A language for algorithms

Richard H. Stark

New Mexico State Universily, Las Cruces, New Mexico 88001, USA

A syntax for a language to express algorithms in a way which facilitates proofs of equivalence
between algorithms as well as translation into computer programs is given and briefly justified.

(Received November 1969)

The cases in which it has been possible to prove the correct-
ness of a computer program or the equivalence of distinct
computer programs written to solve the same problem are
few. A stumbling block is the potential complexity of
program structure when all the capabilities of an algorithmic
language like ALGOL, FORTRAN or PL/1 are employed.
Yet, in fact, these complexities may come about because of
the flexibility of the language and not be inherent in the
problem. These observations suggest that it might be fruitful
to design a limited language for algorithms. Such a language
would need to be mechanically translatable into efficient
machine programs. It should lead to algorithms which are
structurally simple enough that proofs of equivalence are
facilitated. Finally, it should have the necessary richness of
expression to be well adapted to some broad class of
problems. In this paper, we propose a language for the
expression of algorithms to solve mathematical problems
to meet these objectives.

The material contained in this paper is a portion of an
unpublished report by the author (1968). Shortly thereafter,
a letter of Edsger Dijkstra (1968) presented quite similar
ideas in the form of a criticism of features of existing
languages with some suggestions for improvement. One
may look upon the language presented herein as a specific
proposal which conforms to his suggestions.

General characteristics of the language

1. There is an alphabet of characters including decimal
digits, letters and special symbols from which the statements
which make up an algorithm are composed.

2. An algorithm is expressed as a sequence of statements
for which the normal execution path is from one statement
to its successor in this sequence. A feature of the language
is the absence of jump statements, their place being taken
by a looping statement and a choice between alternate
actions as elaborated in 8.

3. Every operand is itself a numeric value or is the name
by which such a value is identified and can be obtained.
We assume that values can be recorded and retrieved
precisely so that no round-off error occurs.

4. Statements which constitute an algorithm are assign-
ment, delimiter, and control statements. Each type is
described just below. Syntactical descriptions are given in
Fig. 1.

5. An assignment statement is of the form

v:=¢

where v represents a variable (identifier followed by a
possibly empty argument list) and £ represents an expression

which may be arithmetic or Boolean. The value obtained
by substituting current values assigned to variables in the
expression represented by ¢ is assigned to the variable
represented by v. Should that variable already have an o
assigned value, it is replaced.

6. We distinguish segments of the algorithm which we 8
call actions. Intuitively, an action is a sequence of statements &
which has exactly one entrance which is its first statement =
and has only one exit which is from its last statement to the S
next in sequence. An algorithm is written as an action. =4

A labelled action has delimiter statements for its first and @
last statements. The first provides the label followed by a m
(possibly empty) list of arguments which are names for 2
which parameters or parameter values are to be substituted
prior to execution. The last statement serves only as a
marker for the end of the action.

For convenience, we provide a standard empty action
with label NIL. It is equivalent to the action:

BEGIN NIL;
END NIL;.

Umo

7. Any action can be invoked by having its first statement
be the next to be executed. Only labelled actions can be
invoked by other statements. These serve much as the
FUNCTION and SUBROUTINE subprograms which
would appear in a FORTRAN program and are invoked in
much the same way. The combination of action identifier
and arguments used in such invocation is called an action
initiator. An action initiator may be only an identifier (the
label of the action) or it may be an identifier followed by a
parenthesised list of parameters. A parameter may be an
expression, in which case its value is assigned to the corre-
sponding argument prior to execution. Otherwise it is a
variable preceded by # in which case the variable is to be
substituted for every occurrence in the action of its corre-
sponding argument prior to execution This substitution of
value or name is done for each position common to both
lists.

If the action initiator appears as an operand, then its role is
justthat of a FORTRAN function and—as for FORTRAN
functions—its value will be that assigned in the definition
of the action to the identifier portion of the action initiator.

8. An action initiator may appear as an operand in an
expression as indicated above; its only other place is in a
control statement. There are two types of control statement,
each of them conditional, called branching and looping
respectively. A branching statement invokes one of two
alternate actions, the choice based on the truth or falsity
of its Boolean expression. A looping statement invokes an
action for a succession of values of its looping index,

202 Iudy 61 U0 1sanb Aq L9Z9GE/0P/L /1 /oI01He/|UfWod/Wod dno-dlWweped

*This work was performed at Washington State University and was sponsored by the National Science Foundation under Project GP-7476.

