Algorithms Supplement

Previously published algorithms

The following algorithms have recently appeared in the Algorithms
Sections of the specified journals.
(a) Communications of the ACM (May-July 1970)

380 IN-SITU TRANSPOSITION OF A RECTANGULAR
MATRIX

Transposes a matrix, assumed stored in a one-dimensional array,
by a process of loops.

381 RANDOM VECTORS UNIFORM IN SOLID ANGLE

Generates the components of random unit vectors distributed
uniformly in a solid angle.

382 COMBINATIONS OF M OUT OF N OBJECTS

Can be used to generate all combinations of m out of n objects, or
to generate all n-length sequences containing m 1’s and (n — m) 0’s.

383 PERMUTATIONS OF A SET WITH REPETITIONS

A generalisation of Algorithm 382, and of the Trotter-Johnson
adjacent-transposition permutation algorithms.

384 EIGENVALUES AND EIGENVECTORS OF A REAL
SYMMETRIC MATRIX

Uses a variant of the QR algorithm to evaluate the eigenvalues
and, at the user’s option, the eigenvectors of a real symmetric
matrix.

385 EXPONENTIAL INTEGRAL E;(x)
Evaluates the classical exponential integral

z et 00 e—t
Et(x)Ej —dt=—J —dt, x>0
—w t z t

where the integral is interpreted as the Cauchy principal value.

386 GREATEST COMMON DIVISOR OF n INTEGERS
AND MULTIPLIERS

Calculates the greatest common divisor, IGCD, of n integers AQ@).
Constructs multipliers Z(i) such that

IGCD = A(1) X Z(A) + ... + A(n) x Z(n).

The following paper, containing a useful algorithm, has recently
appeared in the specified journal.

(a) International Journal for Numerical Methods in Engineering
(October-December 1969)

A SIMPLE MATRIX-VECTOR HANDLING SCHEME FOR
THREE-DIMENSIONAL AND SHELL ANALYSIS (Vol. 2,
No. 4, pp. 509-522)

New Algorithms

Author’s note on Algorithms 63 and 64:

The tree-sort is well known, and a recursive program for it is
familiar, e.g. Barron (1968).

However, such programs are usually written in a list processing
language, and it may be of interest that substantially the same
program can be written in ALGOL 60 (this is Algorithm 63),

Volume 14 Number 1

the list structures being set up by the compiler, handling pro-
cedures and their parameters in the usual way.

It is also interesting to consider the storage used by the pro-
gram. There are, besides the essential array of n keys to be
sorted, the two arrays / and r, each of n integers. Besides this
there is the storage used in the recursion. How much storage is
stacked for each incarnation of a procedure will depend on the
compiler, but since the depth of recursion is only the same as the
height of the tree, which is of the order log,n (provided the keys
are initially in random order) it is possible that this recursive
version is more economical of storage than the usual form.

The second algorithm (Algorithm 64) is a non-recursive
version: If a recursive program points the way to save some
storage, it is usually possible to achieve the same result more
efficiently still with a direct program.

The first of these procedures uses the array / to give the result
of the sort as a chain. However, if this is then to be used sequen-
tially, e.g. to print out the keys in order, it is quicker to amend
the process as follows: All reference to 4 should be deleted, state-
ments such as /[k]: = 0 being removed. Instead, in the body of
procedure flatten, the statements [[h]: = k; h: = k are replaced
by a statement causing a[k] to be printed.

To illustrate this, Algorithm 64 is given in the second form
causing print out of the keys instead of a flattened list.

i

Reference

BARRON, D. W. (1968). Recursive techniques in programming,
London: Macdonald p. 27.

