
421

Algorithms Supplement

Previously published algorithms

The following algorithms have recently appeared in the
Algorithms Sections of the specified journals.

(a) Communications of the ACM (April 1970)

378 DISCRETIZED NEWTON-LIKE METHOD FOR
SOLVING A SYSTEM OF SIMULTANEOUS NON-
LINEAR EQUATIONS

Solves a system of simultaneous nonlinear algebraic or trans-
cendental equations.

379 SQUANK (SIMPSON QUADRATURE USED
ADAPTIVELY—NOISE KILLED)

Produces an expression of the form

which is an approximation to the integral

\f(x)dx.

(b) BIT (January 1970)

25 ANALYSIS OF THE OUTER PRODUCT OF SYM-
METRIC GROUP REPRESENTATIONS

Uses the method of Littlewood and Richardson to analyse the
outer product of two irreducible representations of the sym-
metric group.

(c) Applied Statistics (July-October 1970)

AS29 THE RUNS UP AND DOWN TEST

The procedure computes a X2 statistic based on the observed
and expected number of runs {sequences of increasing and
decreasing numbers) of different lengths in a set of n real
numbers.

AS30 HALF NORMAL PLOTTING

Produces half normal plots on a line printer.

AS31 OPERATING CHARACTERISTICS AND AVER-
AGING SAMPLE SIZE FOR BINOMIAL
SEQUENTIAL SAMPLING

Two procedures both giving the probability of rejection and
average sample size for given values of handicap, penalty, target
and population proportion of failures.

AS32 THE INCOMPLETE GAMMA RATIO

Evaluates l(x, p) = ^ - . e-'f^dt for x>0,p>0.

AS33 CALCULATION OF HYPERGEOMETRIC
SAMPLE SIZES

(N- m)\ (W - n)\
Evaluates n given P, N and m where P = x-r

N \ (J\ — m — n)'.

AS34 SEQUENTIAL INVERSION OF BAND
MATRICES

The ith super and sub diagonal of a symmetric band matrix £„

of order n have all elements equal to a, for i < k, zero otherwise.
The program evaluates 2~+'i given S~ ' .

(d) Computing (January 1970)

12 A DISCRETE METHOD FOR THE SOLUTION OF
FINITE-DIMENSIONAL SYSTEMS OF NON-
LINEAR EQUATIONS

The following papers, containing useful algorithms, have
recently appeared in the specified journals.

(a) BIT (January 1970)
ON NIELSEN'S GENERALIZED POLYLOGARITHMS
AND THEIR NUMERICAL CALCULATION (Bind 10,
HefteNr. 1, pp. 38-73)

A TRANSITIVE CLOSURE ALGORITHM (Bind 10,
HefteNr. 1, pp. 76-94)

(b) Computing (February 1970)
DIRECT METHODS FOR EVALUATION OF ZEROES
OF POLYNOMIALS (Vol. 5, Fasc. 2, pp. 97-118)

New algorithms
Algorithm 53

DECOMPOSITION OF POSITIVE DEFINITE
SYMMETRIC BAND MATRICES

R. A. Zambardino
North Staffordshire Polytechnic
Stafford

Author's note:
These two procedures extend to positive definite symmetric

band matrices the form of storage as a uni-dimensional array
which is usually applied to symmetric matrices not of a band
form.

If N is the order of the matrix and 2 W + 1 its band width,
the array must be allocated (W + 1) {2N - W) -f- 2 stores
and should contain only the band elements of the upper
triangle of the original matrix, in row sequence; i.e.:

a(l, 1), a(l, 2), . . . , a{\, W + 1), a(2, 2), . . . , o(2, W + 2),

a(3, 3), . . . , a(N - I, N), a(N, N).

Since this is, for any value of W, the minimum number of
elements needed for the decomposition, these procedures can
be used, without loss of efficiency, whatever the value of W,
up to and including the value W = N — 1, i.e. when the
matrix is not of a band form. The same procedures and
therefore the same storage method can then be used for any
positive definite symmetric matrix, whether of a band form
or otherwise.

This form of storage is less restrictive than the alternative

The Computer Journal Volume 13 Number 4 November 1970

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

422 Algorithms Supplement

form, as a two dimensional array of dimensions N and W + 1,
used by Martin and Wilkinson (1965), which, as stated by the
authors, becomes less efficient as W approaches N.

In the present version the two procedures over-write the
original array A and the matrix of right-hand sides B; how-
ever only trivial modifications are required if A and/or B need
to be preserved.

The decomposition of the original matrix is based on the
Crout method. As compared to the Cholesky method, this
avoids the calculation of N square roots at the cost of
W(N — (fV + l)/2) additional multiplications; a local array
JPi?[l: W] is used to minimise the number of additional
multiplications.

Reference
MARTIN, R. S., and WILKINSON, J. H. (1965). Symmetric

decomposition of positive definite band matrices, Nume-
rische Mathematik, Vol. 7, pp. 355-361.

procedure symbandprpin, w, a, d, FAIL); value n, w; integer
n, w; real d; array a; label FAIL;

comment The upper half of a positive definite symmetric band
matrix of order n, with a band width 2 X w + 1, is stored as
a uni-dimensional array a[\ : (w + 1) X (2 X n — w) 4- 2].
If the matrix is not of a band type, it can still be considered
as such with w = n — 1. The Crout decomposition A = LU
is performed but, since for symmetric matrices and i =£ /,
/((,/) = u(J, i) X l(J,j), only the super-diagonal elements of U
and the diagonal elements of L need to be stored. These
elements are stored in array a, over-writing the elements of the
original matrix. The value of the determinant is also calculated
and stored in d. A jump to label FAIL will occur if any
diagonal element becomes < 0 , the value left in d being, corre-
spondingly < 0;

begin real s, m; array pr\\ :w]; integer v, t, I, i, j , k, q, r, p;
v : = \;d:= 1 0 ;
/ : = / : = w + 1;
for / : = 1 step 1 until n do

begin
q := H w > i — 1 then i — 1 else w;
if i > n — w then t : = t — 1;
r : = t — \;p := v;
for j : = 1 step 1 until q do

begin
if r < w then r := r + 1;
p:=p — r;pr[j] :=a[/>] X a[p -j]
end/;

for j : = 1 step 1 until t do
begin
if / > / then q : = q — 1;
s := a[v]; r := t — 1;
p := v;
for k : = 1 step 1 until q do

begin
if r < w then r : = r + 1;
p : = p — r; s := s — pr[k] X a[p]
end k;

if / = 1 then
begin
m := a[v] := s; d := d x s;
if s < 0 then goto FAIL
end

else a[v] := s / m;
v := v + 1
end/;

i f / > 1 then/:= /— 1
end i

end symbandprp

procedure symbandsoHn, w, a, r, b); value n, w, r; integer n,
w, r; array a, b;
comment This procedure solves a system of n linear equations
when the matrix of the coefficients is a positive definite sym-
metric band matrix, with band width 2 X w + 1. When the
matrix is not of a band type, it can still be considered as such,
with w = n — 1.

Before entering this procedure the coefficient matrix must be
decomposed by using the procedure symbandprp, a being the
array of dimension l : (w + l) x (2 x w — w)4-2 obtained
from symbandprp. b is a n X r matrix of right-hand sides.
The procedure performs the operation LY = B and then the
back-substitution UX = Y. The solution is stored in matrix b,
over-writing the right-hand sides. If b is a diagonal or lower
triangular matrix of order n {e.g. the identity matrix), the
number of operations is reduced if the value —n is given to r
when entering the procedure;

begin integer i, j , k, v, t,p,q; real s, m;
v := \; t := w;
P -=r;
for i : = 1 step 1 until n do

begin
if r = — n then p : = i;
if i > n — w then t :— t — \;
m :- a[v];
for k : = 1 step 1 until p do

begin
s:=b[i,k];
for / : = 1 step 1 until t do
b[i + j , k] : = b[i +j,k]-sx a[v
b[i, k] : = s I m
end k;

v := v + t+ 1
end /;

v : = v - 1 ; / := 1;
for i := n — 1 step —1 until 1 do

begin
q:=i+ t+1;
for k : = 1 step 1 until p do

begin
s:=b[i,k];
for / : = 1 step 1 until t do
s := s — a[v —j] X b[q — j , k];
b[i,k]:=s
end k;

v :=v — t — \;
if t < w then t := t + \
end i

end symbandsol

Algorithm 54
APPROXIMATION OF STRAIGHT LINES

A. H. J. Sale
Basser Computing Dept.
University of Sydney

Author's note:
This routine implements a method described by J. E.

Bresenham (1965) for the control of an incremental digital
plotter in USASI FORTRAN. A similar algorithm has
been published earlier (Stockton, 1963) which is externally
identical to that given here (it produces the same set of
increments): this version is simpler and is written to achieve
fast execution of the inner loop. No multiplications or
divisions are needed.

Consider a Cartesian grid of lines of unit spacing, and a
plotter which may plot points only at intersections of the grid
lines. Then given two points (xu yt) and (x2, y^) on the grid

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

Algorithms Supplement 423

the routine supplies a set of increments (Ax,, A>>,) which
when added successively to (xu y{) produce an approximation
to the straight line joining these two points, and such that no
increment is greater than 1 in magnitude. The minimum

•*tt.tttt*t<.;t«*

number of increments is obviously

max (abs (x, - Xj), abs (j>i —

and in fact this number are supplied.
It can be seen from the above that of the two increments

Ax, and Ajy,, one will always be unity (in magnitude) after a
call to the routine, and therefore more compact ways of
returning the results than that chosen are possible. However
since the purpose of the algorithm is to present a method, and
since in most applications it will probably be rewritten in a
suitable assembly language or recast in form, it was thought
unwise to obscure the basic technique.

To illustrate the choice of points by the algorithm a 'print-
plot' produced by a sample driver program is shown in
Fig. 1. This consists of the numeral '2' (plotted as five
straight-line segments) with various scales and in various
orientations.

