
413

A family of gradient methods for optimization

J. O. Ramsay

McGill University, Montreal, Canada

The path leading to the optimum can be defined as a system of differential equations. The ap-
plication of ODE solving methods to optimization and some convergence acceleration possibilities
are discussed. This approach seems to have promise for the initial stages of difficult optimization
problems and some nonlinear programming tasks.

(Received December 1969)

1. Introduction
The approaches to the problem of maximising or mini-
mising a nonlinear function of several variables can be
put into three categories according to how much informa-
tion is extracted from the function.

1. Only the function value. The more well-known
methods in this category are those of Nelder and Mead
(1965), Powell (1965), Rosenbrock (1960), and Swann
(1964).

2. The gradient. The main technique in this category
is the method of steepest ascent, also known as the
'gradient method'.

3. The matrix of second derivatives. This matrix
may be computed directly, as in the method of successive
approximations or Newton-Raphson method, or may be
approximated as in the methods of Barnes (1965),
Fletcher and Powell (1963), Fletcher and Reeves (1964),
and Powell (1965).

The advantages and disadvantages of these methods
have been discussed in detail elsewhere (for example,
Box, 1966, Wilde and Beightler, 1967). The methods
in the first category are especially useful when com-
puted values are subject to error since the function value
generally is less unstable than derivatives of the first or
higher order. They are also essential where computation
of values other than the function value is impractical
or impossible. Otherwise, the slow convergence and
sensitivity to sudden changes in slope of the surface
make these methods generally inferior to those in the
other two categories.

For the majority of unconstrained optimization
problems, the methods in category three will be easily
superior to the gradient methods. Their convergence
for nearly quadratic functions is very rapid and they
provide valuable information about the curvature at the
optimum. Even for severely non-quadratic functions,
the availability of good initial approximations to the
solution can often insure that these methods will come
up with the final solution quickly.

This paper is concerned with those functions which
may cause difficulties in the use of second derivative
approaches. The presence of sharp ridges may make
round-off error in the computer a'severe problem with
these methods and sudden changes in direction of the

ridge may make their convergence slow since the ridges
of quadratic functions, for which these methods are
usually convergent, are straight. On the other hand,
the function might be well behaved but there may be
simply too many variables to allow convenient storage
of the matrix of second derivatives. Finally, there is
the large class of problems for which constraints on the
variables exist. Methods which rely on finding the
optimum along a specified line in parameter space will
tend to strike the boundaries of the admissible region
more often than those which take small steps. Trans-
formations of the kind suggested by Box (1966) imply
that once a constraint has been tightened in this way,
it cannot be loosened again except by some form of
external intervention.

For these problems, the gradient method is very useful
and references on nonlinear programming treat it as a
widely applicable method for problems of this type
(Hadley, 1964). This paper defines a class of methods
which fall into the second category. They do not
attempt to compute or approximate second derivatives
and do not require the location of an optimum on a line.
They contain the gradient method as a special case and
it will be shown that in general the gradient method is
not an efficient member of this class. The important
advantages which some other members in this class
possess will be outlined in the next section. Section 3
discusses some convergence accelerating possibilities.
Section 4 provides an example of a function for which
these methods are particularly appropriate.

2. The gradient path methods

The rationale behind the gradient method is that if
one moves in the direction in which the function is
increasing most rapidly, and if one's step sizes are small
enough, then one can guarantee that the function is
always being increased and will eventually reach a point
where it cannot be increased any further, assuming that
a maximum exists. In the limit as step sizes get smaller
but more numerous, a continuous path is defined which
begins at some initial point in the parameter space and
passes through the maximum.