Algorithm 63

A RECURSIVE TREE SORT
A. D. Woodall
North Staffordshire Polytechnic
Beaconside, Stafford

procedure rects (a, I, n); value n; integer n; array a; integer array /;
comment n is the number of items to be sorted, held in the array
a[l : n). 1 is an integer array with subscript bounds O to n, | will
be used to provide the left pointers of items on the tree. When the
tree is flattened | will hold the links of the final list, the first item
being a[l[0]], the successor of ali] being a[l[i1], and the final item
being alk] where I[k] = 0;
begin integer 7, 4; integer array r[1: n];

procedure fotree (i, j); value j; integer i, j;
if i = O then i: = j else

begin

if a[i] > alj] then rotree (I[i], j)

else rotree (r[i},)

end zotree;

procedure flatten (k); value k; integer k;
begin
if /[k] # O then flatten (I[k]);
Ilh]: =k; h: = k;
if r[k] # O then flatten (r{k])
end flatten;

h: =0;

for ¢ := 1 step 1 until ndo /[t] := r[t] := 0;
for ¢t := 2 step 1 until n do totree (1, t);
fatten (1);

Ilh] :=0

end rects;

103

20z udy 61 U0 188n6 AQ | #9GE/E0L/L/1L/BI0NIE/UlLO0/WOd"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

Algorithm 64

A NON-RECURSIVE TREE SORT
A. D. Woodall
North Staffordshire Polytechnic
Beaconside, Stafford
procedure 7s(n, a, print); value n; integer n; array a; procedure
print;
comment the n items to be sorted are held in the array a[l: n]
which is unchanged after the call of ts. print must be a procedure
which, when called as print (X) will print the value of X on a new
line;
begin integer k, t, c, h, mh; integer array r, I[1: n];
comment r and [are the usual left and right pointers. As each
item is added to the tree, h counts the number of leftwards
moves it makes, mh keeps the greatest value of h which will
be used to fix the size of the array of upward pointers needed
to flatten the tree;
for k := 1 step 1 until n do /[k] := r[k] := O;

mh :=0;
for k := 2 step 1 until » do
begin
t:=1;h:=0;
LOOP: if a[k] < a[t] then
begin
h:=h+1;
if I[t] = O then /{t] :=k
else
begin
t:=I[t];
goto LOOP
end
end
else
begin
ifr[t] =O0thenr[t] :=k
else
begin
t:=rt];
goto LOOP
end
end;
if h > mh then mh := h
end;

begin integer array up([1: mh];

comment as the tree is unloaded upward pointers will be set
in the array up pointing up the left-most remaining side of the
tree towards the top;

c:=0;k:=1;
L1: if ITk] # O then
begin
c:=c+1;
uplel :=k; k := I[k];
goto L1
end;

L2: print (alk]);

if r[k] # O then
begin
k :=r[k];
goto L1
end;

if ¢ # O then
begin
k := uplcl;
c:=c— 1;goto L2
end

end

end 7s;

Algorithm 65
AN IMPROVED CLUSTERING ALGORITHM

A. H. J. Sale
Basser Computing Department
University of Sydney

Author’s Note:

This set of routines produces the same type of results as Algorithm

104

47 (A Clustering Algorithm) in that it will generate and return
all subsets of objects from a given set that satisfy the condition
that the maximum dissimilarity (or ‘distance’) between members
of the subset is less than the least dissimilarity between any
member of the subset and any object not in the subset. Excluded
from this definition are sets consisting of single objects only,
and the set of all the objects. It differs from Algorithm 47 in its
overall design, in its method of returning results, in its use of
storage, and in its execution speed. Subsequent paragraphs
detail these differences.

The Algorithm given here has been tested on an IBM 7040
under both the IBFTC and WATFOR compilers with both
constructed examples and random data for numbers of objects
in a set ranging from 10 to 100. In all cases it produced correct
results.

The parameters required are fully detailed in the source
language comments; however it should be pointed out here that
storage of the order of n? variables is required for a set of n
objects, and the run time should vary approximately as n3.
The following criteria were employed in the design of the pro-
gram:

1. The vector of distances should not be destroyed by the
routine.

2. Since large numbers of objects are to be expected, the
execution time should be as short as possible, and as
little storage as possible should be used.

3. The results were to be returned to the calling routine,
rather than printing them (which makes them unavailable
for further processing).

4. The operation of the routines should be clear and simple !

to understand.