40

The Computer Journal

< Boolean value >

< digit>

<letter>
<relational op >
<empty >
<identifier >
<unsigned integer >
< integer>

< decimal fraction >
< decimal number >

<exponent part>
<unsigned number >

< primary >

< factor >
<term>

<arithex >
<index list >

<indexed variable >
<variable>

<relation>

< Boolean primary >

< Boolean secondary> : :

< Boolean factor >

< Boolean term>

< implication >

< Boolex >
<expression >

< left part>
<assign>

< assign sequence >

< parameter >
< param list>

< param part>
<argument >
<arg list>

< label >
< begin label >

<end label >
< unlabelled action >

< labelled action >
<action>

< action sequence >

< initiator >
<branch>

<loop control >

< delimit statement >

I T

Il

{+ |

I

I

I I

I

I

[

(]

IFi

I

I

I

Fig. 1
Volume 14 Number1

<letter> | <identifier >

{<letter> | <digit> }

<digit> | <unsigned integer >

<digit>

= <unsigned integer> |
— }<unsigned integer >
.<unsigned integer >

<unsigned integer >
< decimal fraction >
<unsigned integer >
< decimal fraction >

10 <integer >

< decimal number > |
<exponent part> |

< decimal number >
<exponent part>

< unsigned number > | <variable> |
<initiator > | (<arithex>)

< primary> | <factor>
<factor> | <term> {*| /| =}

< factor>

<term> | {4+ | —}<term> |
<arithex> {+ | — }<term>
<arithex> |

<index list>, <arithex >
<identifier > [<index list >]

<identifier> |
<indexed variable >

<arithex> <relational op>
<arithex>
<Boolean value> | <variable> |

< initiator> |

<relation> | (<Boolex>)

<Boolean primary> |

~]<Boolean primary >
< Boolean secondary > |

< Boolean factor> A
< Boolean secondary >
< Boolean factor> |
<Boolean term> v

< Boolean factor >

= <Boolean term> | <implication> >

< Boolean term >

<implication> | <Boolex> =

<implication>

<arithex> | <Boolex>

<variable> :=

<left part> <expression> ;
<assign> | <assign sequence >

<assign>

<expression> | < variable >
<parameter> | <param list>,

< parameter >

= <empty> | (<param list>)

< identifier >

= <argument> | <arg list>

<argument >
<identifier >

BEGIN <label > { <empty >
(<arglist>)};
END <label > ;

< assign sequence> |

< action sequence> | <branch>

< labelled action>
<labelled action> |

<loop control > <labelled action >

< begin label >

<unlabelled action> <end label >

<unlabelled action> |
< labelled action>

= <unlabelled action> |

<labelled action>
<unlabelled action> |
<labelled action>
<labelled action> |

< action sequence > <action>

<label > < param part>

DO < initiator > IF < Boolex >
{<empty> | ELSE DO < initiator> }; |

DO <initiator> ;

DO < initiator> { <empty > |
WHILE < Boolex > }FROM < identi-

{<integer> | <variable> }BY

{<integer> | <variable> }JTHRU
<variable> ; | DO <initiator > WHILE

< Boolex > FROM < identifier> :=
{<integer> | <variable> }BY

{<integer> | <variable> };

< begin label > | <end label >

Syntax for the language

} <primary>

terminating when its Boolean expression is false. Each of
these control statements names the action(s) it controls.
Consequently, these actions could and would in practice
be written apart from the control statements which invoke
them. To avoid such complexities as actions which invoke
themselves, we insist, however, that the action(s) named by
a control statement be written below it and separate it
from the next statement to be executed after the action(s)
invoked by the control statement have been executed.
9. The most general form of the branching statement is

DO a,IF # ELSE DO a,;

Here a, and a, are action initiators and # represents a
Boolean expression which is to be evaluated when the
branching statement is encountered. If the value of the
Boolean expression is TRUE, initiator a, is applied; if its
value is FALSE, initiator a, is applied. In case the state-
ment terminates just after the Boolean expression, the
effect is the same as if a, were NIL; if it terminates after a,
the effect is that resulting from 4 = TRUE.
10. The most general form of the looping statement is

DO @ WHILE # FROM % := 5, BY 5, THRU n;;

where % represents an identifier for the looping index,
n, and n, represent variables which furnish initial value and
increment for the looping index, and #; represents a
variable to which the final value of the looping index is
assigned.

