On-line state estimation with a small computer

G. C. Coggan and J. A. Wilson

Department of Chemical Engineering, University of Nottingham

This paper shows that quite small computers enable the powerful Kalman sequential estimator,
which involves matrix operations, to be applied to industrial processes for state and parameter

estimation and hence improved control.
(Received December 1969)

An on-line application of digital computers which is
growing rapidly in importance is the supervision or direct
control of industrial processes. On economic grounds the
mere replacement of conventional analogue controllers by
a central processor is rarely justified but when the extra
capabilities of a computer are exploited the financial benefits
can be considerable.

Optimal control by computer is a major possibility but a
serious problem in using plant data for this purpose arises
from the sheer inadequacy and inaccuracy of such data.
Relatively few process variables are amenable to continuous
or frequent measurement and in particular the most import-
ant one, product quality, is usually quite inaccessible for
control purposes. Mathematical models may be used to
predict the values of such variables but, apart from the
effects of using imprecise models, the unmeasured random
disturbances, which are always evident in industrial pro-
cesses, render these predictions inaccurate. Furthermore
the use of mathematical models by themselves implies that
the state of the process was known accurately at some point
in time and this is never true.

In a situation where little information is reliable, optimal
control may still be feasible provided that ‘best’ estimates
of the current state of the system are available. Thus the
problem centres around on-line state estimation. Optimal,
sequential, discrete-time estimation techniques due to
Kalman (1960) have received much attention recently but
the emphasis has often been upon aerospace applications
and guidance, e.g. Bucy and Joseph (1968). Coggan and
Noton (1969) demonstrated that these techniques could be
extended and applied to industrial processes to produce
remarkably good estimates of unmeasured variables in
adverse circumstances. In some cases the estimates of
unmeasured variables were more accurate than the measure-
ments of the measured variables. However, much of their
work was done with simulated plants on an IBM 360/75
computer—a machine which is an order of magnitude bigger
than anything likely to be used on an industrial process—
and one of the principal application problems envisaged by
them, and emphasised during subsequent discussions with
industrially-oriented control engineers, concerned the
hardware requirements for state estimation.

Prior to this investigation it has been commonly assumed
that the matrix operations involved in the extended Kalman
estimator are simply impractical on the kind of computer
used to supervise industrial processes. It is the purpose of
this paper to demonstrate that on-line sequential state

Volume 14 Number 1
3

estimation using a Kalman filter is quite feasible on one
of the smallest digital computers in existence.

Notation

A’ The transpose of matrix A

A —» C Matrix A is copied into matrix C
A Transition matrix

Forcing vector

Sy

CQC’ Matrix of covariance estimates for random process
disturbances

F Filter matrix

G Error covariance matrix for the estimates of state
variables

H Measurement matrix

I The unit matrix

M The ‘order’ of the state vector, i.e. the number of
state variables

P Error covariance matrix for the predicted values
of state variables

R Matrix of measurement error covariances

T Computation time for one pass

X, Actual state vector

Xs ‘Filtered’ or ‘estimated’ state vector

X, Predicted state vector using the process model

y Vector of measurements

x,(k) Vector x, at the kth sample instant

X Mean or normal state vector

o,? Variance of the error of estimation of x, [obtained
from diag (G)]

d(k) Estimation error at the kth sample instant.

The computer

The machine in use is a basic PDP 8 having 4K core store
of 12-bit words. Backing store is provided by a 184K
magnetic tape. The core is split into 32 blocks or ‘pages’
of 128 words each. Except for page zero indirect addressing
must be used between pages. Memory cycle time is 1-5 us
and add time 3-0 us.

A floating point software package, occupying almost one
half of the core store, is used for mathematical operations
and floating point input and output. Accuracy is to seven
decimal figures.

Matrix pack

This is a set of matrix routines necessary to the operation
of the estimator algorithm. Matrices are stored row by row

61

202 udy 61 U0 1s8nB Aq ZZEIGE/L9/ L/ L /I0NIE/UlWOD/W0d dNo"dlWspeoe)/:SAY WoJ) POPEOUMOQ

Table 1 Routines contained in the matrix pack

TITLE PARAMETERS OPERATION STORAGE
(WORDS)