*

* *•
* *
* **
* *
* **
* **

* ******

** *

**
** *

*** *

SUBR3UTI.NE LLIMECKX I.KYI.KX2.KY8.KXRAY.KYRAY.MAX.LENG) •

LLIME PRODUCES AX APPROXIMATION TO THE STRAIGHT L I N E BETWEEN THE
POINTS (K X t . K Y I) AND <KX2.KYa>. USING ONLY UNIT INCRE.1ENTS
IN THE X-DIHECTION. IN THE Y-DIRECTION. OR BOTH TOGETHER.

THE t x . Y) INCREMENTS FOR EACH STEP ARE STORED IN THE ARRAYS
KXHAY AND KYRAY. WHICH MUST BE DECLARED IN THE CALLING
PROGRAM AS ONE-DIMENSIONAL AND AT LEAST OF LENGTH MAX.
I T I S SIMPLE TO MAKE THE ARRAYS STORE INSTEAD THE COORDINATES
WHICH CAN BE COMPUTED INSIDE THE DO LOOP.

THE VARIABLE LENG I S SET TO INDICATE THE LENGTH OF THE USED
PORTION OF THE ARRAYS. I F THIS I S EQUAL TO MAX THE ROUTINE
MAY HAVE RUN OUT OF ARRAY SPACE. TO PREVENT T H I S . MAX MUST
BE AT LEAST EQUAL TO THE LARGEST (I N MAGNITUDE) OF
KX2-KXI AND K Y 2 - K Y I .

SPECIFICATIONS
INTEGER KXl .KYI .KX2.KY2.J tAX.LENG
INTEGER KXRAYCMAX).KYRAY<MAX>
DECLARATIONS
INTEGER KDELA. KDELB.XDELI.KDELB2.XDELDS
INTEGER INCX1.INCX2.I .NCY1.INCY2
INTEGER J
EOUIV NOT NEEDED, JUST IN TO SAVE SPACE. AND FOR MNEMONICS
EQUIVALENCE IKDELB.KDELB2)

DELTA X AND DELTA Y .SET UP THE I N I T I A L P J I N T COORDINATES.
AND COMPUTE THE 4 5 DEGREE INCREMENTS
CALL SGNABS<KX2-KX1.INCX2.KDELA}
CALL SGNABSCKY2-KY1*INCY2.KDELB)

NOW TEST THE MAGNITUDES OF DELTA X AND DELTA Y TO CHOOSE THE
APPROPRIATE COORDINATE SYSTEM A AND B . ALSO GET THE INCREMENTS
ALONG THE AXES AS REQUIRED
I F (KDELA.LT.KDELB) GOTO 1
INCX1.INCX2
INCYloO
GOTO 2
INCX1-KDELA
KDELA-KDELB
KDELB.INCX1
INCX1-0
INCY1-INCY2

NOU SET UP TWO TIMES DELTA A AND B . AND INITIAL DELTA I
KDELB2'KDELB»KDELB
KDELD2°KDELA*i<DELA-KDELB2
KDELI -KDELB2-KDELA

GO IV A LOOP FOR MAX TIMES OR UNTIL BEACHING KDELA
DO 1 J* I .MAX

TEST FOR DELTA A ZERO OR ONE. OR THE L I N E FINISHED
I F <J .GT.KDELA) GOTO 5
TEST THE SIGN J F DELTA I TO CHOOSE THE APPROPRIATE INCREMENTS
THEN COMPUTE NEXT POINT AND NEW DELTA I
I F CKDELI .GE.O) GOT) 3
KXRAYCJ)-INCX1
KYRAY(J).INCY1
KDELI •KDELKKDELS2
GOTO «
KXRAYCJJ.INCX2
KYHAY<J>-INCY2
KDELI -rlDELI -KDELD2
CONTINUE

RUJ OUT OF ARRAY SPACE
THE AVAILABLE MAX ELEMENTS ARE CORRECT
I F KDELA.GT.MAX THE SET IS TRUNCATED AFTER MAX POINTS
LENG>MAX
RETURN

FINISHED NORMALLY'
LENG I S EITHER ZERO.
L E N G - J - 1
RETURN
END

OR LESS THAN MAX CAND POSITIVE)

* • * *

* * *

* * * *

* • • *
* *

Fig. 1. Points chosen by LLINE

SGNABS RETURNS THE SIGN OF I IN J AND THE ABS VALUE IM K

SUBROUTINE SGNABSCI. J . K)
INTEGER I . J . K
IF (I.LT.O) GOTO 1
J . . 1
K.I
RETURN
J«- 1
K.-I
RETURN
END

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

424 Algorithms Supplement

References:
BRESENHAM, J. E. (1965). Algorithm for computer control of

a digital plotter, IBM Systems Journal, Vol. 4, No. 1,
pp. 25-30.

STOCKTON, F. G. (1963). Algorithm 162, XYMove Plotting,
CACM, Vol. 6, No. 4, p. 161.

Algorithm 55
AN INTERNAL MERGE SORT GIVING RANKS OF
ITEMS

A. D. Woodall
North Staffordshire Polytechnic
Stafford

Author's note:
An internal sorting procedure may present its results in

several ways, among them:

1. After calling the procedure the items may have been
rearranged into order—e.g. Scowen (1965).

2. The procedure, while leaving the items untouched may
provide the indices of the ordered items as successive entries
of a rank vector—e.g. Boothroyd (1967).

3. The procedure may provide an ordered chain of items—
e.g. Woodall (1969).

The first of these is the most useful form to have, if items
need to be accessed other than in ordered sequence; it is also
the only type which can be implemented with 'minimum
storage'. The second is only a little less convenient for
random access, but the third is of use only in giving the items
in sequence.

The first type of procedure is generally the slowest, and the
third is often fastest. The present algorithm uses chaining
to accomplish the bulk of the sort, but presents the results in
a rank vector.

The main part of the procedure is identical with mergesort
(Woodall, 1970)—the array rank playing the part of hds in
mergesort. When the sort has reached the commencement
of the last pass, with two ordered lists remaining to be
merged, the final ordering is recorded by putting the indices
of the ordered items into the array rank.

On test on an ICL 4130 computer, mergerank, the present
procedure, has been found to retain almost all of the advan-
tages of mergesort. It is faster than keysort (Boothroyd,
1967) by about 20% with random data, and its speed improves
when the data has some prior ordering (while keysort is
becoming slower).

It is slower than mergesort, but the difference is very slight,
and the results are in a more useful form.

References
BOOTHROYD, J. (1967). Algorithm 26, The Computer Journal,

Vol. 10, p. 309.
SCOWEN, R. S. (1965). Algorithm 271, CA CM, Vol. 8, p. 669.
WOODALL, A. D. (1969). Algorithm 43, The Computer

Journal, Vol. 12, p. 406.
WOODALL, A. D. (1970). Algorithm 45, The Computer

Journal, Vol. 13, p. 110.

procedure mergerank{n,a,rank); value n; integer n;
array a; integer array rank;
comment n is the number of keys to be sorted. The actual
parameter corresponding to rank should have bounds 1 to n.
a[l] to a[n] should contain the n keys to be sorted. After
mergesort has been called, a will be unchanged, but the order of
the keys in a will be given by rank, so that a[rank[i]] is a
non-decreasing function of i;

begin real try, next, at 1, at 2; integer i,j, k, t, no I, tryl, try 2;
integer array list[l: n];
if/j < 3 then goto SHORT;

comment/row here to the label MERGE the first pass links ad-
jacent items into ordered lists, using existing runs in the data.
A list may run either forward, if the run is in order or back-
ward if it is in reverse order;
j:=t:=l;k:=2;
try:=a[\];

L2:next := a[k];
if try > next then goto BACKWARD;
rank [j] := t;

FORWARD:list[t] := k;
if k = n then

begin
Iist[k] := 0; goto MERGE
end;

try := next; t := k;
k : = k + 1; next : — a[k];
if try < next then goto FORWARD;
list[t]:=O;

LI: t :=k; k := k + 1;

if / = n then
begin
rank\J] := n; list[n] := 0;
goto MERGE
end;

try := next; goto LI;
BACKWARD:list[t] := 0;
BW:list[k] := t;

if k = n then
begin
rank\J] := k; goto MERGE
end;

try := next; t := k;
k := k + 1; next : = a[k];
if try > next then goto BW;
rank[j] : = t; goto LI;

MERGE: if j = 1 then goto SPECIAL;
comment j = 1 means that the data was already in order, or
reverse order;
nol : = j ;
comment nol is the number of lists after each pass;
for t := 1, / + t while t < nol do k := t;
j : = t:=k + k+ 1 —nol;
if j > 1 then goto LB;
comment merging starts part-way through, at a point chosen
to reduce the number of lists after the first merging pass to a
power of 2;

LA: if nol = 2 then goto RANKPASS;
t:=\;j:=\;

LB: tryl := rank[t]; try2 := rank[t + 1];
at\ := a[tryl]; at2 := a[try2];
if at\ < at2 then

begin
rank[j] : = tryl; gotoZXl
end;

rank\J] := try2;
LL2: k := Iist[try2);

if k = 0 then
begin
Hst[try2] := tryl; goto EXIT
end;

at2 :=a[k);
if at\ < a/2 then

begin
Ust[try2] : = tryl; try2 : = k
end

else
begin
try2 : = k; goto LL2
end;

LL1: k := list[tryl];

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

Algorithms Supplement 425

if k = 0 then
begin
list[try\] := try!; goto
end;

atl :=a[k];
if a/2 < atl then

begin
/w/[/r>'l] := tryl; try\ := /t;
goto LL1
end;

/ryl :=&; gotoLLl;
EX[T:j :==/+ l ; / : = / + 2;

if wo/ > / then goto 1,5;
nol : = j — 1; goto L/l;

RANKPASS: tryl : = rank[l]; tryl : = ranA:[2];
/ : = 0 ; a / l := a[tryl];
atl := a[tryl];

LOOP:j: = j + 1;
if a/1 < a/2 then

begin
rank\J] := /ryl; tryl := /is/fftyl];
if /ryl = 0 then

begin
k := tryl; goto RNX
end;

a/1 := a[tryl]; goto LOOP
end

else
begin
rart&L/] := tryl; tryl : — list[tryl];
if tryl = 0 then

begin
k := /ryl; goto RNX
end;

a/2 : = a[tryl\; goto LOOP
end;

i?iVX: for./ : = j + 1 while y < n do
begin
rank[j] := k; k := list[k]
end;

goto RND;
SPECIAL: k : = « + 1;

if ranA:[l] = 1 then
begin
for i := 1 step 1 until « do rank[i] := /
end

else
for i : = 1 step 1 until n do rank[i] :=& — /;
goto RND;

SHORT: if n = 1 then rank[\] := 1
else

begin
if a[l]>a[2]then

begin
rank[l] :=l;rank[l] := 1
end

else
begin
rank[l] := \;rank[l] := 2
end

end;
RND: end mergerank

Algorithm 56
TO DISENTANGLE A CHAIN

A. D. Woodall
North Staffordshire Polytechnic
Stafford

Author's note:
Some recent sorting procedures (Woodall, 1969,1970) have

presented the results in the form of a chain. Since this is
only useful if the results are to be accessed in sequence, the
present procedure has been written to rearrange the sorted
items into the order defined by the chain. The procedure,
which uses little extra storage space, could clearly be used for
reordering equal length records of any size. It operates by
exchanging at most n — 1 pairs of items.