To define the precise sequence of steps initiated by the
looping statement, we introduce an auxiliary index j which
is zero when the looping statement is encountered. Then
the steps are:

1. For the current j, assign the value represented by
N, + Jj - 1, to the identifier represented by £ and then
evaluate the Boolean expression.

2. If the Boolean expression has value TRUE, proceed
to 3. If it has value FALSE, skip to step 4.

3. Apply initiator a, replace j by j + 1 and return to
step 1.

4. Assign the value represented by n, + (j— 1) - n, to
the variable represented by n;. This completes the
sequence.

Omitting WHILE £ is equivalent to using (13 — &) -1, 20
for # and deleting the assignment in 4. Omitting THRU
ns deletes the assignment in 4 and requires use of the
Boolean expression for termination.

A Backus-Naur Syntax Specification modelled after that
of ALGOL (Naur, 1963) appears in Fig. 1. Some of its
restrictions could well be relaxed. We have striven for
simplicity wherever the penalty was not great.

Functions computable in the language

It is to be expected that the class of u-recursive functions
is computable with algorithms in this language. The
following actions demonstrate this explicitly. Note that the
branching instruction is not even used.

The Zero Function:
BEGIN Z ;
Z:=0;

END Z;

The Projection Functions:
BEGIN PKN(1, 12, ..., IN);
PKN: =1K;

END PKN;

The Successor Function:
BEGIN S(X);
S:=X+1;

END S;

41

202 udy 61 U0 1s9n6 Aq | 9Z9GE/0F/ L/ L /I0IIE/UlWOD/W0d dNo dlWspeoe)/:SA]Y WO} POPEOUMOQ

Primitive Recursion with initial function G(X1,..., XM)
and inductive step function H(X1,..., XN) where N =
M+ 2:

BEGIN PR(X1,...,XM,Y);

Q0): = G(X1,...,XM);

DO INDUCT WHILE NY FROM N =1 BY 1

THRU NZ;

BEGIN INDUCT;

Q(N): = H(X1,...,XM,N — 1, Q(N — 1));

END INDUCT;

PR: = Q(N2);

END PR;

Composition: C(X1, X2, ..., XM) = H(GI(X], ..., XM),
,GN(X1,..., XM))

BEGIN C(X1, X2, ..., XM);
Y1: = GI(X1,...,XM);
Y2: = G2(X1,...,XM);
YN: = GN(X1, ..., XM);
C: = H(Y1,Y2,...,YN);
END C;
u-Recursion: MUY(X1,..., XN) =
=0)
BEGIN MUY(XI, ..., XN);
DO NIL WHILE F(I — 1, X1, ...,
:=1BY 1 THRU Y;
MUY: =Y;
END MUY;

uY(F(Y, X1,...,XN)

XN) # 0 FROM I

Justification for the language

It should be clear that any algorithm written in the language
we have defined is easily translated into FORTRAN or
ALGOL and presumably into any reasonable algorithmic
language including machine code. Hence, the justification
needs only demonstrate that (1) algorithms written in the
language have some special useful properties, (2) writing
algorithms in the language is convenient enough and
produces short enough execution times to be practical.
The analysis of algorithm structure which follows is
directed toward (1). The example then gives some feeling
for the appearance of an algorithm in the language and
perhaps even to some extent of its capability for producing
economical computation. Thus, the example is directed
toward (2) but is far short of demonstrating it.

Analysis of program structure

In proving the correctness of an algorithm, the author has
found it essential to demonstrate an ordering of potential
execution (defined later in this section) for pairs of actions.
One reason is to assure that if action 4 relies, for a particular
setting of looping indices, on action B for an operand, then
if 4 is executed for that setting, B must have already made
the operand available. Similarly, if action A relies, for a
particular setting of looping indices, on an operand which
action C destroys, then if A is executed for that setting, it
must precede such destruction. Such properties were used
by Rechard and Stark (1969) in a proof of the equivalence
of two algorithms. We now show that proofs of the ordering
of potential execution are facilitated when algorithms are
written in the proposed language.

