High level languages for low level users

D. G. Evershed and G. E. Rippon

Department of Production Engineering and Production Management, University of

Nottingham, Nottingham

Despite the presence of ‘high level’ languages, a communication barrier still exists between the

majority of people and computers. This paper sugg

ests how some present computer languages may

be improved, and attempts to justify the application of increased effort to this subject.

(Received August 1969)

The growing number of computer systems installed during
recent years in industry, universities and Government
departments, is bringing an ever-increasing sector of the
community into contact with these systems. The level of
contact for many people is simply a rate demand, or
electricity bill produced by a computerised accounting
system, but for a large number of design draughtsmen,
university research workers, undergraduates, accountants,
systems analysts and many others in industrial life, the
level of contact involves computer programming, rather than
simple appreciation. The suggestions in this paper are not
directed tothose full-time programmers forwhom computing
is virtually an end in itself but rather to these ‘low level’
users for whom computing is a small but essential part of
their job. It is accepted that systems programs, and large,
frequently-run programs require the additional effort of
being written in machine code to reduce computing time,
but those writing such programs are so familiar with the
system that flow charts are converted into programs with
scarcely a thought for the syntax or semantics of the
language.

Because of general ignorance of computing science,
computers are, in most people’s minds, surrounded by an
aura of mystery—machines of infinite complexity, limitless
capacity, and lightning speed. This image is not dispelled
when the outsider looks into the computer room to see the
professional programmers and machine operators communi-
cating with the machine and with each other in a totally
unintelligible jargon. Faced with this situation, it is easy to
understand how all but the most determined ‘low level’
user is quite prepared to allow a few selected slide-rule
calculations to substitute for a more complete computer
analysis. Thus, one often hears the complaint that, for a
small programming job, the calculations could be done by
hand in the time that it takes to write, compile and run a
program. This is a valid point for the novice programmer,
who never becomes sufficiently practised to remember, for
example, the intricate input/output procedures of some high
level languages.

When this situation arises, as indeed it must, particularly
in industry, this is evidence that the computer installation
is not being used to maximum effect. Consider, for example,
the design draughtsmen who, because he does not feel
himself competent to perform a computer-aided evaluation
of his design, uses excessively high safety factors. The cost of
using the computer for a correct design evaluation may be
less than the cost of overdesigning.

The current problem is to determine why occasional
users are reluctant to program, even though it may consider-
ably assist their work, and to suggest methods of overcoming
this problem.

Volume 14 Number1

The most important factor is psychological—the certain
knowledge that it will require many runs on the computer
to perfect the program through the illogicality of the
programmers’ mind. However, once this barrier has been
overcome, and the ‘low level’ user starts to write his
program, he finds that his inability to successfully carry out
routine tasks, which was one of his reasons for turning to
the computer, is exploited by the syntax of the programming
language itself.

This particular problem is not confined to the novice
programmer, but also the experienced user seems to be
continually making slight syntactic errors, which cause
failure at compile time. However correct the rest of the
program may be, a ; missing in ALGOL 60, or a character
punched in the wrong card column in FORTRAN IV may
cause failure on compilation, requiring the program to be
re-run. One tends to accept such failures as occupational
hazards, but even the most philosophical of users must have
wondered, after his program had just failed to compile at
the third attempt, whether such requirements could be
avoided.

Although one must consider the fields of language and
implementation separately, there is evidence that the basic
needs of the programmer have not been sufficiently con-
sidered by both the ‘language designers’ and the ‘system
programmers’. The development of ALGOL, for example,
was undertaken with the most regard for the power and
consistency of the language. The logical result of this is
ALGOL 68 which is totally incomprehensible not only to
‘low level’ users but to the ‘experts’ as well. On the other
hand efficiency of implementation was the prime concern
of the FORTRAN system programmers, leading to such
stumbling blocks as the assigned GOTO statement or the
need to specify dimensions of array parameters.

Some suggested improvements
Since the computer is a machine it can only process input
which has been ordered in a predetermined manner. There-
fore, if a program is to succeed, it must be written with
complete accuracy. Whilst this need for accuracy is accepted,
the following four sections give suggestions as to how errors
induced by some present high level languages may be
reduced.