References
WOODALL, A. D. (1969).

Journal, Vol. 12, p. 406.
WOODALL, A. D. (1970).

Journal, Vol. 13, p. 110.

Algorithm 43, The Computer

Algorithm 45, The Computer

procedure untangle («, a, link, start); value n, start; integer
n, start; array a; integer array link;
comment the array elements a[l] to a[ri] contain the n items to
be reordered. After the call of untangle they will contain the
same items rearranged. The desired order is defined by start
and the integer array link. The first item (which will become
a[l]) is a[start], thereafter the successor ofa[i] is a[link[i]] for
all i. If the final item is a[k], the value of link[k] is immaterial.
After calling untangle, start and n will be unchanged, but link
will contain rubbish;

begin integer ;, j , k,nl; real w;
nl : = n — I; j := start;
for i: = 1 step 1 until n\ do

begin
LOOP: if j < i then

begin
j := link[j]; goto LOOP
end;

if j = i then j : = link\J]
else

begin
w := A[i]; A[i] := A[j];
A[j] := w; k := link\J];

j:=k
end

end
end untangle

Algorithm 57

FIND

(The determination of the index value within some range
for which a function assumes the minimal or maximal value
subject to some condition; if no index value exists for which
the condition is satisfied then go to a label.)*

T. O. M. Kronsjo
University of Birmingham

Author's note:
In mathematical programming it is often necessary to solve

part'problems as the following:

(a) Find the integer k for which the coefficient

Cfc = m i n Cj
j=\,. . ., n

c,<0

which may be recognised as the problem of the primal
simplex method of linear programming of finding the index k
of the nonbasic variable with the minimal negative reduced

* The investigation leading to Algorithms 57 to 61 was supported
by the Swedish Council for Social Science Research.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

426 Algorithms Supplement

cost coefficient, or that of the dual simplex method of finding
the index k of the row of the basic variable with minimal
negative value.

(b) Find the integer / for which the ratio

A
"ik

= mm —
aa>0

which again may be recognised as the problem of the primal
simplex method of finding the row / of the basic variable that
first will become zero when the nonbasic variable k is
increased, or that of the dual simplex method of finding the
nonbasic variable / that should be increased in order to enable
the negative basic variable in the Arth row to become equal to
zero at minimal cost.

This extremely common operation in mathematical pro-
gramming may be solved by the following procedure, which
closely follows the procedure TROUVER by P. Broise (1965).
procedure FIND(r) the integer which corresponds to the
minimal value of the expression: (f) when the index: (i)
assumes successive integer values from: (s) to:(t) subject to the
condition: (b) if no such integer r exists then go to: (e);
value s, t; integer r, i, s, t; real/; Boolean b; label e;

begin real min;
min := 1020;
for i : = s step 1 until t do
if b then

begin
i f / < min then

begin
min : = f;r:=i
end

end;
if min = iO2O then goto e
end procedure FIND;

Note that if the formulation

if b a n d / < min then

had been used above this would have led to the complete
condition being evaluated, in spite of the fact that / should
not be evaluated if b is not satisfied. This may lead to odd
types of errors, e.g. if the actual Boolean expression is
a[i, k] > 0 and the actual function / is b[i]/a[i, k] and the
particular a[i, k] coefficient is equal to 0, this would lead to
a failure indication of 'division by zero' or 'overflow'.

The above procedure was tested on the ICL-KDF9 compu-
ter and the modification of the note made by A. M. Irving,
National Economic Planning Unit, Faculty of Commerce and
Social Science, University of Birmingham.

The above problems may then be solved by the procedure
calls:

FIND(k) the integer whichgives the minimal coefficient: (c[/])
when the index: (j) assumes successive integer values from:
(1) to: (n) subject to the condition: (c\J] < 0) if no such integer
k exists then goto: {finite solution);

FIND(l) the integer which corresponds to the minimal ratio:
(b[i]/a[i, k]) when the index: (i) assumes successive integer
values from: (1) to: (m) subject to the condition: (a[i, k] > 0)
if no such integer I exists then goto: (infinite solution);

To facilitate the elaboration of experimental programs
it is useful to modify the procedure so that it may search for
the minimum and the maximum of the expression depending
upon whether a parameter opt is given the value —1 or + 1 ,
respectively.

It is also valuable to let the procedure identifier assume the
extremal value of the expression, if it exists.

The essential difference if the procedure is to search for the
minimum or maximum can be summarised by the following
table:

MINIMUM (opt = - 1) MAXIMUM (opt = + 1)
min: = large positive value; max: = large negative value;

i f / < min then if / > max then

These conditions can be reformulated as:

f—min<0 f—max>0
or or

-\(f- min)>0 l(f-max)>0
The procedure FIND can thus be reformulated to search

for the maximum or minimum using the parameter opt by
combining the above statements and conditions into the
single statement:

extremum := large negative value X opt;
and the condition

it opt X (f— extremum) > 0 then
The corresponding procedure declaration is given below.

The procedure was tested on the ICL-KDF9 computer
and an improvement suggested by V. Kolarov, Deputy Chief
of the Mathematical Simulation of Economic Processes
Department of the State Committee of Planning, Sofia,
Bulgaria.

Reference
BROISE, P. (1965). Le langage ALGOL, Applications a des

problemes de Recherche Operationelle, Dunod, Paris, p. 79,
procedure TROUVER.

real procedure FIND (r) the integer which for the parameter:
(opt) equal to either minus one or plus one corresponds to the
minimum or the maximum value respectively of the expression:
(/) when the index: (i) assumes successive integer values from:
(s) to: (t) subject to the condition: (b) if no such integer r exists
then goto: (e);
value opt, s, t; integer r, opt, i, s, t; real/; Boolean b; label e;

begin real extremum;
extremum: = — 10 20 x opt;
for i: = s step 1 until t do
if b then

begin
if opt X (/ — extremum) > 0 then

begin
extremum : = / ;
r := i
end

end;
if extremum = — 1020 X opt then goto e
else FIND : = extremum

end real procedure FIND;

Algorithm 58
AN ILLUSTRATIVE PRIMAL SIMPLEX LINEAR PRO-
GRAM

T. O. M. Kronsjo
University of Birmingham

Author's note:
An extremely simplified linear program procedure based

on the primal simplex method may be formulated using not
more than nine statements (semicolons) in the procedure
body.

The linear programming problem is assumed to be

Extremum {ex + d\
Ax> b

x>0} 0)
where Extremum represents either minimisation or maximisa-
tion and b < 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

Algorithms Supplement 427

In order to obtain the desired brief formulation it is
suitable to define (1) as the problem

n—m

Extremum { 2 cjxj + d\

j=l

Xj>0 (j=l,...,n-m)} (1)

A variable x0 representing the value of the objective function
and slack variables Xj(J = n — m + I, . . . , n) may be intro-
duced in order to obtain the canonical problem

Extremum x0 subject to

n—m

XQ — 2 CJXJ = d

-"S™avxy + xn_m+l =-b, (i = 1 , . . . , m)

Xj> 0 0 = 1 n)
(3)

A starting basis x0 = d and xn_m+i = — bt is immediately
available, which is also a feasible solution because of the
assumption made in (1) that b < 0.

To simplify the formulation of these iterations it is useful
to introduce an array A[0:m, 0:n], the elements of which
contain all the coefficients and constants of problem (3)
except for the coefficients of the x0 variable which are never
affected by the pivoting operations and therefore need not be
explicitly remembered. The detailed content of the array A
is as follows:

A[0,Q] = d
A[0, \:n — m] = - c[l:n - m]
A[0, n — m + l:n] = 0

A[1:m, 1:n — m] = — a[l: m, 1:n — m]
A[l :m, n — m + 1 :n] = E

where 0 denotes a row vector of zeros and E an identity
matrix of appropriate dimensions.

The names of the variables in the current basis may be
stored in the integer array I[0:m] with initial values

/[0] = 0
/[/] = n — m + i (i = 1, . . . , m)

The problem (3) may then be solved by iterations of the
primal simplex algorithm upon the problem (4), i.e. the
simplex tableau

List of basic
variables

i in

Extremum x0

S

S = A
i0

(/ = ! , . . . , m)

Xj>0 (4)

which from iteration to iteration is kept in canonical form
with respect to the basic variables

Xj jeI[0:m]

The procedure finds the minimum or maximum of xQ depend-
ing on whether a parameter opt is equal to —1 or -f-1,
respectively. In solving the problem the procedure calls on
the previously mentioned procedure FIND and gives on exit

either k = 0

in which case the linear program has a finite optimal solution
given by

*/[,] = A[i, 0] (5)
or 1 < k < n

in which case the linear program has an infinite solution
given by

x m = A[i, 0] - A[i, k]xO (i = 0 , . . . , m) (6)

Rounding errors
In linear programming tableaus the pivoting operations aim

at producing a column of zeros except for a unit coefficient
in one position. Due to inevitable rounding errors, the
resulting elements will often be absolutely small numbers
instead of zeros. If they in due course are multiplied by
larger numbers, they are likely to make a considerable
contribution to the cumulative effect of the rounding errors
of each iteration. To alleviate this tendency, it is normal to
set a number resulting from a pivot operation equal to zero
if it is less than a given 'drop' coefficient.

