Drawing ellipses, hyperbolas or parabolas with a
fixed number of points and maximum inscribed area

L. B. Smith*
CERN, Geneva, Switzerland

In interactive graphical work one may want to represent curves by connecting a fixed number
of points on the curves by straight lines. Parametric representations are given which lead to
efficient algorithms for computing piecewise linear representations of ellipses, hyperbolas and
parabolas. It is proved that the representations give inscribed polygons with maximum area in all

three cases.
(Received September 1969)

1. Introduction

Pitteway (1967) describes an algorithm for drawing ellipses
or hyperbolas with a digital plotter. The method involves
choosing a sequence of pen movements in terms of the
various available directions and the smallest pen increment.
The sequence is chosen so that the straight line segments
traced by the pen deviate from the desired curve as little as
possible. For an off-line plotting device which moves a pen
in basic increments of certain fixed directions and lengths,
Pitteway’s algorithm for ellipses and hyperbolas is effective
and efficient. Another similar algorithm for drawing ellipses
and hyperbolas is given by Partridge (1968). Botting and
Pitteway (1968) consider Pitteway’s original method for
conic sections and give an extension to cubic curves.

When using a cathode-ray tube (CRT) for on-line
computer display, it may be useful to represent a curve by a
fixed number of points. This limitation may be dictated by
the hardware involved or by programming considerations.
For example, CRT display units often have an associated
buffer of limited capacity from which the picture is generated.
A picture requiring more storage space than that available
in the buffer will flicker. Thus a buffer size may dictate
limitations on the number of points that can be displayed
without flicker. On the other hand some graphics software
systems have facilities for saving sub-pictures for later
re-display. Such systems may store the sub-picture in the
computer memory as a sequence of graphic commands
which create a display of the points (vectors) involved. In
this case a limitation on the number of points representing
a sub-picture (a curve) might be dictated by storage require-
ments of the graphics system. A fixed number of points can,
of course, also be useful in limiting the computation time
involved in representing a curve. Pitteway’s algorithm has
no provision for using a fixed number of points since it was
designed for a plotting device which uses a given fixed
increment size until the curve is completely traced.

The algorithms given here assume that a fixed number of
points are available to represent an ellipse (or hyperbola or
parabola). Those points are then distributed along the
curve so that a faithful representation of the curve is given
when the points are joined by straight lines. Thus, when the
curvature is great the points must be closely spaced and
when the curvature is small the points must be widely
spaced.
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2. Plotting ellipses

Given a fixed number of points there is an obvious distribu-
tion of those points to represent graphically a circle. Equal
angle increments with a point on the perimeter for each
angle will nicely depict the circle (by approximating it with
a regular polygon). An ellipse, however, is a different matter,
particularly if the eccentricity is large (near 1). Equal angle
increments used to pick points for display can easily fail to
represent the small ends of an ellipse as shown in Fig. 1
even though the sides appear quite smooth. This is because
at the ends, the points for plotting are too far apart with
respect to the curvature.

A seemingly better method would be to use equal
perimeter lengths to separate the representative points.
However, this would use more points than necessary on
the sides in order to have points close enough together
on the ends. Another drawback to the use of equal perimeter
lengths is the fact that their computation involves an
elliptic integral, an undesirably complex operation. One
would like the calculation to be efficient, if at all possible.

Another scheme which produces faithful representations
of ellipses (including those with large eccentricity) with a
relatively small amount of computation can be devised.
Consider an ellipse centred at the origin with major axis 2a
and minor axis 2b. The radial line from the origin to the
point (a, b) intersects the ellipse at the point (a/\/2, b//2).
If we are given N points with which to represent the ellipse
at hand, the scheme is as follows (see Fig. 2) for the repre-
sentation in the first quadrant. The other three quadrants
will be handled similarly.

(a) Compute

(b) setx=a,y=0

(c) plot (x, y)

(d) if y < b/\/2, set y =y + dy, compute x, go to (c)
(e) if y = b//2, set x = x — dx,
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Fig. 1. Equal angle representation of an ellipse. For high
eccentricity ellipses, the ends are not well represented.

if x > 0, compute y, go to (¢
if x <0, go to (f)
(f) that is the end of the first quadrant.