To each action in an algorithm, we assign a level within
the algorithm, (denote the level of action A by I(4)) as
follows:

1. If action A is the algorithm, then /(4) =
2. If action A4 is formed from an action sequence and
action B is an element of that sequence, then

I(B) = I(4) + 1.

3. If action 4 is a control action and its control state-
ment contains an initiator for action B, then
I(B) =1(A) + 1.

Consider an action in the text of an algorithm. Either it
is the complete algorithm or it is a component of another
action. Whenever action A4 is formed with action B as one
of its components, we say B is nested in A4. Starting from
A, we can form a sequence of action identifiers 4,, 4,, . . .,
A, in which 4, = 4 and such that 4, , is nested in
A(i=1,...,m —1). We call this the nesting sequence
for A and define 4,, to be nested in each action preceding
it in the sequence. In the example of Fig. 2, this sequence
for the action beginning at statement 9 is EUCLID, LOOP,
REDUCE.

The nesting sequence will point to a place in the text of
the algorithm, but it is not sufficient to distinguish among
executions of the same action for distinct settings of
control indices. For that, and for the more complex case of
distinct actions, we need an execution pointer.

Consider the possible executions of an action A. Let its
nesting sequence be 4, 4,, ..., 4,. For such a sequence?
we may define an index sequence iy, i, . . ., i, where i; is3
defined as follows:

1} POPEO|

. If A4; is not a looping action, then i; = 0.

2 If A; is a looping action and j # m, then i; is a valueo
from the domain of the looping index of the control
statement of 4;.

3. i, =0 (if 4 is a looping action, then its execution =
con51sts of all executions of the action it controls, notg

just one).

e//:sdny

0"oIWape

Any execution of 4 can be selected by giving its nestmg
sequence and an index sequence with current values forc
loopmg indices.

A pair (4S; IS) consisting of a nesting sequence and an -
index sequence is called a potential execution. Referring§
again to Fig. 2, (EUCLID, LOOP, REDUCE; 0, 7, 0)2
would represent a potential action. An execution determines =
a nesting sequence and an index sequence and therefore a%
potential execution. But not every potential execution g
determines an execution, since Boolean conditions which =
depend on input data influence the execution path. Never-
theless, much that needs to be proved can be based on these
potential executions.

Consider two potential executions

(AS; IS) and (BS; JS)
where
AS = Ay, ..., A,
BS =B,,...,B,
IS =i,...,i,
IS =j1, . s

Let k be the largest integer such that 4, = B(I = 1,...,k) &
and i, =j(l=1,...,k). If m = k = n, then these are the
same potential action. If m = k and n > k, then (BS;JS)
is nested in (4S; IS). Similarly, if m > k and n = k, then
(AS; IS) is nested in (BS; JS).

If m>k and n >k, then either A,,,; # B,,, or
iyt # Jev1 If Ay = Byyy, then 4, is a looping action
and the potential action whose index occurs first as looping
index will not be executed after the other. If 4,,, # B,. 4,
then these are two distinct actions at the same level. That
which occurs earlier in the text of the algorithm will not
follow the other.

¥20z udy 61 uo 1senb Aq nggge/o

Analysis of an algorithm in the language

We have chosen, because of its familiarity, to write the
Extended Euclid’s Algorithm in our language and then to
prove the validity of this formulation. There is one advan-

The Computer Journal

tage to choosing such a commonly used example, namely
that it makes comparison easy. Knuth (1968) has a proof
on p. 15 according to a method formulated by Floyd (1967).
Our algorithm for finding the greatest common divisor, C,
of integers M and N (neither negative and one positive) is
given in Fig. 2. At the beginning and after each execution
of the REDUCE algorithm, gcd(M, N) = gcd(C, D) and
C = ASTAR*M + BSTAR*N, D = A*M + B*N.

We would have chosen to retain indices in the statements
of our algorithm rather than recreating them as below, but
that would have made comparison with Knuth’s proof less
direct.

For purpose of analysis, we need to be able to label, in a
unique way, every quantity assigned to a variable during
computation. The notion is to use the statement number
in which a value is assigned and the current values of
indices in loops controlling that statement for the purpose.
Rather than propose any general labelling scheme, we apply
a straightforward labelling scheme for this example.