This may be done by the following straightforward pro-
cedure

real procedure SIGNIFICANT (coefficient, criteria);
value coefficient, criteria; real coefficient, criteria;
SIGNIFICANT := if abs(coefficient) > criteria then

coefficient else 0;

To prevent the computer program from continuing the
iterations indefinitely or obtaining grossly inaccurate solu-
tions due to it not recognising a finite or infinite optimal
solution, or the existence or nonexistence of a feasible solution,
as a consequence of rounding errors, a number of con-
ventional criterias for defining what is a true 'zero' or not, are
used as suggested in an investigation by P. Wolfe (1965).

The procedure was tested on ICL-KDF9 and some short-
comings eliminated by R. Z. Meron, National Economic
Planning Unit, Faculty of Commerce and Social Science,
University of Birmingham.

References
DANTZIG, G. B. (1963). Linear Programming and Extensions,

Princeton University Press.
BROISE, P. (1965). Le Langage ALGOL, Applications a des

problemes de Recherche Operationelle, Dunod, Paris,
pp. 63-81.

WOLFE, P. (1965). Error in the Solution of Linear Program-
ming Problems, in Louis B. Rail (Ed.), Error in Digital
Computation, Vol. 2, United States Army Mathematics
Research Center, The University of Wisconsin, Publication
No. 15, John Wiley and Sons, Inc., New York, pp. 271-284.

procedure PRIMAL SIMPLEXLP (opt, m, n, A, I, k, eO, el,
el, FIND, SIGNIFICANT);
value opt, m, n, eO, el, el; integer opt, m,n,k;
array A; integer array /;
real eO, el, el; real procedure FIND, SIGNIFICANT;

begin integer i, j , I;
comment determination of the index k of the variable that
should enter the basis, el (e.g. 10 — 3) is used instead of a
zero in order to reduce the possibility of perpetual basis
changes arising from cumulating rounding errors;

NEXT ITERATION:
FIND (k, -opt, A[0J],j, 1, n, -opt x A[0,j] > el, FINITE
SOLUTION);
comment determination of the row I of the basic variable
that should leave the basis, el (e.g. \Q — 4) is used instead
of a zero in order to reduce the effect of rounding errors;
FIND (1,-1, A[i, 0] / A[i, k], i, 1, m, A[i, k] > el,

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

428 Algorithms Supplement

INFINITE SOLUTION)-,
comment change of basis, transformation of the equations
into canonical form with respect to the new basis variables,
a coefficient which arises from a subtraction and is absolutely
less than eO (e.g. jo — 7) is set equal to zero;
/ [/] : = * ;
for j : = 0 step 1 until k — 1, k + 1 step 1 until n, k do

by

for i : = 0 step 1 until / — ! , / + 1 step 1 until m do
for j : = 0 step 1 until k — 1, k + 1 step 1 until n, k do
A[i,j] := SIGNIFICANT (A[i, j] — A[l,j] x A[i, k], eO);
goto NEXT ITERATION;

FINITE SOLUTION: k:=0;
INFINITE SOLUTION:

end of procedure PRIMAL SIMPLEX LP;

Algorithm 59
AN ILLUSTRATIVE PRIMAL SIMPLEX LINEAR PRO-
GRAM USING MULTIPLIERS

T. O. M. Kronsjo
University of Birmingham

Author's note:
The preceding algorithm may be modified so that instead

of explicitly transforming the equations into canonical form
with respect to the current basis variables, it would record in
a mnemonic table (the inverse) what fractions of each equation
that it has to add to obtain the transformed equations.
(Compare Dantzig, 1963.) Using the information of the
mnemonic table (the inverse), the procedure could then
calculate the reduced cost coefficients of the non-basic
variables, the transformed coefficients of the entering non-
basic variable, and the transformed right-hand constants.

(To save operations, it is, however, useful to maintain the
explicit form of the transformed right-hand constants as in
the previous algorithm.)

The following procedure solves a linear programming
problem of the form minimise or maximise x0 depending on
the value of a parameter opt being either —1 or + 1 ,
respectively, and subject to:

= Ago

Auxj = Aio (' = 1,

for which a feasible basic solution is known consisting of the
variables with index

/e/[O:w]
with the inverse

U[O:m, 0:m]

and with the transformed form of the right-hand side, i.e. the
current values of the basic variables in

U[O:m, - 1]

The transformed form of an entering variable is obtained in

U[0:m, —2]

The procedure gives upon exit

either k = 0

in which case the linear program has a finite optimal solution
given by

*/[,!= U[i, - 1] (i=O,...,m)

or 1 < k < n

in which case the linear program has an infinite solution given

* / ! ,] = U[i, - 1] - U[i, - H x t (i = 0 , / n)

Assignment of the result of a summation
In order to achieve a compact formulation of the linear

program in dealing with expressions like
m

if 2 U[i,j] x A\J, k]>0 then
0

2
, = 0 m

theta: = U[i, - 1] / £ U[i,j] x A\j, k]

where the same sum is required at different places, it is
extremely useful to define a real procedure SUM(r, i, s, t,f);
which sets the identifier SUM and the formal variable r equal

i

to 2 /where / i s an unspecified function of i, which will be
specified when calling upon the procedure.
The procedure is straightforward

real procedure SUM(r, i, s, t,f);
value s, t; real r, f; integer /, s, t;

begin
r : = 0 ;
for i:— s step 1 until t do r : = r + f;
SUM:=r
end real procedure SUM;

To obtain a faster execution of the procedure it may be
useful to use a local working variable w. The corresponding
procedure body would then be

begin real w;
w : = 0 ;
for i := s step 1 until t do w : = w + f;
r :=w;
SUM:=w
end real procedure SUM;

Using this summation procedure, the modification of the
preceding procedure is readily undertaken and yields the
following brief algorithm.

The procedure was tested on ICL-KDF9 and some short-
comings eliminated by M. Walmsley, Ministry of Planning
and Economic Development, Entebbe, Uganda.

Reference
DANTZIG, G. B. (1963). Linear programming and extensions,

Princeton University Press, Chapter 9.

procedure PRIMAL SIMPLEX LP USING MULTIPLIERS
(opt, m, n, I, A, U, k, eO, el, el, FIND, SIGNIFICANT,
SUM);
value opt, m, n, eO, el, el; integer opt, m,n,k; integer array /;
array A, U; real eO, el, el;
real procedure FIND, SIGNIFICANT, SUM;

begin integer i, j , I; real w;
comment the determination of the entering variable k, using
el (e.g. jo — 3) instead of zero to reduce the possibility of
perpetual basis changes arising from cumulating rounding
errors;

NEXT ITERATION:
U[0,-2] :=FIND (k, -opt, w, j , 1, n, -opt X SUM (w, i,
0, m, U[0,i] X A[i,j]) > el, FINITE SOLUTION);
comment determination of row I of the basic variable that
should leave the basis, at the same time the transformed
column Ak is calculated, el (e.g. io — 4) is again used
instead of zero to reduce the effect of rounding errors;
FIND (I, -1, U[i, - 1] / U[i, - 2] , i, 1, m, SUM(U[i, - 2] ,

j , 0, m, U[i, j] X A\j, k]) > el, INFINITE SOLUTION);
comment change of basis, transforming the constants and

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

Algorithms Supplement 429

updating the inverse, a coefficient which arises from a sub-
traction and is absolutely less than eO (e.g. 10 — 7) is set
equal to zero;

for j : = — 1 step 1 until m do

for i
for/

= 0 step 1 until / — 1, / + 1 step 1 until m do
= — 1 step 1 until m do

U[i, j] := SIGNIFICANT (V[i, j] - U[l, j] x U[i, -2] ,
eO);
goto NEXT ITERATION;

FINITE SOLUTION: k:=0;
INFINITE SOLUTION:

end procedure PRIMAL SIMPLEX LP USING MULTI-
PLIERS;

The linear program

Min {ex + d\
x Ax~^z b

x>0}

with m constraints, n — m variables, elements of A being a^
and b < 0 may be solved, setting opt equal to — 1, by
choosing the slack variables as basic variables and defining
an array A as follows

A[0, 0] = d
A[0, 1 :n — m\ = — c[l:n — m]
A[0,n- m+ l:n] = 0
A[\:m, 0] = - b[l:m]
A[\:m, \:n — m] = — a[\ :m, \:n — m]
A[\ :m, n — m + 1 :n] = E

where 0 denotes a row vector of zeros and E an identity
matrix of appropriate dimensions,

/[0] = 0
/[/] = n — m + i (i — 1, . . . , m)
U[0:m, —2] = any value
U[0, -1] = d
U[0:m,0:m] = E
U[\:m, - 1] = - b[l:m]

where E denotes an identity matrix of appropriate dimensions,
and finally k = any value.

Algorithm 60

AN ILLUSTRATIVE PRIMAL SIMPLEX LINEAR PRO-
GRAM USING MULTIPLIERS AND SINGLE DIMEN-
SIONAL ARRAYS

T. O. M. Kronsjo
University of Birmingham

Author's note:

In computer problems involving similar operations to be
performed upon a variable number r of coefficient matrices
C-, of different dimensions m[i], «[/](/ = 1 , . . . , n) it would be
extremely useful to be able to declare these matrices in the
form of a single matrix

C[l:r, 1 :m[i], 1:«[/]]

where / refers to the particular value of the first index.
This is, however, not possible in either ALGOL 60 or
FORTRAN IV. This limitation of these computer languages
may however be overcome by declaring multidimensional
arrays as single dimensional ones, and introducing corre-
sponding changes in the programs.

The approach may be illustrated upon the basis of the
previous algorithm PRIMAL SIMPLEX LP USING MULTI-
PLIERS.

The columns of its matrix A[0:m, 0:n] may be stored
after each other in the form of a column vector A[0:m
+ (m + 1) x »]. The earlier element A[i, j] will then be

contained in the present element A[i + (jn + 1) x j], as
evident from the following illustrations and derivation.

