An experimental paging unit

S. H. Lavington, D. J. Kinniment, and A. E. Knowles

Department of Computer Science, The University, Manchester 13

An Associative memory is described which has been attached to an ICL 1905E computer to provide
hardware page-address translation. The resulting paged system is being used for experiments in
connection with the design of a large research computer.

(Received March 1970)

1. Introduction

Paging is a technique for easing the store-management
problems that arise on large multi-programming computers.
In particular, the difficulties of ensuring protection between
programs, utilising the maximum amount of physically-
available fast store (e.g. core store), and integrating a
backing-store into the memory hierarchy, are overcome
more easily in a paged environment than in a conventional
datum-and-limit machine. This paper describes the con-
nection of an associatively-accessed address-translation
unit to a standard ICL 1905E computer in order to produce
a paged machine. A general discussion is first presented on
the developments in the concept of a paged store, and from
this some requirements are deduced for an experimental
paged system. A new Associative Store is described which
meets this need, and its incorporation in a standard 1905E
is then considered.

2. General requirements for page-address translation

The convention adopted for translation is that each user-
program generates virtual addresses, acting as though the
whole of the addressing-field is available for his private use.
An address-translation unit, or Associative Store, is
interposed between the central processor and the fast store
(see Fig. 1), and this associates each virtual-address reference
with a page of real store. The size of the Associative Store
is limited by cost, and is conveniently divided into lines
known as Current Page Registers, or CPRs. The Virtual
field of each CPR holds a user’s virtual page- (or ‘block’)-
address, to be associated with a real page-address which is
held in the Real field of the same CPR. Hardware lockout is
provided to distinguish between CPRs loaded with the same
virtual address, but referring to different user-processes.
Referring to Fig. 1, the operation is as follows. A user-
generated address arrives from the CPU, and the most
significant page bits are strobed into an interrogate-register.
The least-significant bits, specifying the line within a page,
bypass the translation process. Association takes place on
the page bits and if equivalence is found with the Virtual
field of a CPR, the corresponding real page-address is read
out into the data-register. It is then concatenated with the
line bits, and the complete real address is sent to the fast
store. With a limited number of CPRs, a match may not be

Volume 14 Number 1

found during the association process. In this case a ‘Non-
Equivalence’ interrupt is generated, and the operating-
system takes steps to locate the whereabouts of the real-
address being requested, via reference to Page Tables. A
transfer from backing-store may take place. A CPR is
eventually re-loaded with the desired virtual/real address
combination, and translation may then proceed. The
associative hardware is designed to operate much faster than
the main core store’s access-time.

The Associative Store used on Atlas, the first computer to
implement paging (Kilburn, Edwards, Lanigan, and
Sumner, 1962), is simpler than the arrangement implied in
Fig. 1, in that the real field of each CPR points to a unique
fast-store page. More flexibility is obtained, including the
facility for users to share common areas of store, if the real
field of a CPR may point to any page of real store. This is
the case, for example, for an experimental paged 1904
computer produced by ICL West Gorton (Doré, 1968).
Another improvement on the basic scheme is to incorporate
a process-number in the virtual-address field, so that CPRs
relevant to several user-programs may remain set up at any
one time. This may be useful in a multi-programming
environment, especially where on-line users are being
serviced on a time-sharing basis. A 4-bit process-field has
been incorporated in an experimental paged IBM 360/40
(Lindquist, Seeber, and Comeau, 1966; Hellerman and
Hoernes, 1968). The Atlas system has a hardware marker
that is set whenever a page is used, and is able to be reset
by software; this assists the page-turning algorithm (Kilburn
et al., 1962). It would be advantageous if this marker could
be extended so as to include information about whether
the particular page has been altered or not. Other enhance-
ments that can be made involve the provision of selective
Read, Write, or Obey, permission lock-out on each CPR,
and provision for detecting the fault-condition of Many
Equivalences. These improvements have been incorporated
on one or other of the two experimental systems referred to
above.