A fourth (and best known to the author) scheme for
graphical representation of ellipses by a fixed number of
points uses the parametric representation of an ellipse
centred at the origin with axes 2a and 2b,

(la)

y = bsin ¢. (1b)
Using (1), as the parameter ¢ is incremented from 0 to 2=,
the points (x, y) trace the desired ellipse. It is easy to use a
fixed number of points, say N, by using increments of
2n/(N — 1) to vary ¢ over the interval [0, 2x].

We see that this method automatically gives the desired
changes in perimeter increments, namely relatively small
changes at the ends and relatively large changes along the
sides which are necessary for ellipses with eccentricity near
one. We have

X = acos ¢,

dy = bcos ¢ do (2a)

(2b)

dx = —asin ¢ d¢
so that for ¢ near zero (or near n) we have |dy| ~ bd$ and
dx near zero. For ¢ near n/2 or 3n/2 we have |dx| ~ ad¢p
and dy near zero. Thus the ratio of perimeter increment
size at the small ends to that on the sides is approximately
b/a as desired for a faithful representation of an ellipse with
eccentricity near one (b/a < 1). We also see that this method
gives equal perimeter increments (a regular polygon) if
a = b for the best possible representation in the case of a
circle. In the next section we prove that the inscribed area
is maximum.

Another advantage of the use of the parametric equations
for plotting an ellipse is the saving in computer time to
calculate the points. The previous method, using equal y
increments along the sides involves a SIN, a COS and a
SQRT calculation plus considerable testing to determine
each point to be plotted. The parametric method requires
only a few arithmetic operations to calculate each point
since we can use the multiple angle trigonometric identities
as we are incrementing ¢ by an equal amount for each
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point. Given (x_, y.) the centre of the ellipse, 3, the tilt of
the major axis, and the major and minor semi-axes, @ and b
we compute the points to be plotted {(x,, y,)}-; as follows

Initialise
do =2n/(N — 1)
CcTr = cos (9)
ST = sin (9)
CDP = cos (do)
SDP = sin (d¢)
CNDP = 10
SNDP = 0-0
Then repeat the following forn =1,2,..., N

(x' = a* CNDP

y = b* SNDP

X, =x,+X*CT -y *ST

<y, =y, +x"*ST+ y *CT

TEMP = CNDP * CDP — SNDP * SDP
SNDP = SNDP * CDP + CNDP * SDP
CNDP = TEMP

The above algorithm is a straightforward coding of the
numerical processes involved. However, it can be made much
more efficient by the following equivalent algorithm which

o
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reduces the number of multiplications and additions in the—-§

inner loop to four each.
Initialise:
dp = 2n/(N — 1)
CT = cos (0); ST = sin (0)
CDP = cos (dp); SDP = sin (d¢)
A = CDP + SDP* ST* CT * (a/b — b/a)
B = — SDP((b* ST)**2 + (a* CT)**2)/(a * b)
C=SDP((b*CT)**2 + (a* ST)**2)/(a* b)
D = CDP + SDP * ST * CT * (b/a — a/b)
D=D—-(C*B)/A
C=C/A
x=a*CT;y =a*ST.

Then repeat the following forn =1,2,..., N.

Xy =X, + X
In =Yty
x=A*x+ B*y
y=C*x+ D*y.
The parametric method of ellipse plotting has been used

in an interactive graphical environment. The author gives
elsewhere (Smith, 1969) some discussion of fitting empirical

elliptical data by the method of least squares. The ellipses
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Fig. 2. A successful ellipse plotting scheme. This scheme works,
but it is not as efficient as the parametric representation.
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encountered in that work often had major to minor axis
ratios of near 60 to 1. Such elongated (high eccentricity)
ellipses require special treatment in order to be displayed
accurately. Fig. 3 shows an ellipse plot shown on-line
during a session with the least squares data-fitting program
described by the author (Smith, 1969). The ellipse shown in
Fig. 3 has a major to minor axis ratio of 14-4 to 0-164. The
abscissa and ordinate scale factors have been made unequal
for the display, thus to some extent belying such a high
eccentricity.

