Values for Error, at major nodes are given for Day, Moore,
and the present method in Tables 4D, 4M, and 4 respectively.
Again since 4u, 4p, Aq, f,, f,, f, all vary monotonically over
D it is essential to use averages taken from a central region
(03 < x,y <18) for instance. The truncation error
estimate in #(2-0, 2-0) at node (39, 39) when expressed in
the mode of Error, turns out to be: 2:35 which compares
with the deviation from 100 of the terminal diagonal entry
in Table 4.
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Correspondence

To the Editor
The Computer Journal

Sir,

The method described by M. G. Cox (A bracketing technique for
computing a zero of a function, this Journal, Vol. 13, No. 1,
pp. 101-102) should be compared with the method proposed by
W. M. Stone (A form of Newton’s method with cubic convergence,
Quart. Appl. Math., Vol. 11, No. 1, pp. 118-119) which uses the
same information, f and f at the two boundary points. While
Stone’s method requires solving a quadratic and selecting the
proper root it has cubic convergence while Cox’s method only
converges quadratically.

Yours faithfully,
WILLIAM SQUIRE

Department of Aerospace Engineering
West Virginia University
Morgantown

West Virginia 26506

USA

23 June 1970

Dr. Cox replies:

Inreply to Professor Squire’s letter I have carried out a theoretical
and practical comparison of the methods of Stone (1953) and
Cox (1970) and I give here the main results. I shall refer to these
methods as S and C respectively.

Stone assumes that at the start of the nth iteration bounds a,
and b, such that f (a») f (bn) < 0 are available. He then shows that
if xn+1 is the value obtained from his formula using a, and by,

then
Xn+1 — f

_ (an — &) (bn — g)P(x— f9)
bn—an ’

where ¢ is the required zero and P(x — £) is a power series
containing quadratic terms and higher in (a» — £), (bn — &) and
(xn+1 — €). It is not immediately evident from Stone’s paper
exactly how his method is implemented. However, since a» and
bn are to straddle the zero it appears that at the end of the
(n — Dth iteration the following strategy is employed. If f(xn)
and f(an-1) have the same sign then new bounds are given by
setting an = xn and bp = byp-1, otherwise an = an-1 and bn = xn.

It follows that at the start of the nth iteration either ay or b»
is set equal to x». Assume for sake of definiteness that an = xn.
Hence b, must be equal to an earlier value xn-r, say, where
r = 1. Let €n = xn — £. If we assume that | €n | < | €n—r | , then
asymptotically

|€n+1l =C|€nl€2n—r,

where C — a positive constant. After taking logarithms and
solving the resulting difference equation we find

|enni| =K|en| P,
72

where K — a positive constant and p is the real positive root of g
the equation #*!' — ¢t — 2 =0. When r =1, p =2 When 3
r>1,1<p< 2, and as r > c©, p — 1. These results may be 8
interpreted as follows. In the most favourable case the bounds &
are replaced alternately and consequently p = 2; i.e. the con- 3
vergence is quadratic. If one bound remains fixed for r iterations 3
(r > 1), then the convergence is subquadratic (r =2 gives =
p = 1696, r = 3 gives p = 1-544, r = 4 gives p = 1-451, etc.). &
In particular, convergence is at best quadratic and certainly not &
cubic as claimed by Stone.

In my paper I showed that in the least favourable case when @
one bound remains fixed and the other is replaced at each =
iteration the convergence of C is quadratic. In the most favour- 2
able case, when bounds are replaced alternately, the analysis of ©
Jarratt (1966) can be used to show that the orderis 1 + 3* = 2-732.
Thus if ps and p. are the orders of S and C, respectively, then
1 < ps < 2 < pe < 2:732. 1t follows that if the order is taken
as a means of comparison then C is theoretically superior to
(or at least as good as) S.

It is possible however that S possesses certain desirable
properties in practice. In order to provide a partial test of such a
possibility I have applied S to the same class of test functions as

weped

/LI L/one/|ulwod/Wwod

times for both » = 10 and » = 30 using initial bounds a, = 0
and by = 1. Each test was terminated when two successive
estimates of the zero differed by 3 x 108 or less. The table gives
the average number of evaluations of the polynomial together
with its derivative for the two methods.

Degree C S
10 4-95 9-41
30 515 19-84

The figures do not include the evaluations of p,(x) and p»’(x) at
the initial bounds x = 0 and 1, since they are common to both
methods. On the evidence of these tests we conclude that C
appears to be superior to S in practice.

It is possible of course that Professor Square has a different
interpretation of Stone’s method, for which the performance is
better than I have observed. If this is the case I should be most
interested to have details.
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Yours faithfully,

M. G. Cox
26 August 1970
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