We may designate the value assigned to any identifier
at the completion of a statement which is not in the loop by
applying the statement number as a superscript to the

0 BEGIN EUCLID;

1 ASTAR:=1;
2 BSTAR:=0;
3 A:=0;
4 B:=1;
5 C:=M;
6 D:=N;

7 BEGIN LOOP;

8 DO REDUCE WHILE D # 0 FROM I:=1 BY 1 THRU $I;

9 BEGIN REDUCE;
10 Q:=IQ(C,D);
11 R:=C-Q*D;

12 T:=A;

13 A:=ASTAR-Q*A;
14 ASTAR:=T;

15 T:=B;

16 B:=BSTAR-Q*B;
17 BSTAR:=T;

18 C:=D;

19 D:=R;

20 END REDUCE;
21 END LOOP;

22 END EUCLID;

Fig. 2. A formulation of Euclid’s Algorithm

Volume 14 Number 1

ASTAR6 = I,BSTAR6 = O,A6 = 0,86 = 1,C6 = M,D6 =N

x? = X where Xe{ASTAR,BSTAR,A,B,C,D}
xi - 20 , (1 <K s $I) where Xe{ASTAR,BSTAR,A,B,C,D}

For any K in [1,$I]

Qp0= 10(C7,00) 5

R O 10, .9
Ry= Gy - Q¢ *Dy»

12_,9
Te= A

13_ 10,,9
A= ASTAR QK AK,

>

o
L}
w
]
z
1
o
=~
*
==}
=~

19 11

20 18 20 19 ,20 13 .20 16 20 14

= = T
Cp = CesDg = D LA = A, B = JASTARY” = ASTARY
20 _ 17
BSTAR,~ = BSTAR .
Gl xég where Xe{ASTAR,BSTAR,A,B,C,D}

Fig. 3. Abstractions from the algorithm of Fig. 2

identifier. Thus, D® = N. When the statement is within the
action controlled by the DO statement, we supply the
current value of the looping index as a subscript as well as
statement number as a superscript. For example,

R!! = M — IQM, N)*N

where IQ(M, N) is the integer quotient of M by N.

With this symbolism, we can abstract from the instructions
of Fig. 2 the set of relations given in Fig. 3. Again, we have
chosen not to formalise the abstractions from the algorithm.
They should be intuitively clear.

Our proof of the validity of the algorithm in Fig. 2 is
now made completely from the relations in Fig. 3. As a
first step we relate values at statement 20 to those at state-
ment 9 by single substitution sequences:

ASTARZ = ASTARL* = T{? = A2
BSTARZ® = BSTAR}’ = T.® = B
AZ0 = A} = ASTARZ—QLO*AZ
(A) B2° = BL® = BSTARy — QL°*B} =1 '$'15
C¥=C® =D}
D® = D{’ = R = C2—Qi™*D}

It is a simplification to define
X3° = X® where Xe{ASTAR, BSTAR, A, B, C, D}
so that
(B) Xg = Xg° (1K S

43

202 udy 61 U0 1s9n6 Aq | 9Z9GE/0F/ L/ L /I0IIE/UlWOD/W0d dNo dlWspeoe)/:SA]Y WO} POPEOUMOQ

where Xe{ASTAR, BSTAR, A, B, C, D} .
This permits a restatement of (A) as:
ASTARZ® = A2,
BSTARZ® = B2,
A A}’ = ASTARZ® | —QL%*A2° |
&) g BSTARZ? | — Qg**BR% ,
=D,
D° = C32,—Qi*D}2,
where ASTAR2® = 1, BSTAR2® = 0, A20 = 0, B2 = 1,
C2° =M, and D2° = N. From the last two equations of
(A’), we have that if X divides C2° , and D2° , it divides
C2° and D2° and vice versa. Hence,

K=1,...,51)

ged(C2°, DY) = ged(C32 1, D%, = ... = ged(M, N)
From the definition of integer quotient, we have that
0<Rg!'<Dy

which may be restated by use of (A) and (B) as
0<DZ°<D2%, .

Hence, there is a K such that D2° = 0. That K is $I, since
D2° = 0 terminates the loop.

We define
I'x = ASTARZ°*M + BSTARZ%+N
A¢ = AZ°*M +B2%*N
Then from (A’)

References

DuksTrRA, W. W. (1968). Go to statement considered harmful, CACM, Vol. 11, pp. 147-148.