3. Parametric ellipse gives maximum inscribed area

We have just seen that the parametric representation of an
ellipse is efficient and we have shown that it is intuitively
accurate in that the points are spaced widely when the
curvature is small and closely when the curvature is great.
Here we shall prove that the area inscribed by the polygon
formed by the points given by the parametric representation
is maximum. This shows that in addition to being efficient,
the algorithm for plotting ellipses is the most accurate (in the
sense of maximum area).

The maximum inscribed area criterion used to examine
the conic section representations discussed here is somewhat,
but not entirely, arbitrarily chosen. Other criteria such as
minimising the maximum error between the polygon and
the curve could be used and would be more appropriate in
some circumstances. However, the criterion used here
involves points calculated on the curve itself and satisfies
the requirement that point spacing be inversely proportional
to the curvature. The fact that the points are on the curve
make the representation exact if only the points are dis-
played. The inscribed polygon, although farther from a
convex curve than for example a minimax polygon, gives a
representation that is quite satisfactory for on-line viewing.

Consider the N-sided polygon formed by connecting the
N points (connect point N to point 1)

X, =acos¢,|
y,,=bsin¢,,}n—1’2’”"N A3)
where
2n
=mh-1)—.
¢ = (-1

Assume N > 3.

Fig. 3. Display of data, computed ellipse, and current parameter
values during on-line least square ellipse fitting.
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If the area of this polygon is not maximal, for N-sided
polygons inscribed in the given ellipse, then by moving
one of the points (x,, y,) for some n, the new area will be
larger. Thus, if we can show that movement of a point
(X, y,) for any n causes the area to decrease, we have
proved that the area is maximal for the given representation.

Without loss of generality, let us assume that the ellipse
is centred at the origin, has its major axis of length 2a
parallel to the x-axis and that the minor axis has length 2b.
Now let us perturb the snth point by a small amount and
examine the change in area of the inscribed polygon. The
change in area of the inscribed polygon due to moving
the point (x,, y,) by a small amount (still between the
n — 1st and n + Ist points) will be given by the change in
area of the triangle formed by the n — 1st, nth and n + 1st
points. Considering the base of the triangle as the chord
connecting the n — 1st and n + 1st points the area of this
triangle will be maximal when the perpendicular distance
from the base to the nth point is maximal. Since the ellipse
is convex, the position of the nth point giving maximum
height to the triangle will occur where the tangent to the
ellipse is parallel to the base. If this condition is satisfied
at the nth point defined by (3), then a perturbation of the nth
point will decrease the inscribed area proving that the chosen
representation gives maximum inscribed area.

The slope of the chord between the n — Ist and n + 1st
point is given by

Yn+1—Vn-1 — b(Sin ¢"+1—Siﬂ ¢n—1)
Xp+1~Xp—1 a(cos ¢n+1_cos ¢n~l) )

@

Noting that ¢,-; = ¢, + 2n/N we see that the slope of the
chord can be reduced to

Yn+1—Vn-1 b cos ¢,
Xpt1—X, =nasinq&’ Q)
nt+1 n n
but this is equal to the tangent at the nth point which is
dy| _  bcosg,
dx|¢,  asin ¢, ©)

This proves that the inscribed area is maximal for the chosen
representation.

This proof that the inscribed area of an ellipse by the
parametrically defined polygon is maximum involves a
lemma which can be stated more generally as follows:

Lemma:

A polygon inscribed in a convex curve, contains maximum
area if and only if for every three points adjacent in the
polygon, the tangent at the middle point parallels the chord
between the other two points.

4. Plotting hyperbolas and parabolas

The use of a parametric representation for on-line plotting
can be carried over to hyperbolas and parabolas. We will
consider these two curves separately.

Hyperbola

For simplicity, assume we would like to plot a hyperbola
which is centred at the origin and whose axis is collinear with
the x-axis as shown in Fig. 4. Furthermore, assume that the
distance from the centre to a vertex is a and that the slopes
of the asymptotes are +b/a. The rectangular coordinate
representation of the hyperbola is then

x2 y2
P @
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A parametric representation of (11) is
x =t asec¢
y = £ btan ¢.

