Uncoupling central processor and storage device

speeds

Caxton C. Foster

University of Massachusetts, Amherst, Massachusetts 01002, USA

This paper discusses a method for coupling a very high speed CPU to relatively slow storage devices.
The method consists of treating storage references in the same fashion as multi-programming

systems treat I/O references.
(Received March 1970)

As is well known, it is presently possible to design and
construct Central Processing Units which can accept a new
instruction 50 to 100 times per microsecond. It is equally
well known that a design which envisioned all of main
storage operating at this speed would be prohibitively
expensive to build. Anyone attempting to design a computer
for use in a utility situation will wish to have high through-
put, large main store and good cost-performance. Thus, a
designer is faced with the problem of coupling together
high speed CPU’s and relatively slow speed storage devices.

Two different approaches to this problem have been tried
in the past. The first of these has been called a slave memory
(Wilkes, 1965). A high speed (comparable to the CPU cycle
time), but small, scratch pad is provided. The CPU fetches
instructions and operands from this scratch pad, and
hardware is provided to trap address faults when the
desired data is not present in the scratch pad. Thus, main
storage is, in effect, treated as a virtual memory which is
paged in and out of the scratch pad. This approach is an
outgrowth of Kilburn’s pioneering work on the one-level-
store of the ATLAS computer (Kilburn, Edwards, Lanigan,
and Sumner, 1962) and Arden, Galler, O’Brien, and
Westervelt’s (1966) design for the 360/67. But the problems
of page thrashing (Coffman and Varian, 1968) cannot be
ignored, and, despite the fact that Conti, Gibson, and
Pitkowski (1968) claim 809 efficiency for the ‘cache’ of
the IBM 360/85, one cannot help but be concerned about a
design with two levels (scratch pad-core-drum) of paging,
however artful the designers and programmers may be.

The second approach is to break up main storage into a
number of independent blocks so that several accesses to
storage may be overlapped. The CPU tries to ‘look ahead’
down the stream of instructions and ‘pre-fetch’ data and
instructions that will be needed in the near future. This
method is often combined with a CPU design that separates
the logically independent operations of decoding, address
calculation, and various kinds of execution. The CDC 6600
and the IBM 360/195 are examples of this approach.

The major problem with this approach is the interlock
circuitry required to keep one instruction from treading on
another’s heels. For example, if a separate multiplier unit is
provided (a la the 6600) and it is slower than the adder, then
the following instruction sequence could easily give erro-
neous results if there were no interlocks.

Volume 14 Number 1

1 LDA JONES

2 MPY SMITH
3 STA BROWN
4 LDA GREEN
5 ADD BROWN
6 STA GREEN

If the multiplier should be busy and the adder free, then
without interlocks instruction 5 could be executed before
instruction 3. Obviously, as the look ahead gets deeper the
interlock circuitry gets more complicated. Moreover, given
conditional branch instructions, the chances of completing
any pre-fetched and partially decoded sequence is reduced
and sometimes considerable effort can come to no avail.

The method that we are going to propose in this paper is
somewhat like a 6600 without interlock circuitry, but rather
more like an overlapped Honeywell 800 with something of
the flavour of a Gamma-60 thrown in. Unfortunately, our
method requires a special sort of environment in order to be
effective, but as we shall see that environment (having many
independent tasks ready for execution) will not be at all
rare in a computer utility.

Multi-streaming
The CDC-6600 achieves its high speed by storage reference
overlap at the cost of complex circuitry. The Honeywell 800
reduces system overhead by interleaving execution of up to
eight independent instruction streams but without any
attempt at overlap or look ahead. The Gamma-60 (ene of
the earliest multi-programmed multi-processors) had an
elegant scheme for handling requests for use of a processor
when that device was already busy. We intend to ‘borrow’
all three of these ideas.) '
Consider a computer utility. By its very nature it will be
characterised by having many tasks in progress, or waiting
for attention, at the same time. Suppose we could arrange
to have several tasks, each in independent storage modules.
Then we could design a central processor like the H-800 or
like the peripheral processing units of a CDC-6000 series,
and time-share one fast CPU among the various tasks. The
PPU’s of the 6000 series are each allotted a time slice at the
CPU whether they need it or not. The H-800 overcomes this
problem but does not attempt to overlap memory references
generated by one program with those generated by another.