0 1

0

1

m

0,0

/, 0

m, 0

0, 1

i,J
m, n

Fig. 1. The indices of the earlier array A[0:m, 0:n].

0 i m m + 1 k

0, 0 i, 0 m, 0 0, 1 i,j m, n

Fig. 2. The relationship between the indices of the present
array A[0:m + (m + 1) x n] and those of the earlier array

A[Q:m, 0:n].

To the index /, j of the two dimensional array A there will
correspond an index k of the single dimensional array A,
which may be expressed as a linear function of i and j as
follows:

k = a + b x i + c Xj (1)

It is required that the earlier elements A[0, 0], A[i, 0] and
A[0, 1] should be contained in the present elements A[0], A[i]
and A[m + 1], respectively, which together with (1) gives the
conditions

m +

and hence (1)

0 = a +
i=0 +

1 = 0 +

6x0+ cxO
b x i + c x 0

lxO + cx l

may be expressed as

k=i + (m + 1) x /

i

i

i

.e.

.e.

.e.

a

b

c

= 0

= i

= m +

(2)

(3)

1 (4)

(5)

Similarly the rows of the matrix U[0:m, —2:m] may be stored
after each other as a row vector U[0:2 + (m + 3) X m + m],
where the earlier element U[i, J] will be contained in the
present element U[2 + (m + 3) X i + j].

The relationships between the index k and the index /, j
may similarly be obtained by noting that the earlier elements
(7[0, —2], t/[0, —1] and C/[l, —2] should now be contained
in the present elements U[0], U[l] and U[m + 3] which
together with (1) give the conditions

6x0 + cx(-2) i.e. a = 2c

i.e. a=c+l

(6)

(7)

It follows from (6) and (7) that 2c — c + 1 and hence that
c — 1 and a = 2

3 = 2 + bx\ (—2) i.e. b =

and hence

k = 2 + (m + 3) x i + j

(8)

(9)

The above index relations (5) and (9) may be used to define
a procedure PRIMAL SIMPLEX LP USING MULTI-
PLIERS AND SINGLE DIMENSIONAL ARRAYS based
upon the statements of the earlier elaborated procedure
PRIMAL SIMPLEX LP USING MULTIPLIERS.

The procedure was tested on the ICL-KDF9 computer
and some shortcomings eliminated by V. Kolarov, Deputy
Chief of the Mathematical Simulation of Economic Pro-
cesses Department of the State Committee of Planning,
Sofia, Bulgaria.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

430 Algorithms Supplement

procedure PRIMAL SIMPLEX LP USING MULTIPLIERS
AND SINGLE DIMENSIONAL ARRAYS {opt, m, n, I, A,
U, k, eO, el, el, FIND, SIGNIFICANT, SUM);
value opt, m, n, eO, el, el; integer opt, m, n, k;
integer array /; array A, U; real eO, el, el;
real procedure FIND, SIGNIFICANT, SUM;

begin integer i, j , I; real w;
comment The determination of entering variable k, using el
(e.g. i o ~ 3) instead of zero to reduce the possibility of
perpetual basis changes arising from cumulating rounding
errors;

NEXT ITERATION: f/[0] := FIND (k, -opt, w, j , 1, n,
-opt x SUM(w, i, 0, m, U\i + 2] x A[i +j x (m + 1)])
> el, FINITE SOLUTION);
comment The determination of row I of the basic variable
that should leave the basis, at the same time the transformed
column Ak is calculated, el (e.g. io — 4) is again used instead
of zero to reduce the effect of rounding errors;
FIND (1,-1, U[i x(m + 3)+l]/U[ix(m + 3)],i,\,m,
SUM(U[i X (m + 3)], j,0,m, U[i x (m + 3) +j + 2] x
A\J + k x (m + 1)]) > el, INFINITE SOLUTION);
comment Change of basis, transforming the constants and
updating the inverse, a coefficient which arises from a sub-
traction and is less than eO (e.g. 10 — 7) is set equal to zero;
/ [/] : = * ;
for j : = — 1 step 1 until m do
U[l x (m + 3) +j + 2] := U[l x (m + 3) +j + 2] /
U[l x(m + 3)];
for / : = 0 step 1 until / — 1, / + 1 step 1 until m do
for j : = — 1 step 1 until m do
U[i X (m + 3) + j + 2] : = SIGNIFICANT(U[i x (m + 3)
+ j + 2] - U[l x (m + 3) + j + 2] x U[i x (m + 3)],
eO);
goto NEXT ITERATION;

FINITE SOLUTION: k:=0;
INFINITE SOLUTION:

end procedure PRIMAL SIMPLEX USING MULTIPLIERS
AND SINGLE DIMENSIONAL ARRAYS;

The above linear program procedure may be reformulated
in a form involving fewer index multiplications by redefining
the procedures SUM and FIND to include a formal step
parameter u between the lower and upper bound parameters
s and t. This procedure was tested on ICL-KDF9 and some
shortcomings eliminated by V. Kolarov, Deputy Chief of the
Mathematical Simulation of Economic Processes Department
of the State Committee of Planning, Sofia, Bulgaria.

procedure PRIMAL SIMPLEX LP USING MULTIPLIERS
AND SINGLE DIMENSIONAL ARRA YS (opt, m, n, I, A,
U, k, eO, el, el, FIND, SIGNIFICANT, SUM);
value opt, m, n, eO, el, el; integer opt, m, n, k;
integer array /; array A, U; real eO, el, el;
real procedure FIND, SIGNIFICANT, SUM;

begin integer i, j , I; real w;
NEXT ITERATION:

U[0] := FIND(k, -opt, w, j , m + 1, m + 1, n x (m + 1),
-opt x SUM(w, i, 0, m, U[i + 2] x A[i + /]) > el,
FINITE SOL UTION);
FIND(l, - 1 , U[i+1]/U[i], i, m + 3, m + 3, mx(m + 3),
SUM(U[i], j , 0, m, U[i + j + 1] X A\J + k]) > el,
INFINITE SOLUTION);
/[/-r 0w + 3)] :=k + (m+ 1);
for/ := / + 1 step 1 until / + m + 1 do
uu] ••= urn I uuy,
for i : = 0 step m + 3 until (/ - 1) x (m + 3),
(/ -f 1) x (m + 3) step m + 3 until m X (m + 3) do
for/ := 1 step 1 until m + 2 do
U[i + J] := SIGNIFICANT(U[i + /] - U[l + j] x U[i],
eO);
goto NEXT ITERATION;

FINITE SOLUTION: k := 0;

INFINITE SOLUTION:
end procedure PRIMAL SIMPLEX USING MULTIPLIERS
AND SINGLE DIMENSIONAL ARRA YS;

Algorithm 61

AN ILLUSTRATIVE SELF-DUAL PARAMETRIC SIM-
PLEX LINEAR PROGRAM USING MULTIPLIERS

T. O. M. Kronsjo
University of Birmingham

Author's note:
An ALGOL procedure for the solution of a linear program

using the self-dual parametric algorithm (Dantzig, 1963,
section 11.3) may by assiduous use of variants of the above
procedures FIND, SIGNIFICANT and SUM be formulated
using only about 15 statements.

A formulation of the linear programming problem solved by
the self-dual parametric simplex method

The self-dual parametric simplex algorithm solves the
problem

Min {ex + d \ Dual variables (1)

by considering the parametric problem

Min {(c + c*p)x + d | Dual variables (2)
X

Ax^.b + b*q u
*;>o }

where b* < 0 and c* > 0.

It is evident that ifp, q are chosen sufficiently large then an
optimal and feasible solution may easily be obtained to the
parametric problem, e.g. if b + b*q <̂ 0 and c + c*p ^ 0
then an optimal solution is x = 0, u = 0.

The above problem may be formulated as Min x0 subject
to

«—m

*o — S (c/ + cfp)xj = d

n—m

- 2 au
xn_m+i = -bi-b*q (i=

<J= 1 , . . . , «) 0)

This problem may be reformulated as Min x0 + px_x subject
to

Row
No.

/ n—m
P \ x - \ Zi cj Xj

\ j=i
= 0 +

= d +
n—m

- 2 a,jXj

0

0 q 0
1

(4)

Column No. 1 n 0 -1

This reformulation yields a possible way of recording the
problem for computation, the values of the parameters p and q
being separately remembered. The actual cost coefficients

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

Algorithms Supplement 431

will then be given by the entries in the Oth row plus p times
the corresponding entries in the — 1st row, similarly the actual
right-hand side constants will then be given by the entries in
the —2nd column plus q times the corresponding entries in
the —3rd column.

The problem (4) is in canonical form with respect to the
variables x_u x0, xn_m+i(i = 1 m). Therefore, an
initial solution may easily be obtained by setting the (non-
basic) variables Xj = 0 (/ = 1 n — m) and obtaining the
corresponding values for the basic variables x_x = 0, x0 = d,
xn_m+i = — b; — b*q (i = 1 m). This solution will be
a feasible solution if q is chosen so that each b*q is smaller
than or equal to the negative of the corresponding bt constant
(/ = 1, . . . , m). The basic solution will also be optimal if
all the cost coefficients — (cj + cfp) of the nonbasic variables
are negative, which will be the case if p is chosen so that each
c*p is greater than or equal to the negative of the corre-
sponding Cj coefficient (y = 1 n — m).

As the solution process proceeds the original equations (3)
or (4) will be transformed, and the corresponding equations
become Min x0 + px_ , subject to

• (* -
c*x-

+ S CjXj
JeJ

2 dijXj + xk = Bt

bU

0=1,-

x, =
. > 0, k £ / (5)

where the set of indices of the basic variables is denoted by /
and that of the nonbasic variables by / .

At any iteration of the simplex algorithm the reduced cost
coefficient for a basic variable is zero, except if it itself
expresses the value of the objective function in which case it
is equal to unity. The reduced cost coefficient for any
variable Xj(J = 1 ri) consists of the sum c,- + cfp. As
p ;> 0 this means that both terms c,- and cf must be equal to
zero for the basic variables (J e /) . This may easily be
achieved by using the above formulation (5) of the equation
system, always retaining x_ t and x0 in the basis, and for each
change of basis transforming the equation system into
canonical form with respect to the current basic variables,
using the standard rules of linear programming.