The process used is to search for a smallest dissimilarity
between a pair of subsets, then to merge those two into one,

simultaneously making the dissimilarities between them inaccess-

ible, but noting the cluster ‘diameter’. Then all other subsets are

scanned to make a choice between the dissimilarities to each of

the (now merged) subsets. Two of the four values are kept: the
least and the greatest. The least dissimilarity is needed for
subsequent searches; the greatest is needed to determine the
subset diameter. During this scan the merged subset diameter is
compared with the least external dissimilarities: if it is less than
all of these then the subset is a cluster, otherwise another merge
must be initiated. To start the process all objects are regarded
as subsets with identical maximum and minimum inter-subset
dissimilarities.

This algorithm arose out of a certification of Algorithm 47 in
which it appeared that it contained several major bottlenecks:
the initial sort, the testing of the clustering condition, and final
sort, all of which had run-times proportional to n?.

In storage requirements the new Algorithm appears superior
in program size, and certainly in data storage. To verify the
expected improvement in execution time a series of examples
were run using test data of points with random (x, y) co-

Table 1

Comparative run-times on identical data for Algorithm 47, an
improved version of Algorithm 47, and Algorithm 65

NUMBER OF TIMES RECORDED ON IBM 7040 FoR:
OBJECTS
ALGORITHM 47 IMPROVED ALGORITHM 65
ALGORITHM 47

10 4-5 sec 2:2 sec 1:2 sec

20 329 17-4 4-6

30 177-8 786 12-8

40 516:0 2281 277

50 1281-8 5286 51-0

60 23776 1079-7 85-2

70 —_— 18682 1329

80 — — 195-9

90 — — 273-8
100 — — 373-6

The Computer Journal

20z udy 61 U0 188n6 AQ | #9GE/E0L/L/1L/BI0NIE/UlLO0/WOd"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

ordinates in a square two-dimensional space. These results are
shown in Table 1, for numbers of objects from 10 to 100. These
results verify the predictions and show a large superiority of the
new Algorithm over the original. It should be pointed out that
the times will vary slightly with the data: the test data is character-
ised by few large clusters but many doublets.

To sum up, this new Algorithm seems to be superior in both
program and data space utilisation, and in execution time. There
seems however to be one place where a version of Algorithm 47
might still be preferable: where the large tables (of size n x
(n — 1)/2 variables) are sorted and stored on a serial access
medium (for example magnetic tape). The reason for this is that
Algorithm 47 always runs serially through the tables (wholly or
partially) while the new Algorithm requires random access to the
tables. A more recent algorithm (Algorithm 52) while slightly
different in function points the way to perform the same clustering
process with approximately :

(number of different dissimilarities) + log,(n?)
passes through tapes holding 2n? variables. This for some cases
would produce run-times proportional to n3; for others pro-
portional to n% log n®. Whether a problem too large to fit in core
can be completed in this way in a reasonable time will of course
depend on the machine.

Reference

VAN RUSBERGEN, C. J. (1970). Algorithm 47: A clustering
algorithm, The Computer Journal, Vol. 13, No. 1,
pp. 113-115.

SUBROUTINE CLUST3(KSIZE,KDAT, TARLE, SWITCH,KOUT,KLENG,DIAM,
1SPACE, KNUM» KL INK» KHEAD, MAXMIN)

INPUT VARIABLES
~UNALTERED BY CLUST3-

=MUST NOT BE ALTERED UNTIL =-SWITCH- BECOMES +FALSE. -
KSIZE
NUMBER OF OBJECTS
KDAT
SIZE.-OF TABRLE (=KSIZE*(KSIZE-1)/2)
TABLE

VECTOR OF LENGTH KDAT HOLDING DISTANCES BETWEEN
OBJECTS. THE MAPPING FUNCTION IS -LOCN-, AND IF

I 1S GHKEATER THAN J, THEN THE DISTANCE BETWEEN I AND
J IS AT TARLEC((I-1)%(I-2))/2+J)