45

202 udy 61 U0 1s9nB AQ 9829GE/GH/ 1/ L /A0NE/UlWOD/ W00 dNo"dlWspeoe)/:SA]Y WoJ) PAPEOUMOQ

The simplest way to both overlap storage references and
to assign CPU attention only to those instruction streams
able to profit from it, is to allow the completion of a storage
reference to be the signal that the program which generated
that reference needs some CPU time.

Suppose the CPU cycle time is T and the cycle time of a
storage device is nt. Then Fig. 1 shows a primitive multi-
streamed device which time-shares the fast CPU among n
slow storage devices. Each storage device has a scratch
pad associated with it to hold a copy of the contents of the
CPU’s registers appropriate to its own program. It must
also have its own memory address register and memory
buffer register. Note especially that the storage devices can
be of mixed speeds. Programs stored in faster devices will
be executed more rapidly. Also, if we permit one storage
device to ‘talk to’” another (by extending the address field,
for instance, to select a device as well as a cell), some of
them could be input-output devices such as card readers or
line printers or perhaps teletype units. We require enough
devices so that their combined average rate of requests for
attention will keep the CPU busy. Other than that, we are
free to choose as we please.

The scanner should be of a look-ahead type, doing a
round-robin scan of the devices, searching for one requiring
attention. The multiplexor must have a rather broad high-
way in order to simultaneously transfer all the CPU register
to and from the scratch pads. For this reason alone we
should keep the CPU simple with only a few registers.

Perhaps eight registers of 32 bits each arranged somewhat
like a PDP-11 would be a good starting point for a design.
This should strike a reasonable balance between having too
many registers with a high cost for scratch pads and too
few registers with a high cost in increased memory references.

CPU
(cycle time = 1)

P

Scanner and
Multiplexor

1 2 S

Scratch Pad
to Hold
CPU Registers

Scratch Pad
to Hold
CPU Registers

Scratch Pad
to Hold
CPU Registers

Storage
Cycle Time Storage Storage
= nt
Program 1 Program 2 Program S
Fig. 1. A primitive multi-streamed architecture

In effect, this design carries the idea of multi-programmin g
to its logical extreme. We treat main storage just like an 1/O
device and ‘interrupt’ an instruction stream every time it
references store (or any other I/O unit).

In the machine so far described, we have shown how to
time-share one fast CPU among several programs—each
one running as fast as it can, given the storage device
holding it. But we have not yet taken advantage of the law
of large numbers as applied to the size of programs. Some
programs are small, some are large requiring much storage

46

space. In the primitive machine each program has its own
storage device, and it would be impossible to share unused
space in one device with a need expressed by another
program. The best we could do would be to buy some small
and some large storage devices; but this would increase the
diversity of equipment installed (and hence the price) and
would not be as flexible as the scheme described in the
next section.

An integrated multi-stream organisation

The first change we make to the organisation of Fig. 1 is
to collect the scratch pads that were associated with each
storage device into a common scratch pad called the DORM
in which instruction streams sleep when not executing in the
CPU. Each instruction stream will be known by the address
it occupies in the DORM.

The DORM will need to be wide enough to hold all the
CPU registers. If we have eight registers 32 bits long this
will require 256 bits per word. At 3 to 4 dollars per bit active
integrated circuit memories can be obtained with read or
write times of the order of 10 nanoseconds. Although the
DORM is logically a single unit it might be profitable to
consider constructing it as several physically independent
units to achieve access overlap.

We require one read and one write from the DORM every
CPU cycle but the read can be destructive and the write,
which will be to a different address, can employ separate
access circuitry.

Later in this paper we propose to have 256 active instruc-
tion streams so this would make the DORM a square array
256 on a side.