Further experience (e.g., Corbaté and Vyssotsky, 1965)
has suggested two ways in which paging strategy, and by
implication Associative Store hardware facilities, could be
further improved. Firstly, it is difficult to choose a fixed
page-size that is efficient for all job-environments. It would
thus be convenient to have some means whereby the page-

55

20 Iudy 61 U0 1s8n6 AQ 11.£9GE/SS/ L/ L /I0IIE/UlWOD W00 dNo"dlWspeoe)/:SAY WO} POPEOUMOQ

size could be varied. The fixed size chosen for Atlas is
512, 48-bit words, whilst Doré chose 1,024, 24-bit words,
and 4K bytes was chosen for the 360/40. The Associative
Store for the Manchester 1905E is designed to allow page-
sizes extending from 16 words to 64K words—(see Section
5). Secondly, it is often convenient for a user and/or
compiler to notionally segment a program according to its
routine-structure, etc. It would be advantageous if the
virtual addressing conventions were able to reflect this
segmentation. Such a convention exists informally at
compile-time on the Atlas computer, because of the large
size (2 million words) of the virtual address space. More
formal conventions exist on other systems (e.g., Glaser,
Couleur, and Oliver, 1965). In general, each segment may
require an individual page-size for optimum efficiency.
Further, some segments such as those holding library
routines may be required to be shared between different
user-processes, and the hardware should facilitate this. The
Associative Store for the 1905E allows 64 segments per
process, of which 32 may, if desired, be regarded as ‘com-
mon’ segments—(see Section 5). Each segment may have a
different page-size. Factors determining the choice of these
parameters for the 1905 Associative Store, and some
general design-aims, are discussed below.

3. Design-aims for the associative store

The Associative Store for the 1905E was designed in the
context of a larger research project, namely the MUS5 multi-
processor computer, currently being developed in the
Department of Computer Science (Kilburn, Morris, Rohl,
and Sumner, 1968). The design-aims relate to the speci-
fication of the MUS in four ways.

Firstly, the MUS5 will use special-purpose associative
circuit-elements (Aspinall, Kinniment, and Edwards, 1968)
in the implementation of its CPRs, and in an operand
Name Store, and in certain central machine associative

elements be proved before incorporating them in the hard-
ware of the MUS. The Associative Store for the 1905E
was designed to incorporate these special circuits, and thus
to form a means for hardware evaluation.

Secondly, it is eventually required to connect the 1905E
into the MUS multi-processor complex, principally by
allowing common access to a large Mass store and certain
other local stores. This interconnection is facilitated if the
1905E is made to have an address-structure similar to the
MUS. This relates to the third factor—the software of
the MUS.

It is desirable that development of an operating system
and compilers for the MUS should proceed concurrently
with the logic design. This necessitates a period of simulation
or interpretive programming on an existing computer. This
phase of development is simplified if the existing computer
can be made to approximate the conventions of the MUS,
especially with regard to virtual addressing structure. It was
therefore desirable to convert the 1905E to a paged machine
by the addition of an Associative Store possessing as far
as possible the MUS Virtual-field conventions. An Executive/
Operating system for the paged 1905E could then be
written that would form a trial run for the eventual MUS5
system. Since this new 1905E Executive can be written in
the system-program language SPG (Morris, Wilson, and
Capon, 1970), notional transformation to the MU5 assembly
language, where appropriate, can be relatively easy.

Finally, the store-allocation strategy to be adopted in the
MUS operating system cannot be worked out in detail
until more is known about the effects of various page-sizes
on different job-mixes, and on different classes of segment
within a job. Existing work in this field is sparse (e. 8,5
Joseph, 1970; Fine, Mclsaac, and Jackson, 1966); and in 3
order to gather more comprehensive statistics there is a =
need for a variable page-size system such as is provided by &
the modified 1905E, to act as a research-tool.

buffers. It is thus essential that these new associative The four general design-aims indicated above were
VIRTUAL FIELD REAL FIELD
CRRn -
] I I
1 | |
| I
| I |
| | |
! ! l
CPR?2 >
CPR 1 >
CPRO I
INTERROGATE REGISTER DATA REGISTER
ADDRESS - } PAGE BITS t > TO FAST
FROM CPU LINE BITS STORE

Fig. 1. General scheme for page-address translation

56

The Computer Journal

"olWBpeoR//:sdny WoJj papeojumoq

O

©
o

3

3

202 1udy 61 U0 }sanb Aq 11 £9GE/GG/L /7L /o101Me/|ul

modified by certain practical considerations, as follows.
The addition of the Associative Store to the 1905E should
involve as little disturbance to the system as possible, so
that existing software projects could continue uninterrupted.
The central machine hardware modifications that were
necessary were to be of such a nature that the 1905E could
at all times be switched to ‘unpaged mode’, when it should
behave as a standard datum-and-limit machine. To complete
the discussion on design-considerations, it is appropriate to
give a brief account of the ICL 1905E configuration on
which these modifications took place.