The linear programming matrices required by the simplex
method using multipliers (Kronsjo, 1970) may be set up
having separate rows and columns for the coefficients asso-
ciated with the p and q parameters, respectively.

- 1 0 1 j n — mn — m+1

- 1

1
i

m

0

0

-*?

0

d

~bi

-el

- f l y

0

0

E = A

- 4 - 3 - 2 - 1 0 1 m

1
0

1
i

m
any

0
0

-bi

0
d

-b,

1
0

0

0
1

0

0

E

1
0

1
U i

m

n
n
n

- 1
0

— m + 1
— m + i
— m + m

= /

where E denotes an identity matrix of appropriate dimensions.

Primal simplex iterations
It is desirable that the final procedure should function for

both minimisation and maximisation according to a para-
meter opt being given the value —1 and + 1 , respectively,
without requiring any further changes in the data given.
The two cases will be considered in turn and then summarised
by using the values of the parameter opt.

(a) Minimisation

Assume that at the current iteration p = p* > 0 and that
all the reduced cost coefficients are nonpositive

• + cfp* <, 0 U = 1, • • (60

Decreasing the parameter p = p* > 0 may affect the sign of
the reduced cost coefficient c,- and cfp depending upon the
sign of the coefficients dj and cf. The effects may be sum-
marised in the form of the following table:

sign (cj + cjp) for 0 < p < p*

Cj>0

Sj = O

Cj<0

cf>0

(+)
(+)
—

cf = 0

(+)
0

—

cf<0

- - = • +

—

—

(7')

The cases indicated by (+) are not applicable as they
contradict the assumption of (60 that all the reduced cost
coefficients are nonpositive for p = p*. Therefore only
reduced cost coefficients satisfying

> 0 and cj < 0 (80

may become positive when p ;> 0 is decreased. The values
of p for which the reduced cost coefficients satisfying (80
change sign may be obtained by solving (60 for/? remembering
that cf < 0

(90

For all p satisfying (90 the inequality (60 will be true. The
index of the first variable for which the sign of its reduced cost
coefficient will change from negative to positive when the
parameter p is decreased may be denoted by k. The value
ofp for which this occurs may be denoted by pk and obtained
from

Pk Cj > 0 and cf < (ioo

This definition of pk will in this case of minimisation either
give a positive value or no value at all.

(b) Maximisation

Assume that at the current iteration p = p* < 0 and that
all the reduced cost coefficients are nonnegative

cj + cfp* 2> 0 U = 1, • • • ,«) (6'0

Increasing the parameter p = p* < 0 may only affect the sign
of the expression if

cy < 0 and cf < 0

as evident from the table following.

(8'0

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

432

sign (cj + c*p) for p* < p < 0

cy>0

c, = 0

Cy < 0

c7>0

+
(-)
(~}

cf

(

=

+
0

—

0

)

cf <0

+
+

I ^ .

Algorithms Supplement

hi < 0 and 5? > 0

as evident from the table below.

sign (£,• + b~*?q*) forO<q<q*

(7")

The values of p for which the reduced cost coefficients
satisfying (8") change sign may be obtained by solving (6")
for p remembering that cf < 0, to obtain

P<Pj= -g (9")

For all p satisfying (9") the inequality (6") will be true. The
index of the first variable for which the sign of its reduced cost
coefficient will change from positive to negative when the
parameter is increased may be denoted by k. The value of p
for which this occurs may be denoted by pk and obtained
from

—cy

cy
cj < 0 and cf < 0 (10")

This definition of pk will in this case either give a negative
value or no value at all.

(c) Optimisation
The above two rules for determining the variable entering

the basis may be summarised using the parameter opt
assumed equal to —1 in the case of minimisation and +1
in the case of maximisation, and defining Extremum (—1)
and Extremum (+1) to mean Min and Max, respectively.

Pk = Extremum (—opt
Q .

Opt X C; < 0

and cf < 0 (10)

For p < pk(j> > pk) at minimisation (maximisation) the
reduced cost coefficient of the variable xk will be positive
(negative) and according to the rules of trie primal simplex
method it will be a candidate for introduction into the basis.
Therefore if z.pk value exists as defined by (10), then a corre-
sponding primal simplex iteration is undertaken, else a
feasible dual solution has been found.

If the increase of xk does not lead to that some basis
variable begins to become negative, then there exists an
infinite homogeneous solution to the primal problem and
hence no feasible dual solution to the problem.

The determination of the row of the basic variable which
has to leave the basis is analogous to the primal simplex
method and given by

atk aik
dik 0 (11)

Dual simplex iterations
Similarly, it may be assumed that at the current iteration

q = q* > 0 and that all the reduced constants are non-
negative.

b; + b*tq* > 0 (i = 1,. . . , m) (12)

Decreasing the parameter of
sign of (10) if

0 similarly affects the

(13)

5,>0

5, = 0

£,<o

b*t>Q

+

+

+ - > -

b* = 0

+

0

(-)

6*<0

+

(-)

(-)
(14)

The expressions (12) for which (13) holds may be expressed
as

-zk
The critical value of q and the corresponding row / may be

obtained from

(15)

This definition of qt will either give a positive value or no
value at all.

Again for q <qt the value of the basic variable in the
/th row will become negative and hence according to the rules
of the dual simplex algorithm a candidate for leaving the
basis. Therefore, if a q, value exists as defined by (15) then
a corresponding dual simplex iteration is undertaken, else a
feasible primal solution has been found.

In the case that a dual simplex iteration is undertaken,
then any entering variable has to be chosen so that its intro-
duction decreases the infeasibility of the primal solution
corresponding to q < q*. This can only occur if its trans-
formed coefficient atj < 0.

If there is no such variable then it is impossible to decrease
the infeasibility of the corresponding basic variable, in which
case no feasible primal solution exists to the problem, and
hence there exists an infinite homogeneous solution to the
dual problem. (See Kronsjo, 1968, section 1.)

If there are several variables with dy < 0, then the one is
selected which would least unfavourably affect the optimisa-
tion, as follows.

All nonbasic reduced cost coefficients are in the case of
minimisation (maximisation) nonpositive (nonnegative) and
the variable xk associated with the smallest increase (decrease)
in the objective function per unit of decreasing the infeasi-
bility is selected, i.e.

= Extremum (-opt) iSJ±Il£* a,, < 0 (16)

The four possible types of solution of a linear programming
problem

In order to establish to which one of the four possible cases
any given linear program belongs, it is near to hand to
start off using the working hypothesis that a feasible primal
and a feasible dual solution may exist, i.e. by assuming that
primal solution := dual solution := 1. The values of the
parameters p and q may then systematically be forced to zero.
The iterations are only continued if a primal solution is not
ruled out and primal feasibility improvement possible q =̂ 0,
or a dual solution is not ruled out and further dual feasibility
improvement possible p # 0. If the absolute value of p is
greater than or equal to q or no further improvement is

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

Algorithms Supplement 433

possible of q (which will be the case if it has been established
that no feasible primal solution exists) then we shall try to
decrease the absolute value of p(-opt x p) else an attempt
should be made to decrease q. If p(q) # 0 and no improve-
ment of p(q) is possible, it is then recorded that the problem
has no feasible dual (primal) solution, by setting the variable
dual (primal) solution equal to zero.

Upon exit the nonexistence or existence of a primal (dual)
solution to the unparameterised problem may be indicated
by a variable k(l) assuming the values 0 and >0, respectively.

The solution of the unparameterised problem must belong
to one of the following four categories:

(i) A primal feasible (k > 0) and a dual feasible (/ > 0)
solution:

[i, - 2] (1 = 0 , . . . , m)

(ii) An infinite primal solution (k > 0) and no dual
feasible (/ = 0) solution:

*/[,] = U[i, -2] - £/[/, - 4] X 6 (/ = 0 , . . . , m)

(iii) No primal feasible (k = 0) and an infinite dual (/ > 0)
solution:

l,j] x9 C / = l , . . . ,
u, =

(iv) No primal feasible (k = 0) and no dual feasible (/ = 0)
solution.

Examples for the systematic testing of the computer program
The computer program should be able to deal with prob-

lems having:
1. No feasible primal and no feasible dual solution;
2. Feasible primal and no feasible dual solution, i.e.

infinite primal solution;
3. No feasible primal and feasible dual solution, i.e.

infinite dual solution;

4. Feasible primal and feasible dual solution;

and involving:

(i) Minimisation;
(ii) Maximisation.

The following five test examples were therefore prepared.
In solving them, the equations were at each stage completely
transformed into canonical form, as this facilitated the
checking of the solution at each stage. The computer pro-
cedure will only calculate the contents of/, £/and the elements
of the —1st, Oth (and /th) rows in order to determine the
index k of the entering variable in performing a primal (dual)
simplex iteration.

A column of checksums indicated by 2 is formed by
adding the coefficients and the constant of the original
equations. The same operations are performed upon this
column as upon the other columns of the equations. It
follows that in any iteration the sum of an equation's trans-
formed coefficients and constants must equal the transformed
checksum, which is used to unravel the practically unavoid-
able mistakes performed in the manual calculations. Assu-
ming that any discovered mistake is immediately corrected,
the transformations may be continued without greater cause
for worry that any earlier mistakes will make nonsense out
of the subsequent calculations.

An entering variable is indicated by f and a leaving one
by | .

In comparing the ultimate contents of the arrays produced
by the computer with the tables above, it is natural to find
that the computer array U[— l:m, —4] of the entering
variable is part of an ultimate table in those cases in which the
problem has an infinite homogeneous primal solution and
that it is part of a penultimate table in all those other cases
in which no variable is a candidate for entry in the ultimate
table.

The solution of the test problems
I[—l:m] U[-l:m, -\:m\ U[-\:m, —4] U[-\:m,

— 2: —3] enclosed by boxes.