The memory address registers and memory buffer registers
will stay with the storage device and we must add another
register to each storage device called the USER register in
which to hold the name of (the DORM address of) the
instruction stream for which the device is currently working.

We do this for two reasons. First, there may be more
devices than there are instruction streams, and in this case
we will save on the total amount of scratch pad required.
Secondly, if we are going to share storage among programs,
we wish to give the programs an identity independent of
which storage device they are currently using.

If instruction streams are disassociated from storage
devices, then it will be possible for more than one stream to
reference the same device and we must provide a mechanism
for resolving this interference. Obviously, when two requests
for service are outstanding simultaneously, one of them
must wait. Preferably this delay in servicing the second
request should not tie up the CPU. The hardware provided
to accomplish this will be called the ‘queueing mechanism’
and is derived from that of the Gamma-60.

Further, we should do our best to attempt to minimise
memory access conflicts. One way to do this is to interleave
storage units on the low order bits of the address. If this
interleaving is, say, 16 deep (4 bits) then up to 16 programs
could be executing the same subroutine, each program
moving one instruction behind the previous one. There may
be some delay in getting started if jumps to the subroutine
occur too close together, but the programs will sort them-
selves out (by order of request) and soon be marching along
in ‘lock step’ without mutual interference.

The queueing mechanism

The remaining changes to the organisation of Fig. 1 are to
accommodate multiple requests for service from one storage
device. They are shown in Fig. 2. To each storage device
we add a register called LAST and we add a QSTORE
scratch pad. The QSTORE has as many words as does the

The Computer Journal

202 udy 61 U0 1s9nB AQ 9829GE/GH/ 1/ L /A0NE/UlWOD/ W00 dNo"dlWspeoe)/:SA]Y WoJ) PAPEOUMOQ

DORM;; one for each instruction stream. Each word of the
QSTORE is long enough to hold one memory address, one
word of data and the name (number) of an instruction
stream plus two more bits.

Il porRM CPU
—_—
-
N
\ 1
\\ QSTORE
\
\
\
Scanner and
Multiplexor
MAR| /S |eeaeao
MBR 1 2 S
USER
LAST Device Reg.| |Device Reg. Device Reg.
TYPE - -
Storage Storage Storage
Device Device Device

Fig. 2. A more sophisticated multi-stream architecture capable of
sharing storage space and common subroutines

If a storage device is idle (has a user number of 0) when
an instruction stream requests its service, then the user
number, the effective address, the data (if any) and two bits
to indicate the ‘type of request’ are copied into the USER,
MAR, MBR and TYPE registers of the device. Simul-
taneously, the user number is loaded into the LAST register
of the device. The TYPE of request is a two bit code
indicating (1) instruction fetch, (2) read, (3) write, or (0) do
nothing. Finally, the operation is initiated. Meanwhile, the
CPU registers have been copied into the users word in the
DORM so the CPU is free to go about other work.

Suppose, however, the device is busy (has a non-zero
user number). Then the LAST register of the device is
examined to discover the name of the instruction stream at
the end of the queue waiting for service from this device.
Suppose instruction stream J is making the request, and
that instruction stream K is named as being at the end of the
queue. Then the CPU registers of J’s job are placed in J’s
word in the DORM as usual, but instead of sending the
information about J’s memory request to the desired device,
it is diverted to the K'" word of the QSTORE, and J’s name
is then put into the LAST register of the device. Fig. 3
shows this process. As more requests arrive, they form a
linked list—via the USER field—in the QSTORE of those
streams waiting for service from this one device. Since an
instruction stream gets interrupted for every storage refer-
ence, it can have, at most, one request outstanding and be on,
at most, one queue. Thus it needs only one slot in QSTORE
to hold the name and data about its immediate successor on
that queue. Note that we will make read out from the
QSTORE be destructive so that zeros are left in any
QSTORE word belonging to an instruction stream without
a successor, (not on a queue, or at the end of ong).