This path can be characterised in the following way:
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Let the initial point on the path be p. For an arbitrary
point, x, which is on the path, let the gradient be s(x).
Now there is an arc length along the path from the initial
point, p, to the arbitrary point, x, which can be called r.
It is then possible to define the point, x, as a function of
arc length. That is,

x = y(r)

Naturally, this implies that

= P

(1)

(2)

Since the path is defined in such a way that its tangent,
y'(r), lies along the gradient vector, and since it is also
true that the tangent of any path defined as a function
of arc length has unit length, it follows that

y'(r) =
11*0011

(3)

Thus, the path is characterised by the set of ordinary
differential equations (3), and the initial value con-
dition (2).

The essence of the method is simple. Since it is
successive points on this gradient path that one is after
and since the right side of (3) is computable, the problem
becomes the solution of a set of simultaneous differential
equations by numerical means. Hence, any of the
standard methods for this problem are also applicable
to the optimising of a function of several variables if
only the gradient is to be used. Sample references are
Henrici (1962) and Ralston (1965).

The gradient method in this scheme is equivalent to
the Euler or point-slope method which is not generally
proposed as a practical method for solving ODE's but
is mainly useful for illustration and proofs of con-
vergence. The application of ODE solving methods
such as predictor-corrector or deferred limit algorithms
to this problem brings a number of important benefits.
In the first place, they are usually demonstrably stable
in the sense of not accumulating error in the estimation
of points on the path. Moreover, extrapolations are
made on the basis of more than one previous point
which in general means a larger step size. Finally,
estimates of extrapolation error are available and can
be used to control step size. This transforms the problem
of choosing step size into the more meaningful problem
of choosing tolerance limits on the error of extrapolation.

Precisely which ODE method is best in this context
probably depends on the problem. The equations (3)
are by their nature stiff; that is, they are highly stable
and this results in severe instability of the numerical
method if step size becomes too large. This emphasises
the advantage of multi-step or deferred limit methods
over the classical steepest ascent algorithm since the
parameters of the more complex procedures can be
chosen to maximise stability. The highly stable methods
of Gear (1967), Nordsieck (1962) and Widlund (1967),
may be especially useful in this application.

The equations (3) are by no means unique in charac-
terising the gradient path. Any transformation of the
type

/ =
Uy)\\ dx (4)

integration is over the gradient path, will produce the
equivalent system:

y'(t) =
s(y)

(5)

The choice of h in effect determines the step size as a
function of gradient length. This is best viewed in the
context of the path following the top of a ridge. If
h = 1, then the step size when the current location is
on the steep side of the ridge will be much more than
that when the location is near the less steeply sloped top
of the ridge. This will tend to lead to severe oscillation
about the line of the true gradient path and is likely to
impede progress. This characterisation of the gradient
path was proposed by Arrow, Hurwicz and Uzawa, 1958.
On the other hand, if h is a too steeply increasing function
of s{y), then the increased step size when on the top of
the ridge will be likely to lead to trouble in terms of the
next location. The author has generally found that use
of the equations (3) implying h = \\s(y)\\ and a uniform
step size to be the most generally useful.

Special cases in which the differential equations (3)
are explicitly solvable can be easily constructed. One of
these situations is provided by the quadratic having a
diagonal matrix of second derivatives. Although such
a problem can be solved by analytic means, it may be
instructive to consider the functions, y(r), as a possible
nonlinear path in parameter space which can be followed
for any function and which, in this instance, leads to
the optimum.

If one of the equations (3) is chosen, say equation j ,
and for each of the remainder the ratio,

^ =
 di> _ sj(y} • _ i • _ 1 • _i_ i

v » dyj- Sj{yy
l~ l>- • -'J 1>J + l j • • • ' " '

(6)

is taken, then the points on the path are defined as func-
tions of parameter j . This reduces the number of
differential equations to be solved by one but does not
alter the number of quantities to be computed. For
the following quadratic function,

f(x) = a'x + l/2x'Dx

where D is diagonal, (6) becomes

dy, a, + duy;

The solution to (8) is given by:

c
y> = jifli +

(7)

(8)

(9)

If two successive points and their gradients are indicated
by j ( 1 ) , sw, and s<-2\ then solutions for a, D, and
the integration constants, c,, are given by:

a, = s, - d..

e, = #
d:

(10)

where A is a positive function of ||.yO>)ll and the
It may be that optimising the function along the nonlinear
path specified by (9) and (10) will be more efficient for
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some functions than following the linear path specified
in the gradient method.

