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A new method for minimising a sum of squares
without calculating gradients

G. Peckham
University of Reading, J. J. Thomson Physical Laboratory, Whiteknights, Reading, Berkshire

A new method for minimising a sum of squares of non-linear functions is described and is shown to
be more efficient than other methods in that fewer function values are required.

(Received March 1969)

1. Introduction
The problems of finding the parameters of a physical
theory from experimental results, adjusting the para-
meters in a design to obtain the best possible performance,
or solving sets of non-linear simultaneous equations may
frequently be reduced to the problem of finding the
minimum of a sum of squares of non-linear functions.
If gradients are available there are highly efficient and
simple methods, but in many cases it is extremely
difficult to calculate gradients and sometimes almost
impossible. It is easy to make programming errors and
the procedure has to be carefully checked, for instance
by numerical differentiation of the function. There are
considerable advantages to the programmer in methods
which do not use gradients, and in many cases these
methods are faster.

2. The problem
The vector of variables x = xu x2, • • •, xn which gives

a minimum value for S is to be determined, where

(1)

In a linear approximation we may write
n

fk = hk + S gkiXi

or in a matrix notation

/ = h + Gx

The value of x at the minimum is y given by

GTGy = - GTh

(2)

(3)

If the gradients gki are available, these equations can
be solved for y. Since the fk are not generally linear
functions, y will not be the true minimum, but may be
used as a starting value for the next iteration. Powell
(1965) gives a method in which the gradients are evaluated
numerically, the component in the direction of y being
re-evaluated at each iteration. He shows his method to
be comparable in efficiency with the least squares method
using gradients, and very much more efficient than
methods designed to minimise functions which are not
in general sums of squares. (See also Box, 1966.) This
latter result is not surprising, for if we assume S to have
the form given by equations (1) and (2), the unknown
coefficients hk and gki could be determined by evaluating

the sets of functions fk at n + 1 points, whereas, if S is
not known to be a sum of squares, the simplest assump-
tion we can make is that it is quadratic in the neighbour-
hood of the minimum and the number of function values
needed to determine the coefficients of a quadratic form
is %(n + 1) (n + 2), that is 66 for n = 10 compared
with 11 for the sum of squares.

3. The new method
Spendley et al. (1962) describe a method for finding the

minimum of a function (not necessarily a sum of squares)
in which the function is evaluated at » + 1 points
forming a simplex in n dimensional space. An iteration
consists of replacing the point with highest function
value by its reflection in the hyperplane containing the
other points. Nelder and Mead (1965) and Box (1965)
describe methods based on this in which the 'simplex'
becomes irregular and may consist of a set of more than
the minimum of n + 1 points necessary to span n
dimensions. However the ad hoc rules of these methods
do not lead to as rapid convergence as can be achieved
by methods based on the properties of quadratic forms,
at least for suitably well behaved functions. (Powell,
1964 and Box, 1966.)

In the case of functions which are sums of squares, the
above discussion suggests that the function values at a
set of n + 1 or more points might be used to estimate
values for the coefficients hk and gki and hence the
position of the minimum y from equation (3). An
iteration would consist of replacing the point of the set
with highest function value by this estimate of the
position of the minimum. Convergence should be rapid,
as, if the fk were strictly linear functions, the minimum
would be found in one iteration.

Assume that we have function values fkl for a set of
p points Xn where p > n + 1 and / = 1, 2, . . . , p. The
linear approximation is obtained by choosing h and G to
minimise the m expressions

S w2

1=1
gkixn (4)

where Jc= 1,2, . . . , m and w, is a weighting factor. It
is convenient to choose the weighted mean as origin for

p
the Xn so that £ vt>2;c,7 = 0 and to define x'u =

and /fc; = vv,/̂ /. The values of h and G which mini-
mise (4) are given by
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X'X'TGT =

where an obvious matrix notation has been used and

Q = S w}.
1=1

If these values are substituted in equation (3), the
following expression is obtained for y

y = - ^ {X'X>T) (X'F'TF'X'T) -' (X'F'TF'w) (5)

4. Some details of the new method
The functions fk are evaluated at a starting point and

at points displaced by given distances along each of the
axes in turn. These points should span the region in
which the minimum is expected to lie. The number of
points p in the set is increased from n + 1 to the largest
integer less than n + 3 + %n, the new points being
obtained by repeated application of equation (5).
Thereafter each new point replaces the point of the set
with largest sum of squares. The upper bound for p was
chosen empirically and is of order the number of function
values needed to determine the minimum in a simple
test case (see Table 1).

The values of wt were chosen to give function values
near the minimum more weight in determining h and G.

1 m

w] = -=• where 5 , = 2 (A,)2

Although convergence was entirely satisfactory for the
test functions described below, it has been found
advisable to ensure convergence by limiting the step
made in any one iteration and by not accepting a new
point if S for this point is larger than all in the set. If a
point x, is unacceptable, a new point x\, may be generated
by

w,x, + woxo
, _ w, + w0

where x0 is the point with smallest S. This rule is
applied several times if necessary to give an acceptable
point. The average value of S for the set is now reduced
by each iteration.

To identify a good numerical method for solving
equation (5), it is rewritten as:

where (X'F'TF'X'T)z = X'F'TF'w

(6)

(7)

Equation (7) will be recognised as the normal equation
of a linear least squares problem. The euclidean norm
\\F'w — F'X'Tz\\ has a minimum value when z satis-
fies (7). This problem is best solved by the use of
orthogonal transformations and methods have been
described by Golub (1965) and Bauer (1965). The
ALGOL procedure 'Ortholin 2' described by Bauer was
used, but without iterative refinement of the solution.