The 1905E at Manchester is a 24-bit word-length machine,
having 32K words of 650 nanosecond cycle-time core store.
It has two exchangeable disc-drives, each disc-cartridge
capable of storing 2 million words. Store-protection between
user-programs is provided by a hardware datum-and-limit
mechanism. The computer is provided with a hardware
floating-point unit, and the usual range of basic peripherals.
Transfers to and from disc may proceed autonomously,
but all other peripherals cycle-steal via the Standard
Interface Hesitation sequence. This hesitation sequence,
once initiated, is organised by a hardware microprogram
which makes reference to a simple control-word area in the
Executive area of core store. Peripheral interrupt conditions
force an entry to Executive, which examines bits in three
special event-registers to determine the cause of interrupt.
Other conditions such as ‘Datum/Limit Fail’ also cause
entry to Executive. As is shown in Section 4, the Standard
Interface mechanism is utilised for loading and unloading
CPRs in the Associative Store, and the interrupt facility
is used during action subsequent to a ‘Non-Equivalence’
condition.

4. Overall system configuration

A block-diagram of the system is shown in Fig. 2, in which
it can be seen that the Associative Store is interposed
between the 1905E central processor and its 32K core store.
The Associative Store accepts a 22-bit Virtual address from
the 1905E and performs the translation into a 15-bit Real
address, assuming that equivalence is found with one of the
Virtual addresses previously loaded into the CPRs. There
are 32 CPRs in all, each one divided into fields specifying
Process Number (IP), Segment (S), Block (B) etc., as
described more fully in Section 5. The Virtual field of each
CPR extends to 24 bits in all, and the Real field occupies
36 bits. The Real field includes digits specifying access-
permission, page-size, etc., as detailed in Section 5. Each
CPR may be accessed individually by means of a 5-bit
address, denoted by the A-field in Fig. 2. Loading and
unloading of the CPRs is performed by Executive, via the
Standard Interface hesitation facility. at a maximum
transfer rate of about one 6-bit character every 6 micro-
seconds. Since the Standard Interface highway is only one
character wide, the Associative Store contains a set of
buffer registers to facilitate transfers. The sections of these
buffer registers which correspond to the Virtual field are
also used as an interrogate-register, during the association
operation.

As may be seen in Fig. 2, the Virtual field of each CPR
is 24 bits wide, whereas the 1905E has provision for only
22 address digits. For this reason the Process Number is
pre-loaded into the most significant 6 bits of the Associative
Store’s interrogation-register just prior to running a
particular user’s program. The minimum page-size possible
with the system is 16 words, so that the least-significant

VIRTUAL FIELD REAL FIELD
CONTROL - 24_1_3_1TS . . 36BITS
| Bl 32
1905 E S
STANDARD INTERFACE IP S B A RA FI' | RS | pr’s
CENTRAL P
PROCESSOR 1
22 - BIT ADDRESS de - _d ISd
BUFFER + INTERROGATE REGISTERS
DATA HIGHWAYS ‘:MR |
ASSOCIATIVE STORE
15 BIT DATA
REAL ADDRESS HIGHWAYS
32K
650 nS CORE
STORE

Fig. 2. Block-schematic of the associative store attached to the 1905E

Volume 14 Number 1

57

20 Iudy 61 U0 1s8n6 AQ 11.£9GE/SS/ L/ L /I0IIE/UlWOD W00 dNo"dlWspeoe)/:SAY WO} POPEOUMOQ

four address-bits of the 22 sent by the 1905E are always
treated as line digits and take no part in the association
operation. Different segments of a process may have different
page-sizes, and these are specified when a CPR is loaded.
Thereafter, adjustment of the correct page-size for a
particular address-translation takes place automatically, as
described in Section 3.