Although examples are not given for every high level
language, the principles outlined should be generally
applicable.

(@) Input|Output routines

All computer programs are intended to produce output
of some kind, and the majority require data input. Therefore,

87

20 udy 61 U0 1s9n6 AQ YBEIGE//8/1 /L /I0IIE/UlWOD W00 dNO dlWspeo.)/:SA]Y WO} POPEOJUMOQ

it is especially important that these routines should be easy
to use and remember.

The generalised, formatted input/output of FORTRAN
IV is certainly not easy to use or particularly easy to
remember. The basic statements are

READ (m, n) list
and WRITE (s, t) list

where m and s are the input and output device numbers
respectively and n and t the locations of the format specifica-
tions to be used. List is the list of variables to be input or
output.

The majority of programmers will only use the card reader
(or paper tape reader if the installation is so orientated)
for input and the lineprinter for output, so why not assume
these devices? The more advanced programmer would still
have special procedures available for using the other input/
output devices such as magnetic tapes and graphplotters.

An assumed format could be introduced for WRITE,
such as six digits before the decimal point and three after.
It would assist if ANSI FORTRAN were to include this
concept in its language definition and were also to define
that when a number is too large for the specified field
then the field should be extended. Then the programmer
would be rewarded with a number rather than the galaxy
of stars which are common in so many implementations
today.

Input formats are completely unnecessary if numbers in
the data are separated by two or more ‘spaces’ as in
ALGOL. This method is obviously more error proof than
having to punch data into the exact card columns specified
by a fixed format where a mistake can easily be made in
the format specification, the data layout or in card punching.

With these revised techniques, to input and printout the
value of the variable Z would only require the programmer
to punch

READ Z
and WRITE Z

It is obviously convenient to be able to read in or print
out several variables (A, B, C, D) with a statement such as:

READ A, B,C,D

Also if formats other than the assumed one were required
for output, a simple layout such as:

WRITEB. A, X, Y, Z

could be used where B is the number of digits before the
decimal point, A the number after and X, Y, Z the variables.

A facility often required is that of printing out text, to
aid the legibility of the lineprinter output. The instruction
to print ‘job heading’ on a new line in Atlas Autocode
could be

caption f job $ heading
Compare this with the equivalent KDF9 ALGOL instruc-
tion
writetext (30, l !cl jobXheading 1);

and it is immediately obvious which form is the more
concise, the more simple and, therefore, the easier to
remember.

(b) General computing instructions

Throughout the body of a computer program, a small
number of instructions will be used many times, thus it is
desirable that the ‘low level’ user does not have to pause
unnecessarily to think whether he has written a particular
instruction correctly, or to refer to the manual to determine
whether, for example, he should be using (or [or ‘(, or
even [in his instructions.

When examples from current languages are considered
it becomes obvious on the one hand that certain languages
are reasonably easy to write correctly and, on the other
hand, other languages seem to have been designed from a
completely opposite standpoint.

A common ALGOL error is that of trying to use a
variable that has not been declared. FORTRAN is superior
in that it automatically declares variables as it finds them.
Unless the programmer overrules the computer, variables
starting with the letters I-N are integer and the remainder
real. It might be easier to remember A-I as integers, but
the method should reduce the number of declaration errors.
Mispunched variables can go undetected using FORTRAN,
but if a list of the declared variables were produced at
compile time the programmer could check for this.

A new line on paper tape in Atlas Autocode or a newcard
in FORTRAN are sufficient in themselves to separate
statements. In ALGOL, the newline is ignored and an
avoidable semi-colon has to be punched in addition.
Admittedly a statement occupying two cards (or lines) of
program requires a continuation sign to be punched in o
Atlas Autocode or FORTRAN, but this arises in the 5
minority of cases.

A particularly good example of excessive reliance being 3
placed on the memory of the programmer is in FORTRAN
where a continuation sign has to be typed in the sixthg_
card column. Similarly, only labels may be punched in.g
columns, 2, 3, 4 and 5, and in Egdon FORTRAN the first £
column is reserved for an asterisk to specify Job Control & 3
Language. Such conventions complicate programming and =
are extremely error prone.