Suppose now that the device shown in Fig. 3 finishes its
work for stream K and eventually obtains the attention of

Volume 14 Number 1

the scanner. The K™ word is read out of the DORM to
load the registers of the CPU and the data (if any) that
results from the storage reference is passed along and the
device is ready to work for someone else. The contents
of the K™ word of the QSTORE are fetched and sent to the
device registers. If this word was all zeros, then the device
falls idle. If not, it begins work for the new user. A detailed
discussion of the timing of these various activities is con-
tained in Foster (1970).

Delays due to interference

It is always difficult to estimate the amount of interference
that will result in an actual design before that design is built
and used ; partly because the design of software can strongly
influence the results.

Lacking any other knowledge, let us assume that storage
addresses are generated at random—each address being
equally likely. Then if there are N instruction streams, each
of which has generated an address (we ignore the one that
is currently executing) and there are S devices, the average
number of requests per device will be:

A=N/S

Given random selection of addresses, the number of
devices with i requests will be:

Di=S.£e—’1,
il

and the number that are idle (with zero requests for service)

will be:
D, = Se™*

or for A = 2 (twice as many streams as storage devices)
about 13-5% (e~ 2) will be idle and 86-5%; will be busy.
Let us assume 128 storage devices with an average cycle
time of 1 u second. Since only 86-5 %, of these will be generat-
ing requests for attention by the scanner, we can expect
128 x .865 = 110 requests per microsecond, or roughly
one every 10 nanoseconds. Providing the CPU can keep up
with this request rate (see next section), then the through-
put will be 10® storage references per second. With 128

QSTORE QSTORE
— > =
k[oo oo k | 7| MAR [MBR | TYPE
slofo]o]o s[o] o | of o

USER MAR MBR LAST TYPE USER MAR MBR LAST TYPE

K o B K R K X B J R

Storage Device

Just After J's Request
has been Posted

Just Before J Posts
its Request

Fig. 3. The process of posting a request by instruction stream J
on a device that is busy. The queue then consists of K (being
serviced) and J (waiting on the queue). If another instruction stream
M comes along, its name will be put into LAST, and information
about its request will be stored in word J of the QSTORE

47

202 udy 61 U0 1s9nB AQ 9829GE/GH/ 1/ L /A0NE/UlWOD/ W00 dNo"dlWspeoe)/:SA]Y WoJ) PAPEOUMOQ

CPU

/ CPU

N\

“Requests Input / : \l\ Output
for ——|Scanner |1 | | Scanner
Computation - |
[
]
: ;] To
: Storage

CPU

Fig. 4. A parallel organisation for a CPU

devices and a 4 = 2 we will have 256 active instruction
streams which must share these 10® references. Consequently,
the average program will proceed as if it were running alone
in a machine with a 2-5 u second main store, executing
400,000 references or 200,000 instructions per second. One
may well question whether this rate could be attained in
practice but without a detailed study the assumption of
random addressing is probably as reasonable as any other.

CPU design

We have suggested in the previous section that a CPU
speed of one instruction accepted every 10 nanoseconds
could be designed. The fastest present designs (CDC-7600
and IBM 360/195) have about a 26-25 nanosecond cycle
time. But they must operate with extensive interlocks to
preventundesirable interaction between instructions, whereas
we are freed from that necessity by the fact that successive
instructions in the same stream can arrive at the CPU no
more often than 1 per microsecond (the storage cycle time).

Two approaches to designing a high throughput CPU
could be tried. The first of these would be a pipeline design
in which independent operations of decoding, etc. would be
assigned to separate units which passed on their partial
results to the next unit. But there is a limit to how far we
can partition instructions, and hence to how much we can
profit from pipelining.

The second approach involves parallelism of operation,
but without the specialisation of components that is
characteristic of the CDC-6600.

Fig. 4 shows the essence of the proposed CPU design.
Several, perhaps 12, relatively high-speed (100 nanosecond)
CPU’s are connected in parallel.