The Real field of each CPR contains provision for up to
22 real-address digits, of which at least four will be line
digits, as mentioned above. With the existing 32K 1905E
core-store, only the least-significant 15 real-address bits
have any relevance; the remainder have been provided for
use in the eventual multi-processor environment, when
other, remote, stores will require to be accessed. The data-
highways, which at the present are connected directly to the
32K store, will likewise be required to be routed to other
devices in the proposed multi-processor system. ‘

The highway denoted as ‘control’ in Fig. 2 contains
signals for performing three tasks. Firstly, information is
provided about the type (i.e., ‘read’, ‘write’, or ‘exec.:ut.e’)
of the current store-access request, so that the Associative
Store may check for permission violation and also update
the use-bits. Secondly, there is a group of interrupt-signals,
used for denoting the occurrence of a CPR non-equivalence,
permission-violation, etc. Thirdly, there are signals indicat-
ing that the current store-access is required to bypass the
CPRs—that is, the address is to be treated as absolute and
no translation is necessary. The conditions for which absolute
addressing is required are as follows. (@) When the 1905E
is in Executive-mode. This is a manually switchable option,
so that Executive-mode routines can be paged, if eventually
desired. (b) If the 22-bit virtual address in Executive mode
presented to the interrogation-register is less than a manually-
selectable amount. This option is provided so that if the
main areas of Executive are paged, then at least the first
few addresses which contain the hardware entry-points for
interrupt and extracode sequences etc., can be acce§sed
absolutely. (¢) When the microprogram uses core loqatlons
as temporary dumping registers, during the execution of
certain long orders. The locations involved are all within the
first 16 words of physical core. (d) During all peripheral
transfers. These proceed independently of the current process,
and hardware provision is made in the 1905E microprogram
to facilitate transfers to and from non-contiguous areas of
core store.

5. Details of the associative store

Referring to Fig. 2, the 60 digits of each CPR are divided
up as follows:

IP : 6 bits :

Four assigned as the Process-number (the 1905E only
provides identification for a maximum of 16 current
processes); one spare; one used as an Ignore-bit, for CPR

lock-out purposes.

S : 6 bits :
Virtual segment-number.

B : 12 bits :

Virtual page (or ‘block’) number. These digits are each
implemented by two associative elements. One element is
interrogated when the corresponding virtual address bit is
a one and masked when it is a zero; the other is interrogated
for a zero and masked for a one. In this way the two
elements can be set to give equivalence for both a one and
a zero, and allow for ‘don’t care’ cases when page sizes of
greater than 16 words are in use. These ‘don’t care’ cases

58

are determined at CPR load time by the setting of the RS
register. The maximum possible page-size is therefore 64K
words.

RA : 18 bits :
Real page-address.

SFP : 6 bits :

Two bits are assigned for statistical purpose; S, is set to
logical 1 the first time the particular page is used; S, is
similarly set if the page has been altered (written to). F is
one marker-bit, employed during the ‘Find’ operation—
see below. The three remaining digits give the desired
permission-information, as follows: P, is set to logical 1 at
CPR load-time if reading from that page is allowed;
P, is similarly set if writing is allowed; P, is similarly set if
processes are permitted to obey that page.

RS : 12 bits :

This is loaded by Executive with the Real page size which
must be a power of two, in the range 16 words to 64K
words. RS is used as a mask when reading out the contents
of RA, subsequent to successful association.

In addition to the CPRs there is a 6-bit CPR address-
register, A, with one digit spare, and a set of buffer/
interrogate registers as described in Section 4 above. Finally
there is an 18-bit register, MR in Fig. 2, used as a variable
mask during the ‘find’ operation. The CPR fields of Fig. 2
closely resemble those for the MUS. The main differences
are that in the MUS the segment-bits are increased from 6 to
14, and the real-address field is increased from 18 to 24 bits.

During normal operation there are six possible events
which cause the Associative Store to interrupt the central
1905E. These are: (@) CPR Non-Equivalence; (b) CPR
Many Equivalences (implying a system error or hardware
fault); (c) Read-violation (implying that permission for a
read-access had not been assigned to the particular address
for which a ‘read” was requested); (d) Write-violation;
(e) Execute-violation; (f) Store-access counter overflow.
This last interrupt comes from hardware that counts the
number of paged store-accesses, for statistical purposes.
The counter can be manually switched to overflow for
counts in the range 128 to 4096, in powers of two. The six
causes of interrupt are or-ed together to form a signal known
as Pagefail. The central machine action on receipt of a
Pagefail is described in Section 6. The cause of interrupt is
staticised in the Associative Store, and is cleared upon
translation of the next successful paged store-access.

