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Lunnon (1968) counted foldings of a one-dimensional map (otherwise known (Touchard, 1950;
Koehler, 1968) as a strip of stamps); here the problem is generalised to many dimensions, with

especial reference to p X g (two-dimensional) and 2 X 2 X ...

and its results are described.
(Received November 1969)

X 2 maps. A computer program

1. Sections in two and many dimensiens

A ‘p x g-map’ is the rectangle in the Cartesian plane
0< x <p, 0<y<q (Fig. 1.) Its ‘creases’ are the lines
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Fig. 1

x = integer and y = integer (‘y-creases’ and ‘x-creases’)
and its ‘leaves’ the lattice squares. The map is ‘folded’ by
rotating parts of it about its creases to superpose its leaves:
it may be bent and stretched, but not torn. A ‘p x g-folding’
is complete when all leaves are superposed on the leaf 11
nearest the origin; this leaf is fixed throughout to ensure
that the ‘front cover’ (marked with a dot) always faces the
same way.

A folding is completely described by the order of its
leaves. Alternatively we can section it by planes perpendicu-
lar respectively to the x- and to the y-creases: Fig. 2 shows
one of the 60 possible 3 x 2-foldings with its sections.

The x-seetion consists of p one-dimensional g-maps
folded together, and the y-section of g p-maps. Provided
only that we know which is leaf 11 we can deduce which
are the others from the interconnections in Fig. 2: so a
folding is completely described by its sections and the
position of the first leaf. Furthermore, any pair of sections
which looks as if it should define a folding actually does so:

Theorem 1:

A ‘pile’ (which is just an ordering) of the leaves of a map
is a folding iff all its sections are (one-dimensional, multiple)
foldings.

Proof:

Firstly, a pile is a folding iff no crease between any adjacent
pair of leaves crosses any other crease. Obviously if the
creases cross we can’t have a folding, for the map mustn’t
be torn. It’s not so clear that any non-crease-crossing pile
can be unfolded again to a flat map: this is accomplished
by shrivelling or concertina-ing it, one unit at a time along
one axis at a time, until it is reduced to a single point at the
origin; then expanding it again flat.
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Secondly, a pile is non-crease-crossing iff all its sections
are, that is iff they are proper one-dimensional foldings:
for if—say—an x-crease crosses any other crease, that
must also be an x-crease and so there will be a crossing in
the x-section.

Combining these two observations completes the proof.

We now extend these ideas to many dimensions. An
account of rotation and perpendicularity in higher space is
to be found in Coxeter (1963).

A ‘p, X ... X pg;map’ is the region 0 < x; < p; for
i=1,...,d of Cartesian d-space. The hyperplanes
x; = integer are its ‘x;-creases’, and the unit lattice hyper-
cubes its ‘leaves’. We write n for the number of leaves, i.e.

d
n = I:Ilpi

A ‘folding’ is any deformation of the map causing all n
leaves to be superposed on the first leaf (that nearest the
origin), which is fixed to preserve the orientation. These

11 . .

12 )

22 :
32

31 : C
21

leaf

y-section x-section

Fig. 2
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deformations may be visualised as sequences of rotations
(in d 4+ 1 dimensions) of parts of the map about its (d — 1
dimensional) creases, together with any distortions necessary
to interleaving.

The ‘x;-section’ of a folding is its intersection in (d + 1)-
space with the plane (perpendicular to the x;-creases)

x;=%fori=1,...,j—-1,j+1,...,d.

Each leaf meets this plane in a line, and the whole section
comprises a (one-dimensional) folding of n/p; disconnected,
interleaved p;-maps. The set of d x;-sections forj = 1, . .. d,
together with the position of the first leaf, completely
describes the folding; and by Theorem 1 any pile of leaves
whose sections are foldings is itself a folding.

2. Reducing the counting problem

We wish to count the total G = G(p,, ..., p,) of possible
Py X ... x pgfoldings: this can be reduced to counting
a subset in several ways which we shall describe. Trivially,
the order of the p; is immaterial, so we can assume
Py =Pp2>= ... < Py Any p; = 1 may be ignored. If any
pi =0, n =0 and it seems reasonable to convene G = 1
for the null folding (contradicting Lunnon (1968)).

In Lunnon (1968) we showed that G(p) is divisible by 2p.
The same construction works in many dimensions:

Theorem 2.
G is divisible by n. If some p; > 2, G is divisible by 2n.
Briefly, to get n-divisibility we ‘rotate’ the folding: that is,
drag its topmost leaf down through the others to the bottom
while preserving the connections to other leaves. Each
‘normal’ folding (i.e. whose first leaf is uppermost, e.g.
Fig. 2) now corresponds to n — 1 non-normal others by
rotation, so G/n foldings are normal. For 2-divisibility,
suppose p; > 2 and the folding is normal. The first x,-crease
must turn downwards since the first leaf is at the top, but
the second may turn up or down. If it turns up, we can make
it turn down by rotating the first leaf to the bottom and
turning the whole folding upside-down (making it normal
again) and turning the map upside-down inside its folding
(facing the front cover up again). So G/2n normal foldings
have their second crease turned downwards.