Froyp, R. W. (1967). Assigning meanings to programs, Proc. Symp. Appl. Math., AMS 19, pp. 19-32.

KNuUTH, Donald E. (1968). Fundamental Algorithms: The Art of Computer Programming, Vol. 1, Addison-Wesley, pp. 14-17.

NAUR, P. (Ed.). (1963). Revised report on the algorithmic language ALGOL 60, CACM, Vol. 6, pp. 1-17.

RECHARD, O., and STARK, R. (1969). Equivalence of two algorithms for Cooper’s generalised factorial function, The Computer Journal,

Vol. 12, pp. 33-37.

StARK, R. H. (1968). On means to record algorithms to facilitate generation of error-free programs, WSU Computing Center Report,

68-1.

Iy = 4¢-y
Ag = Tx_1—Q°* 4k,
where I'y = M and 4, = N.

Since the pairs (I'k, 4x) have the same initial values and the
same inductive definition as the pairs (C2°, DZ), they are
identical; that is

Cx = ASTARZ%+M + BSTARZ*+N

Dy = AZ°*M +BZ°*N

Conclusion

The statement of Euclid’s Algorithm and subsequent proof
of its validity demonstrate a high potential for mechanisation
in the proof procedure. Clearly, the relations of Fig. 3 can
be taken from the algorithm by a simple formal procedure.
It is not difficult to picture continuing mechanically through
(A’). There seem to be two non-routine steps. One is to Y
recognise the importance of and prove the relation

ged(CK’%, DR%) = ged(Ck 1, D2) (K =1,...,81) .

The other is to define the sequence {(I'x, 4¢)} and then 3
prove that it is calculated by the same rules as the sequence 3
{(Ck, D)} and is therefore identical to it.

It is our contention that a language which forces into the £
algorithm a facility for ordering the execution of statements o
provides a major simplification for the analyst who proposes &
to prove its validity. The language proposed in this paper g
accomplishes this task, and by so doing opens new avenues o
for development of proofs of validity.

PapPEOJUM

sdny

eoe/

Book review

Numerical Approximation to Functions and Data, by J. G.
Hayes, 1970; 177 pages. (The Athlone Press, 60s = £3.00)

This book is the proceedings of the conference with the same
title held by the IMA at the University of Kent in September
1967. The editor and publishers have used the intervening time
to produce a very polished product but I must say that my own
preference would be towards foregoing some of this polish for
the sake of publication within, say, a year of the conference.

The main emphasis is on the practical aspects of approximation
theory, that is the representation of mathematical functions (which
are defined exactly) and the fitting of empirical data (which are
subject to errors so that some smoothing is necessary). This
makes it a useful companion volume to ‘Methods of Numerical
Approximation’, edited by D. C. Handscomb, which has a more
theoretical flavour.

The chapters written by Clenshaw and Hayes provide plenty
of practical advice on the use of polynomials and jointed poly-
nomials. Their emphasis is on the user understanding the
difficulties associated with his problem and making such decisions
as which order is appropriate, where different polynomials should

4

be joined and whether a transformation of the independent
variable is appropriate. They rely on the computer to do the
actual fitting and to provide information upon which these
decisions may be made.

On the other hand, the chapters of Curtis, Powell, and Payne
place emphasis on automatic algorithms with almost all decision-
making taken out of the hands of the user and given to the
computer. Curtis, considering the approximation of mathematical
functions, and Powell, considering the fitting of experimental
data, both use cubic splines to construct algorithms. Payne also
discusses the curve-fitting problem but he uses jointed poly-
nomials whose order is not fixed.

There are two papers which, although they are very interesting
in their own right, do not really match the flavour of the remainder.
These are by Barrodale and Young presenting their experience
in solving a number of linear operator equations using Chebyshev
approximation and by Meinguet whose paper is a theoretical
discussion of approximation in a general context.

Also included are an excellent introduction by Fox and a
concluding survey by Davis which is as pleasing to read now as
it was to hear at the time. -

202 Iudy 61 U0 }sanb Aq | 9Z9GE/0F/ L/ 1/o101He/|ulwod/wod dn

J. K. ReID (Harwell)

The Computer Journal