As has been mentioned, loading and unloading of the
CPRs take place via the Standard Interface. To facilitate this,
and to aid maintenance, 14 Associative Store system
commands have been assigned, as follows:

Load CPR (n)

Load Process-number register

Set the Ignore-bit for CPR (n)

Read the SFP bits for all CPRs

Load the SFP bits for all CPRs

Find. (Set up a pattern in the IP, S and B registers;

load a mask in MR ; then associate on IP and as

much of S and B as is selected by MR. The

‘Found’ bit is then automatically set for all CPRs

which give equivalence.)

7. Resume Normal Association—(issued subsequent
to Standard Interface activity)

8. Load the A-register

9. Select the CPR whose address is currently in the

A-register, and read its contents

SR e

The Computer Journal

20 Iudy 61 U0 1s8n6 AQ 11.£9GE/SS/ L/ L /I0IIE/UlWOD W00 dNo"dlWspeoe)/:SAY WO} POPEOUMOQ

10. Read all working registers
11. Read the interrupt-digits (i.e., Non-Equivalence,
etc.)
12. Standard-Interface status-request
13, 14. Spare.

Orders 8 to 11 are for engineering maintenance purposes.
In this respect Orders 4 and 6 are also useful, for they
enablc the Associative Store to be tested on an unpaged
machine, using the normal manufacturer’s software—(see
also Section 6).

The Associative Store provides certain manually-
selectable options, as already mentioned. These include
switches for inhibiting interrupts, selecting the upper bound
to the size of unpaged Executive store-area (see Section 4),
and selecting the size of the store-access count. There is also
a facility denoted as ‘allow common segments’. If this
option is switched on, then Process 0 is automatically
forced for all virtual addresses which contain a most-
significant digit of 1. Thus, the first 32 segments of a user’s
process are private to his program, and the remaining 32
segments refer to a common area known as Process O,
which could contain library routines, etc. Any user’s process
may therefore speedily refer to this common area. Finally,
the Associative Store is provided with a remote test facility,
for off-line engineering maintenance.

The associative memory-elements which form the basis
of each CPR consist of special-purpose integrated circuits,
each chip holding 8 bits (Aspinall et al., 1968). The remain-
ing logic-elements are implemented in the ECL integrated-
circuit technology. The cost per bit of the associative
circuits is comparable to that of conventional flip-flops.
The performance of the Associative Store, as judged by
the translation delay it introduces to core-store references,
varies slightly for different combinations of virtual address
digits. In the worst case, the elapsed time between receipt
of a 22-bit virtual address at the Virtual Field and the
sending of a corresponding real-address to the data-register
is about 130 nanoseconds. This is illustrated in Fig. 3,
which shows the Oscilloscope traces for this worst-case
translation. When in absolute-address mode (no translation
required), the Associative Store introduces a delay of 20
nanoseconds. The effect of these delays on the 1905E
instruction-times is discussed below.

6. Interface with the 1905E

(i) Hardware considerations

The main group of modifications necessary to the standard
1905E in order to implement paging, concerned the fixed-
store microprogram unit. This fixed-store, of 1,024 48-bit
words, is responsible for sequencing all machine-code
instructions, and for controlling peripheral and interrupt
activity. Modifications were performed to ensure that all
instructions could be re-started if interrupted by, for
example, a CPR Non-Equivalence occurring on an operand-
fetch. This involved postponing any irrecoverable changes
to central registers, e.g., resetting carry, until such time in
each microprogram sequence that the particular order was
bound to run to completion. Special problems occurred in
the case of some multiple-operand orders, such as the
MOVE instruction. This order copies up to 512 words
from one area of core to another. With permitted page-sizes
as small as 16 words, such orders become impossible to
implement directly, if only 32 CPRs are available. Thus,
during paged mode, these long orders were made to cause
entry to Executive, where they are implemented as extra-
codes. Executive itself may still obey the long orders directly,
since it is assumed that a prior software check will have been
made by Executive to ensure that the transfer areas are in

Volume 14 Number1

core store. Pagefail Interrupts from the Associative Store,
such as Non-Equivalence, were made to cause hardware
entry to a microprogram tidying-up sequence, similar to the
one entered for a Datum/Limit fail on the standard machine.