CONTHOL VARIARLE
SWITCH
SET BEFOKE FIKST CALL TO +FALSE., THE ROUTINE THEN
SETS IT «TRUE. AND IT MUST RETAIN THIS VALUE UNTIL
KROUTINE ITSELF SETS IT «FALSE. BEFORE -RETURN-ING.
THIS SIGNIFIES THAT NO MOKE CLUSTERS CAN RE FOUND,
AND THAT THE OUTPUT KESULTS AKE UNDEFINED

THE

OUTPUT 'VAKIARLES
=SET RY CLUST3-
-UNDEFINED AT ENTKY=-
-MAY BE FREELY ALTERED-

KOUT
VECTOK OF LENGTH -KSIZE- CONTAINING A SOKTED LIST OF -
~KLENG- ORJECTS FORMING A CLUSTEKe. THE CONTENTS REYOND
KOUT(KLENG) AKE NOT DEFINED

KLENG
NUMREhL OF OBJECTS IN THE CLUSTER

DIAM
THE DIAMETER OF THE CLUSTEK (MAXIMUM INTKA-CLUSTEK
DISTANCE)

SPACE

THE SEPARATION SPACE (DISTANCE FKOM THIS CLUSTEK TO
ITS NEAFEST NEJGHBOUR) °

WORKING VARIARLES
-SET BY CLUST3- -
-UNDEFINED AT FIKST ENTEKY-
-THEY MUST NOT RE ALTEKED UNTIL ~SWITCH- RECOMES .FALSE.
KNUM
THE NUMBEK OF SETS AS YET UNCOALESCED
KLINK
WORK VECTOR OF LENGTH KSIZE,
INFOEMATION
KHEAD
WORK VECTOK OF LENGTH KSIZE,
MAXMIN
WOKK VECTOR OF LENGTH KDAT, HOLDS POINTFRS TO THE
MAXIMUM AND MINIMUM INTER-SET DISTANCES. THE TWO
POINTERS MAX AND MIN ARE PACKED INTO ONE INTEGER

HOLDS LINKED ORJECT

HOLDS LIST HEADS

SPECIAL COMMENTS
INTEGEk OVERFLOW MUST NOT OCCUK FOR (KDAT*(KDAT+2))
DUE TO THE PACKING INTO MAXMIN. IN CASE OF DIFFICULTY
MAXMIN MAY BE SPLIT INTO TWO ARRAYS MMAX AND MMIN, THUS
ELIMINATING THE NEED FOK THE VARIABLE -JPACK- AND THE
ROUTINE -UNPAK-

ERROK EXITS
NONE, EXCEPT AS EXPLAINED FOR =SWITCH-
THE ACTION OF CLUST3 1S UNDEFINED IF THE INPUT VARIABLES
OR THE WOKKING VARIABLES AKE ALTERED BETWEEN A RETURN
FROM CLUST3 WITH -SWITCH- TRUE. AND A SURSEQUENT CALL
TO CLUST3 WITH =-SWITCH- AGAIN «TRUE.

OOOOOOOOOOOO0(')nﬁ(‘l(‘)nOO(‘30(‘1COOOOOOOOO(]OO(‘IQCOOOO()OQOOOQOOOOOOOCQOOOOOOOOO

Volume 14 Number 1

aoao

ao

3

a0

aoaa

a

0

aaooa

1C

SPECJFICATIONS

INTEGER KSI7ZE»KDAT,KLENG,KNUM

KEAL DIAM,SPACE

LOGICAL SWITCH

INTEGEK KLINK(KSIZE),KHEAD(KSIZE),KOUT(KSIZE),MAXMINCKDAT)
REAL TABLE(KDAT)

DECLARATIONS

INTEGER J,L,M,KT,KSIZET, JPACK

INTEGEh LMAX,LMIN,MAX,MIN, JSET1, JSET2
KEAL KMIN

LOGICAL TSW

ROUTINE START POINT

TEST TO SEE IF INITIALISING ENTRY TO CLUST3
IF (SWITCH) GO TO 3

INITIALISE THE TABLES AND VARIABLES
JPACK=KDAT+1

DO 1 J=1,KSIZE

KLINK(J)=0

KHEAD(J)=J

CONTINUE

DO 2 J=1,KDAT

MAXMINCJ) =J* JPACK+J

CONTINUE

KNUM=KSIZE

SWITCH=+TRUE.