It seems reasonable to assume that the fewer the formahtles o
required in a program the fewer the errors made in trying ©
to carry them out. This is illustrated by the method of S
specifying ‘basic words’ in ALGOL or Atlas Autocode.
Such words have to be ‘primed’ or ‘underlined’ e.g. ‘REAL’
or (real) whereas in FORTRAN no adornments need to be =
added to the simple word.

In certain implementations, Egdon FORTRAN, for
example, this method does mean that words such as DO,
REAL and END cannot be used as variables.

papeo]

olwe

[woo/w

9G¢//L8/LIvL/oPm

would wish to write in Egdon FORTRAN:: 2
DO 25 REAL = INTEGER, GOTO, END

where REAL, INTEGER, GOTO and END are variables! §

Some ALGOL conventions differ between systems. In 2
KDF9 ALGOL for example, the ‘equals’ of an assignment >
statement and a conditional statement are := and = =
respectively, whereas for Egdon ALGOL the = applies to §
assignment statements and ‘EQ’ to conditional statements. *
Atlas Autocode sensibly uses only = for both types of
statement. Similarly, the relational symbol for ‘less than’ is
‘LT’ in Egdon ALGOL, but Elliott 4100 ALGOL uses <.
The Elliott ALGOL is also inconsistent within itself because
it uses ‘LE’ for ‘less than or equal to’ instead of <. Further
confusion can arise if the lineprinter does not have the same
symbols as the input punches. It is particularly annoying to
have upper and lower case characters in a program but a
computer printout of it completely in upper case.

This problem could be eliminated by the adoption of a
limited standard character set in the hardware representa-
tion.

A further common requirement is to loop through part
of a program, increasing the values of variables by a preset
amount. The ALGOL 60 instruction

for k:=i step m until n do

The Computer Journal

and ALGOL 68 instruction
fo_rkfromibymtondo

are self explanatory, but rather lengthy.

The equivalent Atlas Autocode instruction
cyclek =i, m, n

and the FORTRAN 1V instruction
DO25K =1L N M

are indeed shorter and, to the beginner, equally acceptable
even though the m and n are reversed. The two latter forms
may lead to errors because it is not clear whether i goes to
n by steps of m, or to m by steps of n. Although there may
be very few users of both AA and FORTRAN (except in
Universities!) potential errors could be avoided by instruc-
tions such as:

LOOP K, I TO N BY M which is a compromise between
clarity and length.

ALGOL programs characteristically have a large number
of ‘blocks’ each contained between a begin and end, but
difficulties are encountered in matching the begins and ends,
particularly when the blocks are nested. PL/1 goes pa._rt
way to solving the problem by having the computer count
the ends, but the ALGOL system is probably more satis-
factory than the system of cycle and repeat and labels.

The additional ‘goto’ instructions do make it harder to
work through the program sequence, and flow charts often
become inconveniently large.

Short of expecting the computer to work out the logic
of the program, the most satisfactory system appears to
be found in FORTRAN IV. When for example the instruc-
tion

DO70I=1,5,1
is encountered, the computer executes the program section
under label 70, and then returns to the line below the
original ‘DO’ instruction. Using this system advantages are
gained by having each block separately identifiable, thus
enabling the programmer to check independently both the
instructions in the blocks and those executing the blocks
without having to sort through a maze of begins and ends
or labels and jump instructions. -

(c) Error reporting

Clear error reporting of failures during compiling or at
run time is an important factor in the overall efficiency of
any computer system.

Some compilation errors at the start of a program, e.g.
undeclared variables, can have repercussions throughout
the remainder of the text, causing spurious failure messages
to daunt the novice programmer. However, this does not
cause as much frustration as when the computer fails a
program and the error message is incomprehensible. How
many readers could confidently explain the cause of the
Egdon 3 system failure message ‘Dyadic operator in-
compatible with arguments’? Another failure message from
Egdon is ‘Goto expression not designational’. So much
simpler is the equivalent Atlas Autocode error message
‘Label not set’, giving the name of the label as well. Obscure
words used in error messages tend to emphasise the esoteric
nature of computing science, and this in turn further adds
to the reticence of the ‘low level’ user to take full advantage
of the computer.

