, satisfies (17)

y(xn + a,h) = yn + a,K{ + a)P + a)Q + e4

(30)

Subtracting (29) from (30) using (25), (28) and the Mean
Value Theorem and rearranging yields

= a, — a. =

(31)

where -q lies between a, and ae. Neglecting terms of
0(/z2) in the denominator of (31) then gives

ejh

~fn
(32)

which shows that the error in a is normally 0(/i3) but can
get large if </>(x, y) = 0 has the same slope as the differ-
ential equation in the neighbourhood of the intersection
point. The error ex in the x coordinate of the inter-
section point is

= hea (33)

and if (26) is employed to find y then the resulting error
in the y coordinate is

ey = heam(ri) = (34)

If (17) is employed to find y then the expression for ey is
again that of (34). It should perhaps be pointed out that
in a system of equations such as (1), if some of the
variables had no influence on the point of intersection

then these variables would have to be evaluated using (17).
With the aid of Ralston (1965) it can be shown that

(neglecting terms in hs and higher order terms)

P = [«4 - 4(4*2

l2A3 + (a2p42

+ [a4 - 24a2p32P4iA4]f2Df (35)

Since the At quantities in (35) can by means of (11) be
replaced by third degree polynomials in a, e4 is clearly a
function of a and the derivatives of f. A bound can be
obtained on e4 as given in (35) when in the usual manner
M and L are introduced by the inequalities

and

•b'+Jf

\f(x,y)\ <M

JJ+J
< 4 (36)

in a region R about the point {x, y) containing all points
in equation (8) thus making D3f, fyD

2f, DfDfy, fjDf
respectively less than 8, 4, 4 and 2 times ML3. This
bound does not simplify very much unless the numerical
values of the a, and /3,y quantities are inserted in (35).
When this is done in the Classical Runge case the result
is (again neglecting terms in h5 and higher order
terms):

0 < a < 1 (37)

and thus

Max (e4Runge) < 0-0917 ML3h4

0<a < 1

(38)

the maximum occurring at a = 0-573.
The corresponding equation in the Ralston case is

Max (e4Ralston) < 0-0937 ML3h4 (39)
0<<x<

which occurs at a = 0 • 539.
It should perhaps be stressed that (37) is a Bound on

the error term for the Classical Runge case and (38) gives
the Maximum over the range of a of this bound. These
figures are accordingly normally much greater than the
true error. Likewise the error bound in equation (39)
is pessimistic.

2. Comparison with interpolation method
The error in estimation of the intersection of (3) and (4)

(and also for the intersection of (1) and (2)) is 0(A4) and
hence in the same order as a four point interpolation
scheme. Since the nature of the discontinuities may be
such that only one point is available prior to the inter-
section—and in any case space and time are lost in
storing previous points—it is not unreasonable to assume
that for a comparable interpolation method the tabula-
tion should be extended three points beyond the inter-
section point. This requires eight extra evaluations of
the function in (3) or (1) and this in itself could involve
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considerable calculation. In addition the remaining
Runge-Kutta procedure would have to be executed twice
and this then followed by the interpolation routine
which would have to be applied to the independent and
each dependent variable. By contrast the alpha method
does not require any evaluation of the function in (3)
or (1), only one execution of that part of the Runge-Kutta
procedure involved in the updating of the variables is
required and the calculation of a would hardly be as
extensive or involved as the interpolation routine. The
procedure in the case of the alpha method merely consists
of a simple algorithm to evaluate a and then using (11)
the Ai quantities. Thus the alpha method has a decided
advantage when the function evaluation is time con-
suming and apart from this it is equally if not more
simple and straightforward from a programming point
of view than the interpolation method.

3. Example
The differential equation selected is

$ = V/3 (40)
dx '

with xn = yn= 1. The solution is

(41)

The Classical Runge method was employed. The
procedure adopted consists of first selecting a value of a
which will be called a, since it is the true value of a.
The true value of y (called y,) is then calculated using (41),

i.e.

2 1 3 / 2

(42)

In the example it is assumed that

<£(•*> y) = y — y< = °
so that m = 0 and y(xn + ah) can be replaced in (20)
or (23) by y, as calculated in (42). The estimates of a.
calculated using (23) and (21) can then be compared
with a,. In Table 1 the estimate of a obtained using (23)
is marked <xn and <xm, aIV and av are the estimates of a.
obtained using respectively the first three, four and five
terms in (21). Clearly the results indicate that Newton's
iteration formula (23) is far more accurate than (21)
especially at the higher a values. The maximum errors
occurred in the neighbourhood of a = 0 • 6 as expected.
Since M and L are only slightly greater than unity the
error bound on eA Runge is approximately Olh4 giving a
bound of 0-lh3 in ea. The actual error is only about
l/50th of this figure which illustrates the usual conserva-
tive nature of Runge-Kutta error bounds. Clearly from

Table 2 for fixed a, the error a, — an is proportional
to h3 except in the neighbourhood of a, = 1 where the
error is proportional to h4. The results were computed
using a 31 bit binary mantissa (9 plus decimal digits).

4. Conclusions

The method is an alternative to the normal inverse
interpolation scheme with a decided advantage over the
latter when the evaluation of the function is time con-
suming. It gives automatic switching from one set of
differential equations to another and a sequence of
switches in one basic integration interval can be sequen-
tially handled. From a programming point of view the
method presents no difficulties.

Table 1

A = 0 1

0
0 1
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
1-0

10«(a,-aB)

0
-0-200
-0-643
- 1 1 5
-1-58
-1-86
-1-91
-1-72
-1-34
-0-792
-0-219

10*(a,-am)

0
-0-298
-2-24
-9-32

-27-7
-66-4

-137-4
-256-8
-440-0
-711-9

-1097-0

106(a,-«iv)

0
-0-198
-0-597
-0-793
-0-034

2-96
10-3
25-1
52-0
97-0

168-3

10«(a, —av)

0
-0-200
-0-640
-1-13
-1-52
-1-72
-1-75
-1-78
-2-26
-3-99
-8-35

Table 2

0
0 1
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
1 0

h = 0 1

0
-0 -200
-0 -643
- 1 1 5
- 1 - 5 8
- 1 - 8 6
—1-91
—1-72
—1-34
-0-792
-0-219

h = 0-2

0
— 1-58
- 5 1 0
- 9 0 7

-12-4
— 14-5
— 14 9
— 13-7
- 1 1 1

- 7 4 0
-3-24
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