~ TEST TO SEE IF TO REJECT THE APPLICATION FOR A CLUSTER
IF (KNUM«GT.2) GO TO 4
IF THERE ARE ONLY TWO SETS TO COALESCE,
GET THE ‘SET OF ALL OBJECTS, SO GIVE UP
SWITCH=.FALSE.
RETURN ’

WE CAN ONLY 4

SCAN FOR THE ABRSOLUTE MINIMUM INTER-SET DISTANCE
TSW=+TRUE. :

RUN DOWN THE CLUSTER TABLE

KSIZET=KSIZE-1

DO 7 J=1,KSIZET

IF (KHEAD(J)+EQ.0) GO TO 7

GOT AN EXISTING CLUSTEK

1S THERE A HIGHER NUMBERED ONE TOO

L=J+1

DO 6 M=L,KSIZE

IF (KHEAD(M)+EQ.0) GO TO 6

GOT A PAIK, GET THE LINK POINTERS

KT=LOCN(J,M)> .
CALL UNPAK(LMAX,LMIN,MAXMINCKT), JPACK)

IF ITS THE FIRST PAIR, ACCEPT THE DISTANCES

IF (TSW) GO TO S

IF THE MIN DISTANCE IS LESS THAN THE PRESUMED MIN, TAKE IT
IF (TABLE(LMIN).GE.RMIN) GO TO 6

KEEP INFORMATION AROUT THIS PAIK

TSW=.FALSE.

JSET1=J

JSET2=M

RMIN=TABLE(LMIN)

DIAM=TABLE(LMAX)

CONT INUE

CONTINUE

WE NOW HAVE THE CLOSEST PAIR OF CLUSTEKS, AND THEIR
DIAMETER AS A JOINT CLUSTER

KEEP THE MAX AND MIN OF THE PAIK DISTANCES
TSW=«TRUE.

RUN THROUGH ALL CLUSTEKS,
DO 9 J=1,KSIZE

IF (KHEAD(J)«EQ.0) GO TO 9
IF ((J+EQeJSET1)+0K«(J-EQ.JSET2)) GO TO 9

GET LOCATIONS OF DISTANCES KELEVANT
L=LOCN(J»JSET1)

M=LOCN(J»JSET2)

CALL UNPAK (LMAX,LMIN,MAXMINCL)» JPACK)

CALL UNPAK(MAX,MIN,MAXMINC(M) » JPACK)

KEEP THE LARGEST AND SMALLEST DISTANCE

IF (TARLE(LMAX).LT.TABLE(MAX)) LMAX=MAX

IF (TARLE(LMIN)+«GT.TABLE(MIN)) LMIN=MIN
MAXMINCL)=LMAX*JPACK+LMIN

ON FIRST PASS KEEP AS ARSOLUTE MIN

IF (TSW) GO TO R

IS THIS DISTANCE LESS THAN PKESUMED ARSOLUTE MIN
IF (TABLE(LMIN)«GE.EMIN)Y GO TO 9
RMIN=TARLE(LMIN)

TSW=eFALSE.

CONTINUE

NOW WE HAVE ALL THE DISTANCES FOR JSET1 COKRECT

EXCEPT THE TWO SETS FOUND

JOIN UP ALL THE CLUSTERS

AND SIMULTANEOUSLY START RUILDING UP THE OUTPUT VECTOF
L=KHEAD(JSET1)

J=1

KOUTc1)=L

RUN ALONG THE LINKS

M=KLINK(L)

IF (M<EQ.0) GO TO 11

J=J+1

KOUT (J)=M

L=M

GO TO 10

NOW JOIN ON SET 2 BY THE LINK
KLINK(L)=KHEAD(JSET2)

KHEAD(JSET2)=0)

KNUM=KNUM-1

THIS 1S THE EARLIEST POINT THAT WE CAN CHECK FOR THE
COKRECTNESS OF THE CLUSTEE CONDITION

IF (RMIN.LE.DIAM) GO TO 3

GET THEN THE REST OF THE ORJECTS INTO OUTPUT
M=KLINK(L)