No primal and no dual solution, Min x0

I x—\ x0 x\ X2 xi X4

1
1

I
1

- 4
1 2

1
1 1

x5

- 1
- 3

2
- 1

1

- 1
4

- 2

0)

0 0
0 0

10 1
- 1 1
- 2 1

t
- 2

1
0

- 1
0

0
0
0
1
0

- 1 1
4 - 4
8 3

- 1 1
- 3 2

- 1
2

12
1
0

0
- 2
14

1
1

9 = 2

t
q = \ 1=3 no variable with a negative coefficient in that constraint, hence no feasible primal solution (infinite homo-
geneous solution).
p = \ k = 4 no constraint in which that variable has a positive coefficient, hence infinite homogeneous primal solution
(no feasible dual solution).

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

434 Algorithms Supplement

Infinite primal solution, Max x0

XQ

- 1
- 3

2
1

*5 =

- 1
- 1
- 1
— 1
- 2

i

0
0

10
- 1

- 1

q

0
0
l
l
l

l
l

l

l
3

- 2
1 1

1

t

- 3
- 7

- 2

- 1
- 3
12

- 2

1
3

- 1
2
1

1
1

1
1
7
3
i

1 1

- 1
— j .

2
3

— 1
1 1

t

1

11
25
4

10
7

0
2
3

1

- 1
- 3
13

- 1
0

- 1
- 3
13

- 1
0

P
q

q

= - 3

9 = 1

12 p
27i a

1?
8f

<7 = 0 hence feasible primal solution
p = — •§• k = 3 no constraint in which the variable has a positive coefficient, hence infinite homogeneous primal solution
ino feasible dual solution)

Infinite dual solution, Max x0

XQ X2 x4

-1
-3
2

-1
1

- 1
3
2
1

- 2

1
1

I
i

1*
i
i 1

- i l

t

l

0
6
1
2

- 3

<7=10 / = 1 no variable with a negative coefficient in that constraint, hence no feasible primal solution (infinite homo-
geneous dual solution)
p = 0 hence a feasible dual solution

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

Algorithms Supplement 435

A feasible primal and dual solution, Max x0

/ \- -v- v v
-A J .An A, j Ai x4

- 1
0
1
2
3

1

- 1
0
1
2
4

1

- 1
0
5
2
4

1

1

1

1

1

1

i
i
*

I
I

- 1
- 3

2
- 1

©

- 1
3
2
1

- 2

0
0

10
- 1

i +
+ i

I
3

- 2
1 1

1 1

- 3
- 3

(?)_ 1
- 2

- 1
- 3
12

- 2
- 1

t
0
2

-i
1 f

1

1

5
3
2
0
3

0
0
1
1
1

1
3

- 1
2
1

i

-i
ni

-1 p= - 3
1 q=\

16
1
0

-1 p=-'\
1 9=1

16
1
0

7 P=-[i
9 q=\
2*
3*

q = 0 hence a feasible primal solution
p — 0 hence a feasible dual solution

A feasible primal and dual solution, Min x0

I x—l x0 xl X2 * 4

- 1
- 3

2
- 1

1

- 1
3
2

02

J 1

0 0
0 0

10 1
- 1 1
- 1 1

1
1

1
- 3

1 - 2
1
2 1

- 2
0
4

- 1
- 1

1
1

- 3
- 3

1 6
- 2
- 1

- 2
0
4

- 1
- 1

- 1
3

12
- 1
- 3

1
- 3
— 1

1
3

1
1

- 1
- 3

1 2
- 1

1 1

t

1

I
- 2

0
4

- 1

1
3
8
1
2

j

- 3
3

- 1
2

5
3
0
3
2

- 5
- 3

11
- 3
- 2

- 1
1

16
1
0

0
- 2
14
1
2

- 2
- 2
18

- 1
1

- 4
- 2
22

- 2
— 1

= 0
= 1

9 = 0

^ = 0 hence a feasible primal solution
p = 0 hence a feasible dual solution

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

436 Algorithms Supplement

A numerical example prepared by A. C. McKay (1968)
was selected to provide a test problem involving moreitera-
tions.

The following criteria for zero have been proposed by
P. Wolfe (1965)

e0 = 10-7, e{ = 10-3, e2 = 10~5 (e3 =) e4 = 10~4.

The procedure was tested on the ICL-KDF9 Computer and
some shortcomings eliminated by V. Kolarov, Deputy Chief
of the Mathematical Simulation of Economic Processes
Department of the State Committee of Planning, Sofia,
Bulgaria.

References
DANTZIG, G. B. (1963). Linear Programming and Extensions,

Princeton University Press.
KRONSJO, T. O. M. (1970). Primal Simplex LP using Multi-

pliers, Algorithm 59, The Computer Journal, Vol. 13, No. 4,
pp. 428-^29.

KRONSJO, T. O. M. (1968). Centralization and Decentra-
lization of Decision Making, the Decomposition of any
Linear Programme in Primal and Dual Directions—to
obtain a Primal and a Dual Master Solved in Parallel and
one or more Common Subproblems, Revue Francaise d'
Informatique et de Recherche Operationelle, 2e annee, No.
10, pp. 73-104.

MCKAY, A. C. (1968). A Numerical Example with One
Common Subproblem and Finite Optimal Solution, Revue
Francaise d''Informatique et de Recherche Operationelle, 2e

annee, No. 10, pp. 105-113.
WOLFE, P. (1965). Error in the Solution of Linear Program-

ming Problems, in Louis B. Rail (Ed.), Error in Digital
Computation, Vol. 2, United States Army Mathematics
Research Center, The University of Wisconsin, Publication
No. 15, John Wiley and Sons, Inc., New York, pp. 271-284.

comment The procedure FIND is redefined to be a real pro-
cedure FIND OR ASSIGN, the identifier of which is assigned
the minimal value of the function evaluated, and if no index is
found with the required properties then a formal real variable p
is assigned the value of another formal real variable q before
the jump to the formal label;
real procedure FIND OR ASSIGN (r, opt, f i, s, t, b, p, q, e);
value opt, s, t,q; integer r, opt, i, s, t; real/ p, q; Boolean b;
label £;

begin real extremum;
extremum : = — 1020 x opt;
for i := s step 1 until t do
if b then

begin
if opt X (/ = extremum) > 0 then

begin
extremum : = / ;
r : = i
end

end;
if extremum = — iO2O X opt then

begin
P •=a;
goto E
end

else FIND OR ASSIGN : = extremum
end procedure FIND OR ASSIGN;

comment A real procedure SIGMA is introduced which is
identical with SUM except that the result of the summation is
not assigned to a result variable r;
real procedure SIGMA (i, s,t,f);
value s, t; real/; integer i, s, t;

begin real w;

w := 0;
for i:— s step 1 until t do w : = w + / ;
SIGMA :=>v
end real procedure SIGMA;

procedure SELF DUAL PARAMETRIC SIMPLEX LP
USING MULTIPLIERS (opt, m, n, I, A, U, k, I, eO, el, el, e4,
FIND OR ASSIGN, SIGNIFICANT, SUM, SIGMA);
value opt, m, n, eO, el, el, eA; integer opt, m, n, k, I;
integer array / ; array A, U; real eO, el, el, eA;
real procedure FIND OR ASSIGN, SIGNIFICANT, SUM,
SIGMA;

begin integer i, j ; real primal solution, dual solution, p, q,
v, w;
comment primal (dual) solution equals if no primal (dual)
feasible solution to the unparameterised problem then 0
else 1
v, w working variables;
primal solution : = dual solution := q :— 1; p := — opt;
comment The determination of the minimal value of the
parameters p and q consistent with that the initial basic
solution would represent a feasible and optimal solution of
the parameterised problem;
p := FIND OR ASSIGN (k, -opt, -v/w,j, 1, n, opt x SUM
(v, i 0, m, U[0, i] X A[i, j]) < -el A SUM (w, i, -1, m,
U[—l, i] X A[i, j]) < -el, p, 0, NEXT ITERATION);
q := FIND OR ASSIGN (I, 1, -U[i, -1] / U[i, - 3] , i, 1,
m, U[i, -2] < -e4 A U[i, - 3] > eA, q, 0, NEXT
ITERATION);

NEXT ITERATION: if primal solution = 1 A q > eA V
dual solution = 1 A -opt X p > el then

begin
if primal solution = 0 V dual solution = 1 A
-opt X /? > q then

begin
comment The variable xk is found which will become a
candidate for introduction into the basis when the
parameter p is decreased, if no candidate exists then a
dual feasible solution has been found to the unpara-
meterised problem;
p :=FIND OR ASSIGN (k, -opt, -v/w, j , 1, n,
opt X SUM(v, i, 0, m, U[0, i] X A[i, j]) < -el A
SUM (w, i, — 1 , m, U[-l, i] X A[i,j] < -el, p, 0,
NEXT ITERATION);

comment The leaving variable is determined according
to the rules of the primal simplex algorithm, if no basic
variable is decreased in value at the increase of the
entering variable, then there exists an infinite homo-
genous solution to the primal problem and hence no
feasible dual solution to the unparameterised problem;
FIND OR ASSIGN (I, -l,(U[i, -2] + q X U[i, - 3]
/ U[i, - 4] , i, - 1 , m, SUM(U[i, -A], j , - 1 , m,
U[i,j] X A\J, k]) > el A i > 0, dual solution, 0,
NEXT ITERATION)
end

else
begin
comment The basic variable in the Ith equation is found
which will be a candidate for leaving the basis when the
parameter q is decreased, if no candidate exists then a
primal feasible solution has been found to the unpara-
meterised problem;
q :=FIND OR ASSIGN (I, 1, -U[i, - 2] / £/[/, - 3] ,
/, 1, m, U[i, - 2] <-eA A U[i, - 3] > eA, q, 0,
NEXT ITERATION);
comment The entering variable xk is determined accord-
ing to the rules of the dual simplex algorithm, if there
exists no nonbasic variable the increase of which may
decrease the infeasibility of the infeasible basic variable
in the Ith equation then there exists no feasible primal
solution to the unparameterised problem;