RDMAT A input A via the

teletype 15
PRMAT A output A via the

teletype 26
MSORA A B, C A+B-Cor

A—-B-C 36
MULMAT A,B,C AB-C 39
MATVEC y, A, x Ax—y 37
DUPMAT A,B A-B 16
VECMAT A, D AD->A (Disa

diagonal matrix) 27
TRAMAT A,B A'-»B 29
INVRS A AT1SA 120
PLUSI A A+I-A 19

in the core store, i.€. dyq, @125 -+ -5 Qips G215 22, ... €tC.
Thus a row of matrix elements is stored as a vector. The
complete matrix pack, listed in Table 1, occupip§ t‘h‘ree
pages of store, besides entry addresses and small initialising
routines on page zero. All the routines operate in a con-
ventional manner apart from MULMAT and INVRS.
MULMAT: For economy in terms of core store the matrix
multiplication C = A.B is carried out by treating B as a
set of column vectors and using MATVEC to produce
corresponding columns of C. To do this the columns of B
must be stored as vectors, i.e. byy. bay. . - . 5 bpy, byg, Do,y . . .
etc. Consequently, we must begin by transposing B and
use MATVEC to produce the column vectors of C, which
are stored as rows and then transpose the resulting matrix.
INVRS: Since space is so critical a pivotal condensation
method is attractive, as this generally entails use of little
space beyond that occupied by the matrix itself.

For the most accurate results the next pivot chosen
should be the largest element which does not lie in the same
row or column as a previously chosen pivot. However, this
normally requires a rearrangement of rows and columns at
the end of the procedure. If instead we pivo_t about the
diagonal elements in sequence no rearrangement is necessary.
Thus the storage required for both program and numerical
manipulations is reduced significantly. This saving must be
weighed against the potential loss of accuracy or even
complete failure, which can occur if a dlagona} element
approaches zero. The probability of this happening seems
small in this application.

Storage requirements

The matrix pack (284 words), floating point package
(1,553 words) and the estimator program (256 words)
occupy a total of 2,193 words of core store. Neglecting
page zero and the final page, which contains library loader
and binary loader programs, we have 1,647 words available
as data space.

Without backup store we require space for five matrices.
A floating point number occupies three words, thus limiting
the number of state variables (M) to 10, i.e. entier [\/(1647/
15)]. However, to accommodate the required seven vectors
in addition to the matrices we must limit M to nine leaving
243 words unused.

Using magnetic tape backup the control software occupies
128 words, leaving 1,519 words as data space. Only three
matrices are required simultaneously in the core store and

62

so the largest M we can handle is 12, i.e. entier [/(1519/9)].

Any increase in M above 12 would entail the alteration
of the matrix addition and multiplication routines so as to
operate with sections of the matrices in the core, rather
than with complete matrices as at present.

Data transfer

Assuming that a maximum of 12 state variables is to be
considered, the most convenient method for transfer of a
matrix to or from tape is to transfer four pages of store
together, as four is the nearest integral number of pages
occupied by a 12 x 12 matrix.

Estimator algorithm

We assume that the actual state of the process to be
monitored is given in discrete time by

x,(k + 1) = A.x,(k) + unmeasured disturbances,
whilst the measurements are related to the state by
y(k + 1) = Hx,(k + 1) + random errors.

The problem is to produce ‘best’ estimates x,(k + 1) of
x,(k + 1) given y(k + 1) and knowing x (k) .

A more detailed description of the operation of the =
recursive Kalman estimator, as applied to chemical engin- 3
eering systems, has been given by Coggan and Noton (1969).
Briefly, the algorithm used here can be written:

0l} papeojumoq

1: x,=Ax; + b
P = AGA' + CQC’
G =0+ PHRH)"'P
F = GHR™!
k = k + 1 (discrete time)
read (y)
read (b)
x; = x, + F(y — Hx,)
write (x,) best estimate at time k
GOTO 1

Often H and R are diagonal matrices and so, for economy =

L /oj0nue/|ufwod/woo dnoolwspese//:sdny

(otherwise a large amount of time can be wasted on null =
arithmetic). If the product CQC’ is not time-variant, it &
may be calculated outside the iterant loop.

Experimental runs

Computation times were recorded for different values of
M, by reading in the vector y and then allowing the program
to operate for a specified number of iterations, using the
same y, before outputting x;. The number of iterations
specified was usually adjusted to give a recorded time on a
stopwatch of about one minute (<19, accuracy). The
computation time per iteration was apparently independent
of both the number of iterations using a single y vector and
the numerical magnitude of the elements of the y vector.
The results are shown in Fig. 1.

The processes modelled and used for these experiments
were in fact isothermal gas absorption columns, the state
vector being made up of the liquid composition at each
plate. Thus an Mth order system represented an M plate
absorption column. All input data were generated off-line
on a large computer and the estimates produced on the
PDP 8 were compared with those generated off-line. No
significant difference was apparent, as is described in the
Appendix.