IF (M«EQ.0) GO TO 13

J=J+1

KOUT (J)=M

L=M

GO TO 12

105

20z udy 61 U0 188n6 AQ | #9GE/E0L/L/1L/BI0NIE/UlLO0/WOd"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

C WE NOW HAVE A CLUSTER, FINISH OFF
13 KLENG=J
CALL SORT(KOUT,J;
SPACE=RMIN
RETURN
END

o

SUBKOUT INE SORT(KOUT,KLENG)
INTEGER KLENG,KOUT (KLENG)

c
C THIS ROUTINE SORTS THE VECTOR -KOUT- INTO ASCENDING ORDER
C ELEMENTS KOUT(1) TO KQUT(KLENG) ARE AFFECTED.
g A SIMPLE BUBBLE SORT IS USED.
INTEGER J,J1,K
K=KLENG
1 K=K-1
IF (K.LE.0) RETURN
DO 2 J=1,K
IF (KOUT(J)«LE.KOUT(J+1)) GO TO 2
J1=KOUT ¢ J)

KOUT (J)=KOUT(J+1)
KOUT(J+15=y1
2 CONTINUE
GO TO 1
END

INTEGER FUNCTION LOCN(J,K)
INTEGER J,K

LOCN RETURNS THE LOCATION OF THE (J>K) ELEMENT IN THE
TRIANGULAR ARRAY STORED IN MAXMIN AND TABLE

aacaa

IF (J+GT.K) GO TO 1
LOCN=((K=1)*(K-2))/2+y
RETURN .

1 LOCN=((J-1)%(J-2))/24+K
RETURN
END

(2]

SUBROUTINE UNPAK(JsK,L,» JPACK)
INTEGER J»K,L, JPACK

ROUTINE TO UNPACK TWO INTEGERS FROM ONE.
J AND K COME FROM L.

JPACK DETERMINES TRE PACKING FUNCTION.

aoocoa

J=L/JPACK
K=L-J*JPACK
RETURN

END

Note on Algorithm 46

A MODIFIED DAVIDON METHOD FOR FINDING THE
MINIMUM OF A FUNCTION, USING DIFFERENCE
APPROXIMATION FOR DERIVATIVES

There are three misprints in the procedure DAPODMIN.
The beginning of the third last line in procedure up dot should
be replaced by

forj:=istepl...
and the third last line in procedure set unit h and H should be
replaced by
k:=k+n-i+1
The sixth line after the label SEARCH ALONG S should read
check := check vV H[i] < 0;
Also I recommend that the lines

estd := 2 X exp(In(abs(f x oldg[j])
X E[H[j11 2)/3);

in procedure grad be replaced by
estd 1= 2 X abs(f X oldg[j] x E/H[j112)} (1/3);

thus avoiding calculating the logarithm of a number close to 0.
An improvement which may reduce slightly the number of func-
tion evaluations required to solve a problem may be made to the
last section of the linear search. The 8 lines beginning with the
line

fi=mhyi=fz

should be replaced by
for i := 1 step 1 until # do
begin
x[i] := ylil; yli] := z[i]
end;

106

&x :=(fy — f)lb;
fi=p 0 :=/fz

Shirley A. Lill

Department of Computational Sc.
University of Leeds,

LS2 9JT.

To the Editor
The Computer Journal

Sir,

With reference to Algorithm 50 (this Journal, Volume 13,
pp. 208-219) I would like to point out that the author’s ‘Bell’s
position’ (Fig. 3(a), p. 211) for the simplest two move mate
position known, is not in fact a legal chess position, i.e. it cannot
occur in over-the-board play.