Theorem 3:
G is divisible by 2¢ if all p; > 1.

For any given folding we can ‘reverse’ it along the
x;~axis: e.g. if i = 1 the old first leaf 11...1 becomes the
new leaf p;1... 1. The first leaf can be reversed to any of
the 2¢ corners, so 2¢ divides G.

Now if all the p; are odd, Theorems 2 and 3 combine to
give G divisibility by 2% (since n is odd). This fact is
computationally useless, since we have no means of enumer-
ating a subset of size G/2%n. Our results suggest that even
when the p; are not restrained to oddness it is still true that

Conjecture:
G is divisible by 2*n where k of the p; are > 2.

Can we prove this by extending the second-crease-down
idea of Theorem 2 to all directions? E.g. for p x g-foldings
with p, ¢ > 2 we want equality between G/4n and the total
of normal foldings both of whose second creases turn down.
By actual counting we find that

for 3 x 3 these are 38 and 38
4 x3 324 325
5x3 3.354 3,362
4 x 4 4,697 4,584
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which seems to dispose of that idea. It would be useful to
discover a subset which does total G/2*n.

If some of the p; are equal G can be further reduced by
swopping axes. For example in two dimensions, if p = g,
to every folding there corresponds another whose x-section
is the first one’s y-section and vice-versa. Normality is
preserved, so in the special case p;, = p, =...=p, =p
we can combine swopping with Theorem 2 to give

Theorem 4:
G(p?) is divisible by d!p?; the extension to other patterns of
equality between the p; is obvious (see below).

It is certainly not possible to combine Theorem 3 with
this as well: the conjecture that G(p,) is divisible by p¢.24.d!
fails for 42. In spite of this, we give in Table 1 the factorisa-
tion of G in which the first factor is n.2*. ITe;!, where e, is
the number of times each distinct p, is repeated and k of
the p; exceed 2.

[Notice that our ‘axis-swops’ and ‘reversals’ are just the
symmetries (rotations plus reflections) of the d-hypercube
with centre the origin. If the (d + 1)st dimension is bent
round to form a ‘torus’, our ‘rotations’ are rotations of
d-space along this torus.]

G is tabulated in Table 1. Most of our results are for the
P % q and p? cases, these being more intuitively appealing.
We had hoped that the multidimensional problem might
reduce theoretically to the one-dimensional as it does
computationally: but such is not the case. We shall therefore
discuss only

3. 2% —maps

These are the simplest multi-dimensional maps, with
pi=2fori=1,...,d Here at least it is easy to find
an answer to our problem. By analogy with 2 x 2-foldings
we see that there are d! ways to choose the order in which
the d creases are folded, and for each choice and each crease
there are two ways to fold it: up or down. This gives
altogether 2d! foldings (the minimum by Theorem 4), of
which for d = 3 a typical one is shown in Fig. 3. Its creases
were folded in the order x, y, z and all downwards. There
are 48 like it.

Bearing this in mind we viewed our program with gentle
reproach on production of the answer G(2%) = 96. The
error proved difficult to locate, having taken up unsuspected
residence in the above reasoning. While rotation of any
2 x 2 folding yields another of the same basic shape,
rotation of Fig. 3 yields the new shape (Fig. 4); and all
2>-foldings are axis swops and reversals of one of these
two shapes (d!2¢ = 48 from each shape), rather than of
Fig. 3 alone.

[A ‘shape’ is a class of foldings which are swops and
reversals of each other: that is, their sections all look
alike.]

Perhaps then any 2’-folding is either an ‘ordinary’ one
(as in Fig. 3) or some rotation of it? Of the 12 2*-shapes,
only 4 are of this form: the rest are the rotations of the
shape got by folding Fig. 4 in two (instead of three).

[A ‘roto-shape’ is a class of shapes which are rotations
of each other.]

Well then, are all 2¢-foldings rotations of some 2¢-1-
folding folded in two ? That is, is the general 24-roto-shape
a doubled 297 !-shape ? There are 9 roto-shapes in 5 dimen-
sions. Fig. 5 shows the single one which is not a doubling of
any 2*-shape. It speaks for itself.