Fig. 3. Address-translation time

The upper trace (a) shows a digit of the interrogate-register

changing; Trace (b) shows a CPR signalling equivalence. Trace

(¢) shows the input of the data-register (real-address) changing.

The vertical scale is 1 volt per division, and the horizontal
scale is 20 nanoseconds per division.

In addition to the usual preservation of control, floating-
point accumulators, etc., a Pagefail causes the virtual
address which produced failure to be preserved at absolute
core location 1. The Pagefail interrupt microprogram
sequence then forces entry to Executive at absolute location
16. All substantial alterations to the fixed-store miroprogram
were implemented as conditional branches, entry to them
being determined by the state of a manual ‘Paging on/off’
switch mounted on the main 1905E console. Thus, for
‘Paging off’, the 1905E performs as a standard datum-and-
limit machine. The state of this switch can be examined by
Executive.

The other group of engineering modifications necessary to
implement paging, concerned the provision of special
control signals between the 1905E and the Associative
Store. As indicated in Section 2, these provide information
about the type of store-access, whether the access is to be
paged or treated as an absolute reference, and the type of
Pagefail interrupt. Each of the six possible causes of Pagefail
appears as a digit in the special CPU event-register SR129,
where it can be examined by Executive.

The timing of the 1905E CPU can, with a slight modifica-
tion, be made independent of core-store access time and so
the additional delay introduced by the Associative Store
was able to be accommodated. The total delay was effectively
greater than the 130 nanoseconds quoted above in Section 5,
because of about 60 feet of interconnecting cabling and
because of the need to convert between 1905E and ECL
logic-levels. These two additional factors produced a
further 130 nanoseconds delay. The timing of certain CPU
sequences had to be slowed down so as to allow the Pagefail
interrupt to travel back to the CPU and force microprogram
interrupt-entry at the correct time. The degree to which all
these delays will affect the instruction-speed of the paged
1905E depends upon the amount of overlap occurring

59

20z 11dy 6 U 1s9NB Aq ¥1.£9GE/GS/ L/ | /aIo1E/|UlWO9/W0D dNo"olWePESE//:SAY WOI) PAPEO|UMOQ

between core-store references and central machine activity.
For some orders, e.g., the ADD instruction, very little
overlap is achieved. Other orders, such as BRANCH on the
state of the accumulator, exhibit much overlap. There
is a third category, such as DIVIDE, where central machine
activity dominates the instruction. The total percentage
increase in instruction-time for these three orders, as caused
by CPR translation-delay, cable-delays, logic-conversion
delays, and central machine re-timing, has been measured
to be:

; ADD +59%
BRANCH + 21%
DIVIDE + 7%

A Gibson Scientific-mix test shows that the average instruc-
tion-time for the paged 1905E has been increased by about
539. It should be remembered that Executive and peripheral
activity, being in general unpaged, will be slowed down to
a lesser degree.

(i) Software considerations

It was required that development of the Associative Store
should be overlapped with the use of the 1905E as a
standard datum-and-limit machine. Additions had thus to
be inserted into the manufacturer’s Executive to enable the
Associative Store to be controlled as a Standard Interface
peripheral. The additional Executive routines were made of
a general nature, so that future experimental peripherals
could also be handled. The resulting software package
(Collins, 1969) has been incorporated into the manu-
facturer’s E6BM Executive. This has enabled a Normal-
Mode CPR test-program to be written. To test the detailed
paging facilities, an Executive-mode program with dummy
Normal-mode processes is available.

The degree to which the Associative Store hardware
could have eased the software tasks involved in CPR
management, was limited by two original design-criteria,
namely: the engineering modifications to the central 1905E
should be kept to a minimum; experimental flexibility
should be maintained. For these reasons the CPRs cannot be
addressed directly, as in Atlas (Kilburn ez al., 1962). It was
also not appropriate to implement a hardware algorithm
for choosing a suitable CPR for re-loading, nor was it
desirable to provide automatic table-searching on receipt

References
ASPINALL, D., KINNIMENT, D. J., and EDWARDS, D. B. G. (1968).
CoLLINS, R. J. (1969).

CoRBATO, F. J., and VYssOTsKY, V. A. (1965).
pp. 185-196.

DETLEFSEN, G. D., FRANK, G. R., LANE, R., and SweENEY, T. J. (1970).