I have constructed a simpler position which gives a two move -
forced mate in the same manner as Bell’s position, and my o
example can occur as a result of legal chess moves. The position 3.
is shown in Fig. 1, and a sample game leading to this position &

(there will doubtless be shorter such games) is given below. §
3
3
=
§
Black =
Q
8
BB | BR | BK |2
3
BP BP o
C
©
WP WP g
8
BP 3.
=
Q
BP BP 5
@
BP WP &
WP WP WB §
2
WB WK WR | &
g
White @
®
. (2]
Flg. 1 §
©
White Black 1
1. P—QN3 N—KB3 N
2. B—N2 N—KS5 S
3. B—KS5 P—KB4 ®
4, P—KR4 N—N4
5. PXN K—B2
6. B—R2 P—QR4
7. N—KB3 R—R3
8. N—B3 P—R4
9. P—R3 K—N3
10. N—KS ch. K—R2
11. N—N4 RPXN
12. P—N4 R—K3
13. Q—NI1 N—QB3
14. Q—N2 P—QN3
15. Q—N1 R—K6
16. Q—N2 R—NI1
17. P—N6 ch. K—R1
18. Q—N1 R—N6
19. PXR B—R3
20. K—B2 N—K4
21. K—NI1 B—Q6

The Computer Journal

22. BPXB Q—RI
23. P—Q4 Q—B3
24, PXN PXP
25. R—R2 PXP
26. RXP Q—N2
27. P—Q4 P—Q3
28. P—Q5 PXP
29. N—N5 Q-—NI
30. R—KB3 PB4
31. R—B4 PXR
32. N—Q4 PXN
33. QXNP Q—RI
34, Q—N3 Q-—BI
35. Q—K3 Q—K3
36. PXQ QPXQ

This gives the position in which White has no option but to
mate Black by a series of three forced moves. This uses the same
theme as in Bell’s position.

Yours faithfully,
J. L. BERRY
The National Computing Centre Limited

Manchester M3 3HU
May 1970

Mer. Bell replies:

Ouch! The example was intended to show some actual numbers
generated and paths taken by the program. It is illegal because of

the pawn structure which Berry has remedied by removing the
two (superfluous) middle pawns in the King’s file.

I should have defined ‘simplest’. What I meant is a position
from which the tree structure is minimal, i.e. restricted to one and
only one generated (legal or illegal) move at each play. Berry’s
position allows both the Black and White King illegal moves
and the program would take slightly longer to prove the unique
(P X P) solution. It is blocking the Black King that is difficult.
Incidentally, if you ignore illegal King moves and always ‘queen’
a pawn then

BK

BP

WK | BP WP

WP

has the forced sequence

1. P—Q7
2. K—N8
3. P—Q8(Q) ck. mt.

Coatributions for the Algorithms Supplement should be sent to
Mrs. M. O. Mutch
University Engineering Department
Control Engineering Group
Mill Lane, Cambridge

Book review

Rank Order Probabilities: Two Sample Normal Shift Alternatives,
by Roy C. Milton, 1970; 302 pages. (Wiley, 1255 = £6-25)

One aim of this book was to produce an accurate and compre-
hensive set of tables of the probabilities of rank order, when small
samples are taken from two normal distributions with the same
variance but different means. There can be no doubt that the
author unequivocally achieves this aim. As regards computational
technique, the basic method used to compute this probability
(which takes the form of a multi-dimensional integral) is well
known, but the use of ‘extrapolation to the limit’ to improve
accuracy is unusual (I suspect), and well worth noting.

The author then uses his basic tables to solve a number of
statistical problems. For example, in Chapter 2 he calculates and

Volume 14 Number 1

compares the power functions of some non-parametric two-sample
test statistics (like those of Wilcoxon, Fisher-Yates, and Kolmo-
gorov) in the normal case. Of course, there already exists a
literature on the efficiency of these tests, but Milton’s book
certainly seems to contain many new results. For instance, it is
shown that the Fisher-Yates test is not always more powerful
than the Wilcoxon test and vice versa. Chapter 3 is interesting
too since it contains results on the power of some sequential
two-sample rank tests. This is a topic that will be quite new to
many statisticians.

In my opinion, the author has already put his tables to good
use.I would not be surprised if other people (researchers probably)
found equally good uses for them in the future.

J. G. FryER (Exeter)

107

20z udy 61 U0 188n6 AQ | #9GE/E0L/L/1L/BI0NIE/UlLO0/WOd"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