3. Acceleration techniques

As the discussion of differential equation solving
methods in this context indicated, the problem of choosing
step size can be transformed to the intuitively meaningful
problem of setting bounds on the error in estimating
points along the gradient path. Too liberal bounds will
usually set the estimates to oscillating about the line
along the top of the ridge with relatively little forward
progress. Too stringent bounds may produce more
accuracy than is worthwhile. It is probably useful to
choose the error bounds in order to maintain a certain
minimal smoothness of the estimated path without
allowing this smoothness to become so great that forward
progress is sacrificed. One might, for example, update
the error bounds on the basis of the average cosine of
the angle between successive steps taken over twenty or
so interations so as to keep this average within the
limits of 0 • 90 to 0 • 95. This tends to ensure a relative
smooth rate of forward progress with the necessary
slowing when the ridge takes a sharp turn or falls off
very steeply on either side.

The definition of each parameter as a function of the
single variable, arc length along the gradient path from
the initial point, suggests that an examination of the
behaviour of this relationship and some form of extra-
polation might be beneficial. Two procedures will be
outlined here:

The first approach is to devise an extrapolating func-
tion, Yj(r), for the ith parameter function, j>,(V). For
some interval, [r0, r,] over which approximations to y-,
have been computed, it is possible to fit an interpolating
polynomial of degree n, p*f>, by some means. It is well
known that use of this polynomial for extrapolating from
r, to some value, r2, is unlikely to be successful since
the error is an accelerating function of r2 — rx. A more
useful function is

(11)

where

_

(12)

That is, the extrapolating function is a weighted sum of
the linear and nth degree interpolating polynomials such
that the average change in slope of the function over
the interval of interpolation, [r0, r,], is greater than or
equal to the average slope change over the extrapolation
interval, [ru r2]. The success of this extrapolation there-
fore depends on the function y,(r), not undergoing a
radical change in slope at some point. Such a radical
change can be expected to occur in the initial stages of
following the gradient path as the path ascends to the
side of a steep ridge and then turns to follow the top of
the ridge. It is advisable, therefore, to provide a test
of whether such a sharp change has occurred in a par-
ticular interval and to do the interpolation after such
a change.

A second extrapolation possibility is to use the func-
tion, Sj(f), which is the ith gradient element considered

as a function of arc length. If the interpolating function
over the interval, [r0, r{], is

= (r - aXb,r - c,) (13)

where the factor, r — a, common to all S; is necessary to
make them all vanish for the same value of r, then

b,r — c,
(14)

The obvious interval of extrapolation in this case is
[r,, a] since the predicted optimum is at r = a. The
integral of (14) over this interval can be evaluated directly
to provide an estimate of the optimum point.

One possibility for the estimation of a, bh and c,- in
(14) is to fit a quadratic in r to the computed values of
Sj(r) in the interpolation interval. For each such quadratic,
the root which is real, greater than r,, and accompanied
by a negative or positive slope depending on whether a
maximum or minimum is sought is an estimate of a.
The mean of these estimates can then be used as the
final estimate and the values of b-, and c,- estimated by a
linear approximation to the computed values of stl(r — a).

4. An example

A mathematical model of learning proposed by Audley
and Jonckheere (1956) provides an illustration of the
kind of problem for which the gradient path methods
are especially suited. This model defines a stochastic
process which specifies the probabilities of making a
correct response at each trial in a sequence in which the
subject is supposed to be learning a correct choice. If
a random variable, Xt, is defined which takes on the
value of one on trial i if the correct response was made
and zero otherwise, then the five parameter model for
the probability of this variable being one is:

' i + (YI - YJKI + (' - Vvi

where Kt = 2 A} is the number of correct responses

before trial i. Interpretations of the five parameters, p,
a, /3, y,, and y2, can be found in the reference cited
above.