(8a)
(8b)

As ¢ varies continuously from 0 to n/2 the points given by
(8) will trace the desired hyperbola.

As shown by the author, Smith (1969a), this representa-
tion does not satisfy the maximum inscribed area criterion
as did the parametric ellipse representation. However, it is
also shown by the author, Smith (1969a), that the area is
‘nearly’ maximum and that the algorithm to calculate the
representative points is efficient in that the multiple angle
trigonometric identities can be used to advantage.

A second parametric representation of (7) is (in the first
quadrant)

x = acosh ¢ (%a)

y = b sinh ¢. (9b)

As ¢ varies continuously from 0 to oo the points given by
equations (9) will also trace the desired hyperbola. This
representation can also be efficiently calculated by making
use of multiple argument identities for the hyperbolic
functions.

The representation, equations (9), is preferable to equation
(8) in that the maximum inscribed area criterion is satisfied.
To see this, we apply the Lemma given above since the
hyperbola is a convex curve. For equal increments, d¢, of
the parameter ¢, three adjacent points are given by ¢, — 5¢,
¢, and ¢, + 0¢. The tangent at ¢, is given by

dy| _ bcoshg,
dx|$, asinh¢,

The slope of the chord joining the other two points is given
by

(10)

Yut1—Ya—1 _ b[ sinh (¢, +0¢)—sinh (p,— )
Xp+1—%Xn—1 | cosh (¢,+0¢p)—cosh ($,— o)

_ bcosh g,

" asinh ¢, an

Since the tangent at ¢, and the slope of the chord are equal,
we have by the Lemma that the inscribed area is maximal.

The hyperbola differs from the ellipse, however, in that
it is not a closed curve of finite length. Therefore a decision
must be made as to how much of the hyperbola is to be
displayed. If this decision can be made in terms of the
desired range of one coordinate, then an upper limit on ¢
for plotting purposes can be specified. For example, if we
consider the branch of the hyperbola in the first and fourth
quadrants and we would like to plot for values of x in the
interval [a, a + c], the upper limit, ¢,,,., on the parameter
¢, would be @, = cosh™! [(a + c)/a]. Similarly, other
limits could be specified.

Once an upper limit, ¢,,,., has been specified, the calcula-
tion of the representative points, {x, y,}~-; in the first
quadrant can proceed as follows:

Initialise:
d¢ = ¢max/(N - l)
A = cosh (d¢)
B = (a/b) * sinh (d¢)
C = (b/a) * sinh (d¢)
X, =a
yy =0.

Repeat the following forn = 2,3,..., N.
xnzA*xn_1+B*yn—l
ynZC*xn_l+A*yn_1'

This will give N points representing the portion of the
hyperbola appearing in the first quadrant. The other points
may be obtained from these by appropriate changes of sign
due to the symmetry involved. For hyperbolas with centres
displaced from the origin, and/or other than horizontal
axes, a simple change of coordinates will give the desired
results.

Parabola

For plotting parabolas we can again make use of a para-
metric representation. For simplicity, consider the parabola
shown in Fig. 5, centred at the origin and with horizontal
axis.

24
14
[ I
T T
-1 1
-14
-24 a =2
b =1

Fig. 4. Hyperbola centred at origin with horizontal axis.
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A parabola such as that shown in Fig. 5 can be expressed
in rectangular coordinates as

y? = 4dax. (12)

A parametric representation of (12) is
x = tan’ ¢ (13a)
y = + 2Vatan ¢. (13b)

As ¢ varies continuously from 0 to x/2 the points given by
equations (13) will trace the desired parabola.

As shown by the author, Smith (1969a), this representation
leads to a ‘nearly’ maximal inscribed area and an efficient
computational algorithm. A second parametric representa-
tion, however, can be used to give maximal inscribed area
and be even more computationally efficient. This second
representation is

x = a¢? (14a)
y = 2a¢. (14b)

As ¢ varies continuously from 0 to oo the points given by
equations (14) will trace the desired parabola.