Associative memories in large computer systems, and An integrated
associative memory matrix, Proceedings IFIP Congress, Edinburgh, pp. D81-D90.

Some System Programs for an Experimental Paged Machine, M.Sc. Thesis, University of Manchester.
Introduction and overview of the multics system, Proc. Fall Joint Computer Conference,

of a Pagefail interrupt. Thus the Associative Store is
intentionally not integrated too closely into the 1905E
architecture, and is regarded mainly as a means for facilitat-
ing software experiments.

The E6BM Executive, and related operating systems, do
not constitute a suitable environment for the range of paging
experiments which it was desired to perform. A new system
called VIPER—(Virtual Processor Executive Routine)—
has thus been written (Morris and Detlefsen, 1969;
Detlefsen, Frank, Lane, and Sweeney, 1970). Briefly, this
is a forerunner for the Executive on the MUS5 computer, and
embodies the same general conventions with regard to the
use of the common-segment facility, communication between
user-processes, and handling of input and output. Viper is
written in 1900 SPG (Morris, Wilson, and Capon, 1970),
which allows the source-text to resemble the MUS5 assembler-
conventions whilst retaining 1905E object-code efficiency.
At present, page-sizes in the range 128 words to 1K words
are permitted. The VIPER system is enabling data to be

gathered on the effect of various page-sizes, and the

exploitation of a segmented store-structure. o
5

7. Conclusions 3
Q

An Associative Store has been added to a medium-sized &
standard computer in such a way that, when used in 3
conjunction with the VIPER operating system, an extremely
flexible paged machine results. This paged system is = =
sufficiently close to the MUS in its virtual storage con- £
ventions to be able to be used for MUS5 software develop- %
ment and experlmentatlon In addition, hardware evaluation &
hastaken place concerning the performance of the associative = 3
memory elements; this has led to further developments o o
which will enable the time for address-translation to beTJ
1mproved by between 30 97 and 40 %;. Finally, the paging unit $ 8
is facilitating connection of the 1905E into the MUS &
multi-processor complex.

pe:

8. Acknowledgements

grant. The authors would like to thank Professor T. Kilburn
and all their colleagues in the MUS5 design-team for the &
many helpful discussions that have taken place. Thanks§
are also due for the co-operation obtained from ICL and &
Ferranti Ltd.

G/1/v L/a1oe/|ulwod/w

¥20Z 1udy 61 uo 3senb Aq

VIPER/1900: Programmers’ Reference Manual. (Available

from the Department of Computer Science, Manchester University.)

DoRrE, J. (1968). 1904E Paging Feature—Paper No. 1—ICL, West Gorton internal memorandum.

FInE, G. H., Mclsaac, P. V., and Jackson, C. W. (1966). Dynamic program behaviour under paging, Proc. 21st National Conference,
Assoc. Comp. Mach.

GLASER, E. L., COULEUR, J. F., and OLIvEr, G. A. (1965). System design of a computer for time sharing applications, Proc. Fall
Joint Computer Conference, pp. 197-202.

HELLERMAN, L., and HoernEs, G. E. (1968). Control storage use in implementing an associative memory for a time-shared pro-
cessor, I.E. E E. Trans. on Computers Vol. C-17, No. 12, pp. 1144-1151.

JosepH, M. (1970). An analysis of paging and program behaviour, The Computer Journal, Vol. 13, No. 1, pp. 48-54.

KiLBURN, T., EDWARDS, D. B. G., LANIGAN, M. J., and SUMNER, F. H. (1962). One-level storage system, I.R.E. Trans. on Electronic
Computers, EC-11, No. 2, pp. 223-235.

KILBURN, T., MoRRiIs, D., RoOHL, J. S., and SUMNER, F. H. (1968).
pp. D76-D80.

LINDQUIST, A. B., SEEBER, R. R., and CoMEAau, L. W. (1966).
Vol. 54, No. 12, pp. 1774-1779.

Morris, D., and DETLEFSEN, G. D. (1969). A virtual processor for real-time operation, COINS Symposium, Miami, Florida.

Morris, D., WILSON, I. R., and CApoN, P. C. (1970). A system program generator, The Computer Journal, Vol. 13, No. 3, pp. 248-254.

A system design proposal, Proceedings IFIP Congress, Edinburgh,

A time-sharing system using an associative memory, Proc. L.E.E.E.,

60 The Computer Journal