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

Algorithms Supplement 437

FIND OR ASSIGN ik, -opt, iSIGMAii, 0, m, C/[0, i]
X A[i,j])+p x SIGMAii, —1, m, £/[—1, i]
X -«4[i,y]))/(—w),y, 1, n, SUMiw, i, —1, /n, [/[/, i]
X /4[i, yj) < -e2, primal solution, 0, NEXT
ITERATION);
comment The determination of the transformed form of
the entering variable xk;
for / : = — 1 step 1 until m do
U[i, - 4] := SIGNIFICANTiSIGMAQ', - 1 , w,
U[i,j] X A[J, k]), eO)
end;

comment The change of the basis, transforming the con-
stants and updating the inverse;

fory := —3 step 1 until m do

for i : = — 1 step 1 until / — 1, / + 1 step 1 until m do
for y : = — 3 step 1 until m do
U[i,j] := SIGNIFICANTiU[i,j] -U[l,j] x U[i, - 4] ,
eO);
goto NEXT ITERATION
end;

if primal solution = 0 then k := 0;
if dual solution = 0 then / : = 0
end procedure SELF DUAL PARAMETRIC SIMPLEX
LP USING MULTIPLIERS;

Algorithm 62

INTERPOLATING QUINTIC SPLINES ON EQUI-
DISTANT KNOTS

W. D. Hoskins
Brunei University

Author's note:
For a full quintic spline fix) interpolating to the points

(*/> yd (where xt = x0 + ih, i = 0(1)n) and the boundary
values J>Q, J'Q', y'n, y'^ it can be demonstrated that if the con-
tinuity of third and fourth derivatives is required then the
following two relationships between the first and second
derivative values of the spline apply,

yj+x - yj-t 15 15V - / / ' _ ,) = 2hf',

j = l(l)n - 1

(2)

equation (1) being first suggested in the literature by Spath
(1969).

The above equations can be linearly combined to yield a
further equation,

26f'i+l + 66//yi+2

_, +/;_2) (3)

/ = 2(1)« - 2
called the consistency condition by Loscalzo (1969).

However, corresponding to i = 1, n — 1 two further
equations are required and may be obtained from equa-
tions (1) and (2) by eliminating the second derivatives of/(x)
to obtain

and

\55yz + 15y3 -

- 227hf; - 79A/2' - 3A/3' (4)

' = - 235^

Equations (4), (3) and (5) now constitute a matrix equation
of order n — 1 and band width 5 (not symmetric, but dia-
gonally dominant) for the n — 1 unknowns / / . This matrix
equation can be solved directly by a stable LU decomposition
(Wilkinson, 1965).

A constrasting analysis is that given by Ahlberg, Nilson
and Walsh (1967) which uses a quintic defined in terms of
fourth derivatives to establish a matrix equation of similar
structure, but of slightly larger order and calculation of the
first derivatives then has to be done with the equivalent of an
integration formula.

Quintic spline interpolation is obtained on using the
equations essentially given by Spath, viz.

= Akz
5 Ckz

3 Dkz
2 Ekz

k = j - 1 = 0(1>I - 1

where z ==
 (x — */_i

2Dk = h2fi'-x

4/7) + \if" ~

Bk= hfjf,

Ak = 6iy, - yj_O - 3AC/J'

and xk < x < xk+l, in conjunction with equations (4) and (5)
(with the appropriate subscripts changed) to compute the
quantities//'.

References
AHLBERG, J. H., NILSON, E. N., and WALSH, J. L. (1967).

The theory of splines and their applications, Academic Press.
LOSCALZO, F. R. (1969) (Ed. Greville, T. N. E.). Theory and

application of spline functions, Academic Press.
SPATH, H. (1969). Interpolation by certain quintic splines, The

Computer Journal, Vol. 12, p. 292.
WILKINSON, J. H. (1965). The Algebraic eigenvalue problem,

Oxford University Press.

procedure Quinticiy, yl,yl, d, c, aa, n, h);
value n, h; integer n; real h; array y,y\, y2, d, c, aa;
comment This procedure calculates from the n + 1 values y[i],
the first derivative conditions y\ [0], y\ [n] and the second deriva-
tive conditions y2[0],y2[n] the unknowns yl[i] (i = l(l)n — 1)
needed to perform full quintic spline interpolation. The deriva-
tives y2[i] and coefficients, C[k], B[k], A[k] ik = 0(l)n - 1)
are further computed and stored respectively in the arrays
yl,d,c,aa;

begin integer /, j , k; real «2, w, z;
for i : = 2 step 1 until n — 2 do

begin
y2[i - 1] := 1; aa[i - 1] := c[i] := 26;
yl[i] :=66 ;
d[i] := 5 x y[i + 2] + 50 x y[i + 1] - 50 x
y[i-l]-5 X>>[/-2]
end;

yl\n - 3] := 3; c[l] := aa[n - 2] := 79;

d[l] := -235 X y[0] - 111 x h x J>1[0] - 16 x h x
h x y2[0] + 65 X ^[1] + 155 X y[2] + 15 X ^[3];
d[2] := d[2] - h x yl[0]; d[n - 2] : = d[n - 2] - h X

227A/,;_1 / ; _ 3 (5)

d[n - 1] := 235 x y[n] - 111 x h X y\[n] + 16 x h X
h x y2[n] - 65 X y[n - 1] - 155 x y[n - 2] - 15 x

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

438 Algorithms Supplement

for / : = n — 1 step — 1 until 3 do
begin
j : = i-l;k : = i - 2 ;
z := c[/]/^l[i]; y\m := yW] - aa\J] x z;
d[j] : = rf[y] - z x d[i]; aa[k] : = oa[Ar] - y2[k] x z;
z : = (if A:> 1 then 1 else 3)/yl[i);
c[k] := c[k] — aa\J] x z;
yl[A:] : = jelM - ;e2[£] x z; rf[£] : = <*[&] - z x
end;

x
x

: = z x
[l] x y l

«2 : = z X z x -0625; w :=;y2[l];

for i : = 3 step 1 until n — 1 do
begin
J'U'] : = (z x </[/] — aa[i — 1] x

:=y2[i];

— 1] — M> X

w : =

y2[i] := nl x (-235 x ^[/-] + 65 x >>[/ - 1] + 155 X
y[i - 2] + 15 x y[i - 3] + A x (111 x yl[i) + 227 x
y\[i - 1] + 79 x y\[i - 2] + 3 x y\[i - 3]))
end;

for i : = 1 step 1 until 2 do
y2[i] := «2 x (-235 x y[i] + 65 x y[i + 1] + 155 x
y[i + 2] + 15 x y[i + 3] -h x (111 x yl[/] + 227 x
;pl[/ + 1] + 79 X J»1[I + 2] + 3 X yl[i+ 3]));
z := h x /i x -5;
for / : = 1 step 1 until n do

begin
k:=i-l;w:=y[i)-y[k];
d[k] : = 10 x w - h x (6 x ^l[/t] + 4 X >>1[;])
+ z X (y2[i] - 3 X j>2[/c]);
c[A:] := - 15 X w + h X (7 X y\[i] + 8 X
+ 2 X z X(l-5 X #] - # ']) ;
aa[k] :=6xw-3xhX
+ z X O2[/] - y2[k])
end

end;

Contributions for the Algorithms Supplement should be sent to
Mrs. M. O. Mutch

University Engineering Department
Control Engineering Group

Mill Lane, Cambridge

Book review continued

equations are exhibited, for the deterministic as well as for the
stochastic case. The relationship with Markov processes is
also illustrated. The last chapter deals, very briefly, with the
use of computers, storage requirements, and computing times.
Nine references are given.

Vol. 16. This volume contains short descriptions of non-
linear programming methods, due respectively to J. E.
Kelley, H. O. Hartley and R. R. Hocking, K. Klei-
bohm, A. F. Veinott, jr., G. Zoutendijk, R. E. Griffith
and R. A. Stewart, P. Huard. There follows a descrip-
tion of the reduced gradient method, of methods with penalty
functions and unconstrained minimization techniques, and
finally of a method of feasible directions, apparently due to
S. I. Zukhovitsky, R. A. Poljak and M. E. Primak.

The collection does not claim to be exhaustive, and the
most valuable part of the book is a bibliography of more than
100 pages, referring also to control theory, economics, opera-
tional research and games theory, while dynamic, stochastic
and integer programming are not considered.

Vol. 17. The authors say that it is their aim to set side by
side the two principal possibilities of solving control problems
—the method of dynamic programming, and the procedure
based on the maximum principle of Pontrjagin. They do this
in Chapters II and III, but the relationship between the two
methods is not explored, and the preface states explicitly that
occasional cross-references are not essential to the under-
standing. In fact, the first-named author was mainly respon-
sible for Chapter III, and the other author for the first two
chapters.

Chapter I starts with a few examples and leads up to the
general formulation of a control problem:

Minimize

= fo(x(t), y(t), i)dt

subject to

•* =/(*(') . X0. 0, x(t0) = x0, x{t{)eZ{_t{) c Rm.

where the unknown control vector y(t) is assumed to be
Lebesgue-integrable and x(t) might be subject to further
restrictions in the range t0 < / < /,.

Conditions are given which ensure the uniqueness of the
solution of the differential equations, and certain continuity
properties of F and x are deduced, dependent on y. The
existence and uniqueness of an optimal control vector is then
proved.

Chapter II deals with the fundamental concepts of dynamic
programming, such as the principle of optimality, and with
formulations in terms of functional equations. The (mis-
leading) remark is made that dynamic programming is only
applicable to problems with known horizon. Existence and
uniqueness of optimal solutions is discussed, the functional
equations are solved approximately by two different methods
of iteration, and questions of computation are mentioned.

In Chapter i n a slightly simplified problem is attacked.
The classical maximum principle and transversality con-
ditions are then introduced and the theory of linear control
(i. e. where / " and / are linear in x and in y) is formulated.
Extremal control vectors (i. e. those where the final point
of the trajectory is on the boundary of the set of attainable
points) are studied. Finally, methods are mentioned for the
solution of non-linear control problems.

An Appendix defines relevant concepts, such as convexity
and Lebesgue integrability, and gives a brief glimpse of func-
tional analysis in Banach space. The bibliography contains
26 items with German and English titles.

S. VAJDA (Birmingham)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/13/4/421/540497 by guest on 19 April 2024