To see that the representation given by equations (14)
satisfies the maximum inscribed area criterion we can again
make use of the Lemma since the parabola is a convex
curve. Assuming equal increments, d¢, of the parameter,
three adjacent points are given by ¢, — ¢, ¢,,and 5, + ¢.
The tangent at ¢, is given by

dy|  2a 1
x|, 2a¢, ¢,

The slope of the chord joining the other two points is given
by

(15)

Yn+1— Vn-1 _ 20(¢"+5¢—¢"+5¢) _ 1 (16)

Xpr1—= %oy A[(@y+00)’ —(—04)7] b,

Since the tangent at ¢, and the slope of the chord are equal,
we have by the Lemma that the inscribed area is maximal.
To calculate N representative points for the first quadrant
we must, as we did for the hyperbola, establish an upper
limit, ¢,,,,, on ¢. Once ¢,,,. has been given, the algorithm
to compute N points for the first quadrant proceeds as
follows:
Initialise:

Fig. 5. Parabola centred at origin with horizontal axis.

HYPERBOLA

Fig. 6. Hyperbola by parametric representation.

d¢ = d)max/(N - 1)

xl = O
y1=0
A=a*dp*do
B =2*a*dgp.

Repeat the following forn = 2,3,..., N.

Xn = A + Xn_1 + d¢*yn_1
In = B +yn_1'

This will give N points in the first quadrant. The fourth
quadrant points can be obtained by negating the values of
yo(n =1,..., N). Again, parabolas with displaced centres
and other than horizontal axes can be handled by a change
of coordinates.

Fig. 6 and Fig. 7 are on-line point plots of a hyperbola
and a parabola (first quadrant) using the methods recom-
mended in this report. These pictures were created by using
the GAMMA* (Graphically Aided Mathematical M Achine)

*GAMMA is based on the Culler-Fried system currently in use
at the University of California at Santa Barbara.
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Fig. 7. Parabola by parametric representation.
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on-line graphical mathematical system at CERN (see
Vandoni, 1969).

5. Summary

Efficient algorithms for calculating a fixed number of
representative points for ellipses, hyperbolas, and parabolas
have been given. These are based on parametric representa-
tions of the curves with the parameters being varied by
equal increments. The nature of the representation, and the
use of equal increments in the parameter, lead to very
efficient algorithms.

For the ellipse we have proved that the parametric
representation is best in the sense of maximum inscribed
area. This led us to a Lemma which was used to prove that
for the hyperbola and parabola the parametric representa-
tions are also best in the same sense.
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Correspondence

To the Editor
The Computer Journal

Sir,

‘This subprogram operates on a dissimilarity coefficient to
generate the clusters of the numerically stratified hierarchy
(dendrogram) specified by the single link method.’

‘Providing alternatives to the go to statement is one of the
distinguishing features of high level programming languages.’

Both these quotations were taken from Vol. 13, No. 3 of The
Computer Journal. Neither of them is written in English. The
first, I submit, and regret as it comes from Cambridge, is un-
disciplined jargonese. The second is transformed into English
more simply, by putting the words ‘go to’ in, say, inverted
commas or italics.

This edition of the Journal provides for authors’ notes on
submission of papers. Nowhere therein is to be found any
reference to quality of writing. I accept, of course, that specialised
vocabularies must develop, and that to avoid them entirely would
be possible only at the cost of excessive demands on space.
Nevertheless, I cannot accept that vocabularies and jargon should
be allowed to become so undisciplined and over-specialised that
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communication between intelligent people working in broadlys
the same areas should reach the point of total inhibition; or so%
time-consuming for others specialised elsewhere that it is barelyQ
attempted, and we reach at last such fragmentation that only a*
handful of people can convey meaning, one to another. Mathe-
matical authors will find by going back to the original works of
the great masters, like Euler, that they were capable of expressing
themselves clearly, and took no great pride in avoidable obscurity.
Bertrand Russell dealt with very complex philosophical concepts,
yet his writings are always models of clarity.

I charge the Editorial Board with failing in their duty. Admiral
of the Fleet, Earl Mountbatten of Burma, has made broadly
similar comments. Can we not arrest this drift now?

Yours faithfully,
R. L. ALLEN (Brigadier)

Inventory Systems Development Wing
Headquarters, Base Organisation RAOC
Vauxhall Barracks

Didcot, Berkshire

20 August 1970
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