When a request for computation arrives the input scanner
looks for an idle CPU and passes the task to it. Some time
later, that CPU requests attention of the output scanner
and passes its results and registers on to be saved as

References

described previously. Then that CPU indicates to the input
scanner that it is ready to accept another job. Since all
CPU’s are identical, when one goes down, the rest can carry
on with a somewhat reduced throughput. Of course, if one
of the scanners goes down, the whole system would be
paralysed, but these are relatively small in size and could be
backed up by duplicate equipment without too great an
investment.

In order to achieve high speed within the CPU’s we
suggest that they might be specialised into three distinct
types. The Scanner and Multiplexor can examine the type
of memory reference (instruction fetch, read, or write) just
completed and select a CPU on this basis.

1. Fetch completed. This type of CPU will be the most
complicated. The instruction will be decoded and if
it is a memory referencing kind, an effective address
will be computed. In this case the CPU has done all
it can and will initiate the reference and put the
instruction stream back to sleep. If the instruction is
not memory referencing it will be executed at once and
after execution a fetch of the next instruction will
be initiated.

2. Read completed. This type of CPU will be used when a
data reference is finished. The action dictated by the
op-code is carried out and the stream is put back to
sleep after requesting a fetch of the next instruction.

3. Write completed. At the completion of a store oper-
ation all that needs to be done is request the next
instruction. This type CPU will thus be almost
trivially simple.

Whenever indicated these CPU’s can be designed on a
‘pipeline’ basis taking advantage of the independence of
successive instructions. This technique would be of particular
advantage in Type 1.

Conclusions

The outline of the design of a very high throughput com-
puter is presented. A fast CPU (or combination of CPU’s)
is coupled to a large number of relatively slow storage
devices. The completion of a storage reference is used as
the signal that more computation is needed by a program.

The storage devices can be of various speeds. High
priority programs could be stored in faster storage while
I/O bound programs could be relegated to slower devices.

Acknowledgements

The author wishes to thank Professor Michaelson, Chairman
of the Computer Science Department, University of
Edinburgh, for many stimulating discussions and suggestions
on this design during the year 1967-8 while the author was
visiting the University of Edinburgh.

ARDEN, B. W., GALLER, B. A., O’BRreN, T. C., and WESTERVELT, F. H. (1966). Programmed Addressing Structure in a Time-Sharing

Environment, JACM, Vol. 13, No. 1, pp. 1-16.

CorrmaN, E. G., and VARIAN, L. C. (1968). Further Experimental Data on the Behavior of Programs in a Paging Environment,

CACM, Vol. 11, No. 7, pp. 471-474.
ConrTr, C. M., GiBsoN, D. N., and Pitkowsk1, S. H. (1968).
IBM Systems J., Vol. 7, No. 1, pp. 2-14.

Structural Aspects of the System/360 Model 85, I. General Discussion,

Control Data 6400/6500/6600 Reference Manual, Publication No. 60100000, Palo Alto, California: Control Data Corporation, 1966.

FosTEr, C. C. (1970).

Computer Architecture. New York: Van Nostrand Reinhold Co.
Gamma 60, A New Concept, Data Processing (January-March, 1960).

Honeywell 1800 Programmers’ Reference Manual. Wellsely Hills, Mass: Honeywell Electronic Data Processing, 1964.
IBM System/360 Model 195 Functional Characteristics. IBM Systems Reference Library, Form A22-6943-0, Poughkeepsie, N.Y., 1969.
KiLBURN, T., EDWARDS, D. B. G., LANIGAN, M. J., and SUMNER, F. H. (1962). One-Level Storage System, IRE Trans. on Elect. Com-

puters, EC-11, pp. 223-235.

WILKES, M. V. (1965). Slave Memories and Dynamic Storage Allocation, IEEE Trans. on Elect. Comp., pp. 270-271.

48

The Computer Journal

202 udy 61 U0 1s9nB AQ 9829GE/GH/ 1/ L /A0NE/UlWOD/ W00 dNo"dlWspeoe)/:SA]Y WoJ) PAPEOUMOQ