¥20z udy 61 uo 1senb Aq gze

Discussion

Industrial processes often have large time constants and a
sample interval of 1 minute would be unnecessarily short

The Computer Journal

200 7

/
/
100 | /
ASYMPTOTE T = 0-03M3~_ /
/
50 [~ /
/
/
/

20 F ~—STORE LIMIT 2
Zz
S
5
w 10 -
= “—STORE LMIT 1
1 s
&

5
w
b
’-—
Zz
o 2
-
et
D
Q
3
S 1
Q 05
2 |
[@]
Q
w
(2]
]
-

o
N

01

] L1111y L1 L1
1 2 3 45678910 15 20 30 4050

M - DIMENSION OF STATE VECTOR

A - USING BACK-UP STORE.
B -4K CORE STORE ONLY.

Fig. 1. PDP-8 Computation Time vs. Size of System

for many applications whilst in a few cases 20 minutes might
be adequate for optimisation purposes. Thus the results in
Fig. 1 show that the PDP 8§, even in its basic 4K form,
would be quite satisfactory for on-line state estimation of
linearised systems that can be described by 9 state variables
or 12 variables using back-up store. With certain approxi-
mations these might include: up to three reactors in series;
polymerisation reactions; separation processes, e.g. distilla-
tion, evaporation, gas absorption; or blending systems.

In exceptional cases estimation of as many as 50 state
and parameter values may be required and we can extra-
polate the results to determine whether this is feasible.
A computer with 28K (12 bit) core and magnetic tape back-
up would have adequate storage capacity for estimation
and control software but computation time would be about
1 hour. With hardware multiply/divide facilities this might

Volume 14 Number1

be reduced to 20 to 30 minutes and on a machine requiring
less than three words for a floating point number a much
smaller core store would be needed. It would seem that
on-line state estimation of a 50th order system is already
within the realms of possibility.

The estimation algorithm may be extended to provide
local rather than global linearisation of non-linear systems
by matrix exponentiation. This together with a non-diagonal
measurement matrix H and time-variant statistical character-
istics of the disturbances would increase significantly both
computation time and storage space required. However,
we can trade accuracy for speed in several ways, for example
by reducing the order of the approximation to the real
system, and still produce estimates of key variables which
are good enough to justify the use of the estimator. On the
other hand, future computer installations on large process
plants are likely to comprise one or more small machines,
which simply mind the plant, linked to a remote time-
shared computer which is capable of large scale arithmetic.

Conclusion

We have shown that on-line sequential state (and parameter)
estimation is feasible in terms of both speed and accuracy
with computers of the size used for the control of industrial
processes. The possibilities arising extend from controf
based on unmeasured variables through to the application of
modern control theory to noisy non-linear systems.

Further studies are to include applications on real
processes.

02
—— ACTUAL ESTIMATION ERROR
— — — THEORETICAL ESTIMATION
ERROR .
015!

l

|
0 \
w
(@)
<<
9 I
=}
14 0~1—|
(@]
& |
o
w
- I
&
[
2 I
=
= I
w \ =T = SUM OF SYSTEM TIME

\ CONSTANTS.

0-05- \ —— 5 ——
0

T T
10 20 30
NUMBER OF SAMPLES

Fig. 2. Estimation Error vs. Number of Samples

63

202 udy 61 U0 1s8nB Aq ZZEIGE/L9/ L/ L /I0NIE/UlWOD/W0d dNo"dlWspeoe)/:SAY WoJ) POPEOUMOQ

Acknowledgement

The authors are grateful to Esso Petroleum Company
Limited for supporting this investigation.

Appendix

Convergence and accuracy of the filter

In order to evaluate the performance of the filter it is
convenient to express the overall error of estimation in a
single value. When using a digital simulation to generate
‘plant’ data we know the actual state x, and can calculate
the estimation error for any variable as

d(k) = log;o(xs(k)/x,(k)) decades

as used by Coggan and Noton (1969). In any real applica-
tion x, is never known. The G matrix of error covariances
for the estimates is all the information we have. For any
variable we can formulate a theoretical estimation error as

d(k) = log;o(1 + o4(k)/X) decades
We can take the RMS value of d(k) over the M states and

References

Bucy, R. S., and JosepH, P. D. (1968). Filtering for stochastic processes with applications to guidance, Interscience, New York.
CoGGAN, G. C., and NotoNn, A. R. M. (1969). Discrete-time sequential state and parameter estimation in chemical engineering,
I.Chem.E. Symposium entitled ‘Current trends with computers in chemical engineering’, Trans. Instn. Chem. Engrs., Vol. 48,

pp. T245-T264
KALMAN, R. E. (1960).
Engineering, Vol. 82, pp. 35-45.

A new approach to linear filtering and prediction problems, Trans. ASME, Series D, Journal of Basic

arrive at an overall estimate of the accuracy of estimation.
In the case of digital simulation both actual and theoretical
errors can be calculated and compared. If the filter is
operating correctly the two values should agree fairly
closely, especially after convergence of the filter.