Not only is the natural guess wrong, but no simple
construction accounts for objects like Fig. 5. Having failed
to explicitly evaluate even G(2%), we leave the reader to
contemplate its first few values (Table 1). Notice that the
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pq.... G(p,q,...) rq.... G(p,q,...)
1 1=11 32 60 = 12-5
2 2 =21 42 320 = 16-20
3 6 =61 52 1980 = 20-99
4 16 = 82 6-2 10512 = 24-438
5 50 = 10-5 7-2 60788 = 28-2171
6 144 = 12-12 8-2 320896 = 32-10028
7 462 = 14-33 9-2 1787904 = 36-49664
8 1392 = 16-87 10-2 9381840 = 40-234546
9 4356 = 18-252 11-2 51081844 = 44-1160951
10 14060 = 20-703 43 15552 = 48-324
11 46310 = 22-2105 53 201240 = 60-3354
12 146376 = 24-6099 63 2016432 = 72-28006
7-3 21582624 = 84-256936
22 8 =81 5-4 6139920 = 80-76749
23 96 = 48-2
24 4608 = 384-12 3.22 2448 = 48-51
25 798720 = 3840-208 422 30720 = 64-480
26 361267200 = 46080-7840 5-22 394320 = 80-4929
32 1368 = 72-19 322 227952 = 144-1583
33 85109616 = 1296-65671
42 300608 = 128-23481
52 186086600 = 200-930433

first factor (see Section 2) n.2*. ITe;! reduces to 29d! in this
instance.

4. The counting program

From the programming point of view we have more or less
reduced the problem to the one-dimensional case described

in Lunnon (1968). We have merely to fold d n-maps simul-
taneously, the i-th of which is disconnected into p; pieces.
As an example, suppose we are constructing 3 x 3 maps
and have already produced some legitimate arrangement
of the first 8 leaves (Fig. 6). To insert the ninth leaf 33,
we first look at the x-section and the leaf 23 to which 33 is
joined by an x-crease. Since this crease mustn’t cross any
other, leaf 33 is constrained to the gaps above leaf 11 or
below 11, 31, 12, 13 or 23. Similarly, the y-section constrains

;:: ) ) - : it to the gap below leaf 22, 32, 31 or 13. The gaps common to
221 _ both sets lie below leaves 31 and 13, so these are the only
2 ) —) gaps for 33.
122 | If the new leaf has no neighbour already present in a
ifi — J) given section then that section imposes no constraints. If it
12 ) is not the final leaf, for each gap in turn we insert it there and
leaf x-section y-section z-section repeat the process on the next leaf.
If d > 1 we may well reach a situation where there are
Fig. 3 no gaps for the next leaf, obliging us to backtrack without
having discovered any new foldings. It may be possible to
211 - D)
221
121 ) =)
122
202 D, —
212 D)
112 D)
1M1 - J : :
leaf x-section y-section z-section

Fig. 4
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reduce this ‘blind-alley’ effect by varying the order in which
leaves are inserted. The order we have used is alphabetical.

Another reasonable order would be diagonal: that is all
leaves on the hyperplane Y g; = k are inserted before those
on Yq; =k + 1. We have not tried this, nor have we
counted the proportion of blind alleys: we doubt if re-
ordering could improve the time by more than a factor of
2 or so, if at all. The object is to choose leaves which are
difficult to fit in as early as possible.

We now move on to the details of implementation. The
current (partial) folding is most conveniently stored as a
vector B such that: if m is the number of any leaf in alpha-
betical order, then B[m] is the number of the leaf directly
below it. [If the coordinates of a leaf are g, . . . g, then its
alphabetical number is

i=d

j=i
m = I—Iqui"‘l WherePi= Hpj
i=1 j=1

See the bracketed numbers in Fig. 6.] Let D(i, I, m) be
the number of the leaf connected to leaf m in the x;-section
on whichever side is appropriate to the insertion of the next
leaf /; this is a simple function of the coordinates. The fourth
paragraph of the program sets up D in an array, using P;
and the coordinates C;, of leaf m. Then the sequence

(paragraph 7)
for m := D(i, I, 1), D(i, I, B[m]) while m #~ ndo. .. ;

causes m to run through all gaps to which the x;-section
constrains leaf /. If / happens to have no neighbours in the
i-th section, that section imposes no constraints and is
ignored (‘add’ counts these). If this happens for all i—only
possible if / = 1 with the present numbering system—any
gap is possible.

Having found these gaps for each i we must detect the
common ones. Each gap found in any section is entered in
the ‘gap’ list and simultaneously its ‘count’ (initially zero)
is incremented. The gap is common iff its count is eventually
d; the remainder are expunged from the gap list by the next
loop (paragraph 8).

Finally (paragraph 9) the new leaf / is inserted in each gap
in turn, and the process repeated for / + 1. This recursion
is programmed explicitly (involving the stack ‘gapter’ for
the pointer g to the current gap for /, and the ‘above’
vector A[m] with a view to machine coding.