The problem is to find maximum likelihood estimates
of these parameters by maximising the following log
likelihood function:

log L = £\X, log Pi + (1 - X,) log (1 - />,)] (16)

where pt is the probability of a correct response on the
ith trial specified by (15) and there are a total of N trials.
Since these probabilities must be in the interval (0, 1),
it is necessary to place the following restrictions on the
parameters:

0<p < 1
oc> 0
jS>0

y, - <x> 0
y2 - j8 > 0

In order to avoid phrasing this problem as one in non-
linear programming, the parameters were transformed in
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the following way:
t2 =
a2 =
b2 =
c2 =
d2 =

P
a.

P
Y\ —
Yi —

a

P

J. O. Ramsay

The transformed parameters are now unconstrained with
the exception of t which, by the nature of the data, is
very unlikely to exceed one. However, this is achieved
only at the expense of making the boundaries absorbing
in the sense that, if any of these parameters is given
the value of zero, its derivative vanishes and it cannot
lose that value. Hence, it is important that the optimisa-
tion method compute estimated points which have as
little danger as possible of prematurely striking a
boundary. Approaches which maximise the function
along a line are clearly not desirable for this reason.
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Fig. 1. Gradient length as a function of arc length along the
gradient path
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Fig. 2. The parameters as functions of arc length
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The differential equation solving method used in this
case was Hamming's method. Error bounds were
adjusted every twenty iterations to keep the average
cosine of the angle between successive gradients between
0-90 and 0-95. None of the extrapolation methods
mentioned previously were employed. It was found
that once sufficiently close to the optimum, a small
number of successive approximation iterations would
converge and thereby save considerable time over going
all the way to the maximum by the gradient path method.
In fact, it has generally been the author's experience that
the predictor-corrector algorithm makes very slow pro-
gress in the immediate neighbourhood of the optimum
and that it is usually worthwhile to switch to some other
algorithm.

The data analysed in this were collected by H.
Gulliksen from a single cat which responded on 1,294
trials in a simple two-choice task. The initial point for
the transformed parameters (/, a, b, c, d), was (0-34403,
0-06431, 0-03041, 0-00581, 0-01905) and was generated
by a simpler estimation procedure described elsewhere
(Ramsay, 1969). The initial gradient length was 2355
and the initial function value was —758-079. After
275 iterations, the gradient length was 2-642 and the
successive approximation iterations began. After five of
these, the gradient length was 0-0002174 and this value
was the lower limit that could be attained using double
precision on the IBM 360, Model 75. The final point
for the transformed parameters was (0-23891, 0-07211,
0-00000, 0-00000, 0-00000) and the final function value
was —732-419. Thus, the optimum was on the boun-
dary of the admissible region. The matrix of second

Table 1
Second derivatives of the log likelihood function at the

optimum

r
a
b
c
d

r

-4281
-15900

0
0
0

a

-15900
-155900

0
0
0

b

0
0

-7678
0
0

c

0
0
0

-272-6
0

d

0
0
0
0

-3147

derivative values at this point is given in Table 1. Fig. 1
indicates the gradient length as a function of arc length
along the path and Fig. 2 shows the parameters as func-
tions of arc length. These figures display the features
of the gradient path common to most optimization
problems. There is an initial sharp rise in the function
value as the path ascends the nearest ridge. Once the
top of the ridge is attained, at about arc length 0-01, the
path changes direction as indicated by the curvature of
the plots for parameters a, c, and d in that region. A
second shallower ridge is joined at arc length 0-04 when
the parameter b is driven to its boundary value. From
that point progress is relatively slow and the parameters
as functions of arc length are roughly linear. At arc
length 0-093 successive approximations commenced and
produced the final estimate in five iterations.
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