A typical set of estimation errors is shown in Fig. 2.
There is reasonable agreement towards the end of the
range and convergence is rapid. In this case the system was
an eight stage gas absorber in unsteady state taking four
measurements of composition at each sample. Random
process disturbances and measurement errors had a
standard deviation of 109, (0-04 decades) of the nominal
state (X). It should be noted that such models are used for
demonstration purposes only and are not primarily intended
as examples of industrial applications.

The calculations were conducted on a large machine,
retaining 12 figures for floating point arithmetic, and on the
PDP 8, which retains seven figures. The same algorithm
was used in both cases. Six figure agreement between the
two machines was obtained for x,. The filter matrix (F)
agreed to six figures on the diagonal and to five figures ¥
elsewhere.

Correspondence

To the Editor
The Computer Journal

(Note on)® Algorithm 44

Sir,

Broyden’s reply to Fielding’s ‘Note on Algorithm 44’ (Fielding,
1970; Broyden, 1970) would certainly not get my blessing. In
fact, I would not accept his excuse for the programming errors
pointed out by Fielding from the lowliest of the 2,000-odd
students I have taught to program (which is pretty lowly—would
you believe a 10-year-old ?). _

However, he does raise two questions:

(@) Istheuse of a declared variable in an arithmetic expression
before it has been assigned a value legal in ALGOL 60?

A lawyer would call this a ‘nice’ point. The answer is not set
out clearly in the Report (Naur, 1963). In Section 3.3.3. Semantics
(of Arithmetic Expressions) operations are required to operate
on the actual numerical values of the primaries of the expression.
For a variable the actual value is defined as . . . ‘the current value
(assigned last in the dynamic sense) . . .’. Declaration of a variable,
Section 5.1.3. does not mention assignment of a value so that we
can argue that no ‘current value’ exists and hence no actual value
and hence that we cannot execute an operation on it. I will leave
it to the ALGOL theologians to decide whether that is an accept-
able argument—and if it applies even to theta 2: = theta 1;. If
the argument is not valid, it seems a gross oversight of the
ALGOL 60 language.

It is worth pointing out that the much maligned (by ALGOL
enthusiasts) ANSI FORTRAN (1966) recognises the distinction
between ‘declaration’ and ‘assignment’ (‘definition’ in the
Standard) and explicitly forbids use of a variable before its value
has been ‘defined’. Of course, not all the compilers that claim
to implement FORTRAN will get this right—I would not bet on
the Leeds compiler for example (Wells, 1970; Hammersley and
Larmouth, 1970).

(b) Whatever the legal situation what should a processor do?

I would maintain very strongly that it should always detect—
and forbid—the usage of an undefined value. When the hardware,

64

0/W09°dNo"oIWBpeo.//:SdNY WO PSPEOJUM

@
=}
[]
-

of a processor can detect certain illegal bit patterns, this
too expensive. For example, the IBM 7040 detects and traps the g
use of a word with bad parity. The authors of 7040 WATFORE
(Shantz et al., 1966) discovered a way of deliberately setting up &
such words and of disabling the trap so that they had a convenient &
and economic solution to the problem.

When the hardware facility is not available a valid value =
must be used. Zero has often been a choice and at least gives &
consistent results—important when the hardware is unreliable.
There is a greater chance of picking up the error if the default 9
value is the largest real number representable in the processor {3
(or what about the current time of day ?). In any case there should &
be at least a program testing mode that optionally does a rigorous Q
test—and of course an optimising compiler could pick up many @
cases during its flow analysis. o

vL/ol

Sel

Yours faithfully,

K. A. ReDISsH
Department of Applied Mathematics
McMaster University
Hamilton, Ontario, Canada
10 July 1970

20z ludy 61 uo

References

American National Standards Institute, Standard X 3.9—1966—
FORTRAN.

BrOYDEN, C. G. (1970). Algorithm 44, The Computer Journal,
Vol. 12, p. 406.

FieLDING, K. (1970). Note on Algorithm 44, The Computer
Journal, Vol. 13, p. 219.

HAMMERSLEY, P., and LARMOUTH, J. (1970). Letter Towards
FORTRAN VI, The Computer Journal, Vol. 13, p. 220.

NAUR, P. (ed.) (1963). Revised Report on the Algorithmic
Language ALGOL 60, The Computer Journal, Vol. 5, p. 349.

SHANTZ, P. W. et al. (1966). WATFOR Documentation.
Comp. Sc. Dept., University of Waterloo.

WELLS, M. (1970). Letter, Towards FORTRAN VI, The
Computer Journal, Vol. 13, p. 120.

The Computer Journal