The program is presented as a routine to perform a
given ‘job’ on each folding. For example, this sequence puts
the total G(p) into ‘sum’, where the integer array ‘p’ has
been loaded with py, . . ., p,:

procedure count (A, B); integer array A, B;
sum = sum + 1;
integer sum; sum := 0; foldings (p, count);

To merely count foldings we obviously need not insert
the final leaf / = n. Furthermore the results of Section 2
enable us to enumarete only a known fraction of the total.
To get only normal foldings we drop the fictional leaf 0 of
the program (invented to make paragraph 7 work for outside
gaps) and start off instead with B[1] := 1 (i.e. the first leaf
is below itself.) By manipulating B and D and paragraph 7
we can simultaneously force the ‘second crease’ of Theorem
2 down; or (but not and), along axes whose p; are equal,
we can force the second leaves in a specific order to elimin-
ate axis-swops.

The roto-shapes of Section 3 require some straight-
forward but messy manipulations involving axis-reversals.
These are of no interest.

5. Program and results

procedure foldings (p, job); integer array p; procedure job;

begin comment perform job (A, B) on each folding of a

pll]1 x ... x p[d] map, where A and B are the above
and below vectors. p[d + 1] < 0 terminates p;

integer d, n, j, i, m, I, g, gg, dd;

n:=1;i:=d:=0;fori:= i+ 1 while p[i] >0 do
begin d := i; n := n*p[i] end

comment d dimensions and n leaves

begin integer array A, B, count, gapter [0:n], gap [0:n*n];

comment B[m] is the leaf below leaf m in the current
Jfolding, A[m] the leaf above. count[m] is the no. of
sections in which there is a gap for the new leaf | below
leaf m, gap[gapter[l — 1] + j] is the j-th (possible or
actual) gap for leaf I, and later gap [gapter[l]] is the
gap where leaf 1 is currently inserted;

integer array P [0:d], C [0:d, O:n], D [0:d, O:n, 0:n];
P[0] := 1; for i := 1 step 1 until d do P[i] :=
P[i — 11*p[i];
for i := 1 step 1 until d do for m := 1 step 1 until » do
Cli,m] := (m — 1)=P[i — 1] —
(m — D)=PLT*p[i] + 1;
for i := 1 step 1 until d do for / := 1 step 1 until » do
for m := O step 1 until / do
DI[i, I, m] := if m = O then O else
if C[i, I] — Cli, m] = (C[i, I] — C[i, m])+2*2
then

(1) 11 . .

(2) 21 ) ;

(5) 22 p

(6) 32 C \

() 3 —

L) 12 - |

7 13 ; { c—

(9) 33 jrom————— | ——

(8) 23 \ \

leaf x=-section y-section .
Fig. 6
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(if C[i, m] = 1 then m else m — P[i — 1])

else

Gf C[i, m]=pli] > m+ P[i — 1] > 1 then

m else m + P[i — 1])

comment P[i] = p[l]x...xp[i],

ordinate of leaf m,

DJi, I, m] = leaf connected to m in section i when

inserting I,

C[i, m]=i-th co-

for m := 0 step 1 until » do count[m] := 0;
A[0] := B[0] := g := [ := 0; goto entry;
comment kick off with null folding;

down: add := 0; gg := g := gapter[l — 1];
comment dd is the no. of sections in which [ is
unconstrained,
gg the no. of possible and g the no. of
actual gaps for I, + gapter[l — 1];

comment find the possible gaps for leaf | in each
section, then discard those not common
to all. All possible if dd = d,
for i := 1 step 1 until d do if D[i, /, /] = I then
dd :=dd + 1 else
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for m := DIJi, I, 1], D[i, I, B[m]] while
m # ldo
begin gap[gg] := m; if count[m] =0
then gg :=gg + 1;
count[m] := count[m] + 1 end;

if dd = d then for m := O step 1 until / — 1 do
begin gap[gg] := m; gg := gg + 1 end;
for j := g step 1 until gg — 1 do
begin gap[g] := gap[j]; if
count|gap[jl] = d — dd then
g:=g+1;
count[gap[j]] := 0 end;

comment for each gap insert leaf |, call self recursively,
remove leaf I;
if g = gapter[l — 1] then goto up; g :=g — 1;
A[l] := gaplg]; B[l] := B[A[]]];
B[A[l]] := A[B[]]] :=[;
gapter[ll :=g; l:=1+1; if ] < m then goto
down else job(A, B);

l:=1—1; B[A[1] := B[l]; A[B[1]] := A[l];
if / > 0 then goto along;
end; end of foldings;
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