The number of points in the set, p, has been chosen to
be greater than the minimum number, n + 1, necessary
to span n dimensions to reduce the probability that the
set may collapse into a subspace of less than n dimensions.
However, this can still happen, an example being the
case where the functions fk are linear in one of the

variables so that each iteration gives the same value for
this variable (i.e. the value at the minimum). In this
case equation (5), will be ill conditioned (this can be
detected during application of the orthogonal trans-
formations) and no attempt is made to obtain a solution.
The coordinates of a new point in the neighbourhood of
the point with smallest sum of squares, S, are generated
by a pseudo-random number procedure. This new
point replaces the point with largest sum of squares and
the new set will in general span the full n dimensions. If
not the procedure will be repeated at the next iteration.
It is important for the user of the algorithm to ensure
that there are at least n -f-1 independent functions fk.

The work required per iteration, namely of order mn2

operations is much greater than that required by other
methods (e.g. Powell, 1965). It is claimed, however,
that fewer function evaluations are needed and that in
many cases, the time required to find the minimum will
be less.

5. Numerical examples and comparison with other
methods

Powell (1965) and Box (1966) compare the perform-
ance of various methods in solving the simultaneous
equations

n
2 (aki sin Xj + bki cos xt) — ek k = 1, . . . , m (9)

i=i

by denning
n

A = 2 iflki sin Xi + bki cos x,) - ek

and minimising

2 (fk)2

k=l

aki and bki are random numbers in the interval [—100,
100] and the solutions x, are random in the interval
[—TT, 77]. Starting values differ from known solutions

by random numbers in the range ~ TTJ > jTj • The

comparison shows Powell's (1965) method to be the most
effective of the methods not requiring gradients. In
Table 1, m has been taken equal to n and the number of
function values needed to obtain values of x, within
0-0001 of the true solution is compared with the numbers
needed by the least squares method (with gradients) and
Powell's method as given in Table 1 of his paper. (The
two values for each n were obtained with different
random number sequences.)

Table 1
Number of function values to solve equations (9)

n

5
5
10
10
20
20

1ST. sqs.

5
10
c

8
6
9

POWELL

24
24
38
34
46
65

NEW METHOD

11
11
15
20*
31
32

• Converged to another solution close to that originally
chosen.
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To obtain figures comparable with Powell's (1965)
Table 2, m was increased to 2n and a disturbance in the
range [—8, S] applied to the values of ek so that S was
no longer zero at the minimum.

Table 2
Number of function values to minimise a sum of squares

that does not tend to zero

n

5
5

10
10
20
20

8 = 0 1

POWELL

17
20
26
29
42
36

NEW

8

15

26

S = l

POWELL

37
29
47
47

118
88

N E W

18

27

48

8 = 10

POWELL

33
34
78
86

175
93

NEW

24

34

55

The differences in behaviour between the new method
and Powell's are clearly shown in the two dimensional
care first introduced by Rosenbrock (I960):

where /, = 10(x2 - xf) fi = 1 -

The function 5" has the form of a parabolic valley
descending to a minimum of zero at the point (1, 1).
The starting value is at (—1-2, 1). Since/2 is a linear
function, the first iteration of the new method gave a
point wi th / 2 = 0. Further iterations gave points along
the line xx = 1 (except for an occasional small deviation
to regain the 2 dimensions), the minimum being found
after only 12 evaluations of/, and/2 . Final convergence
was rapid, the last three values for 5 being 2 x 10~4,
6 X 10~5, 4 x 10~18 (zero within rounding error).

In Powell's method, after solving equation (3) for the
estimated position of the minimum, y, a search is made
for the true minimum of S along the direction y. This
means that each iteration gives a point on the valley
floor so that progress is along the parabolic curve of the

valley, and far more function evaluations are needed (70).
After writing this paper, the author's attention was

drawn to a paper by Spendley (1969) in which he
describes an improvement to the simplex search method
(Spendley et al, 1962; Nelder and Mead, 1965) which is
applicable to functions which are sums of squares. As
in the present paper, an estimate of the minimum is made
by means of a quadratic approximation determined by
a number of function values. However, there are
important differences:

(a) The quadratic approximation is used only rarely
(e.g., every In iterations in the example quoted in
Table 2).

(b) The quadratic approximation is determined by the
minimum number of function values (n + 1)
instead of by the larger number (p) used in the
present work.

Although the improved method is shown to need
fewer iterations than the original simplex search method,
many more iterations are needed than for Powell's (1965)
method or for the present method.

6. Conclusions
A new method for finding the minimum of a sum of

squares of nonlinear functions has been described and
has been shown to be significantly more efficient than
other methods in that it requires fewer function evalua-
tions. It is easy to program as gradients of the functions
are not required. The economy in the number of
function values required will in most cases lead to
considerable time saving, for, although the number of
operations needed per iteration is greater than in other
methods, most of the time will be spent in computing
function values.

An ALGOL procedure incorporating the new method
has been used to fit observed crystal lattice vibrational
frequencies by various theoretical models with up to
twelve adjustable parameters and in the design of optical
filters. Convergence has been satisfactory in all cases
so far tried. Copies of the ALGOL procedure written
for an Elliott 4130 computer may be obtained from the
author.
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