From the point of view of saving overall computing time
it is desirable that compilers detect all errors in a program
at one run.

This is so with the Edinburgh University Atlas Autocode
compiler, but the WALGOL compiler, for example, fails to
report the undeclared variables in a block or inner blocks
until all other compiling errors are corrected. Although

Volume 14 Number 1

there may be no reasonable alternative to this system in
this particular implementation, the ‘low level’ user sees this
quite rightly as potentially wasteful on computing time and
as yet another frustration to be overcome when he turns his
hand to programming.

In high level languages, the nature of run time failures is
not as useful as the output information about its position in
the program text. For example, it is exceedingly tedious to
have to work through a program to discover the cause of an
excessively large number failing the program ‘overflow set’.
Computer software could easily be designed to give the
line at which the program failed. In this respect, the run
time failure messages of Atlas Autocode are ideal, giving
simply the nature of the failure and, more important its
position in the text. Egdon ALGOL error messages are
particularly poor for locating faults at run time. The position
has to be traced by working through a considerable quantity
of dumped information about LINK, SJNS, CELLS and
QSTORES. If the programmer can logically trace through
this information to find the point of failure, one is inclined
to ask why the software programmers did not build such
steps into the computer.

In FORTRAN 1V, if an attempt is made to print, for
example, an integer of seven digits using a format specifying
only six digits by a statement such as

K = 1036295
WRITE (10,2)K
2 FORMAT (I6)

the programmer is rewarded with six stars! This is extra-
ordinarily unhelpful.

Improvements to error reporting would be of great
assistance to the user, and might prevent further diagnostic
runs being necessary to trace locations of failures.

(d) Conversational mode

In recent years a major development has been the use of
computers in conversational mode. Although systems for
visual display, syntax analysis and interactive compilation
of programs are well established, much work is at present
being done on genuinely interactive compilers and incre-
mental compilers.

As the level of interaction between the computer and the
programmer increases so inevitably more and more of the
machine’s power is required for the internal ‘housekeeping’
for the system. Thus the stage is reached when the marginal
advantage of the programmer being able to compile his
program incrementally rather than in toto is offset by the
cost of software development and the reductions in available
computing power.

A further factor is that a computer should be kept busy
continually if a rapid turnround of jobs is expected. Thus,
any interactive system must allow multi access to users
together with the facility of processing background jobs.
The situation where a programmer completely occupies a
machine for visual display or compilation of a program
cannot be economically viable. Even so, such systems are
found in practice.

Thus, the use of computers in the conversational mode
has great potential, particularly for the low level user, but
the cost of software and the computing power absorbed
by other than the most basic systems at present makes them
uneconomic and unsuitable for all but the largest machines.

Economic justification

One could not expect the human factors aspect of
computer programming to be improved unless there were
strong economic arguments for doing so. Some arguments
are presented here, exposing inefficiencies which at present

202 udy 61 U0 1s9n6 AQ YBEIGE//8/1 /¥ L /I0IIE/UlWOD/WOD Ao dIWspeo.)/:SA]Y WO} PAPEOJUMOQ

go unrecognised, and focusing attention onto lost oppor-
tunities.

With the esoteric content of programming eliminated, a
much broadersection of the population will become potential
computer users. Not only would more people be capable of
using a computer, but those who had previously considered
it frustrating and time-consuming might now find it worth-
while. For example, with the advent of scientific manage-
ment, managers could well use the computer for small
simulations or analyses of local problems requiring immedi-
ate solution. In general, professional people can expect the
routine tasks to be performed by computer, leaving them
more time to concentrate on the fundamental aspects of
their work. Apart from the sociological desirability of this
trend, it should bring tremendous indirect advantages in the
form of improved industrial efficiency, better designs, etc.

An area where direct cost savings would occur is in
training. Accepting that less involved high level languages,
such as Atlas Autocode, are more easily assimilated by new
users, one would expect that training periods could either
be shortened or a better training given in the same time.
This would attract those potential users, such as senior
managers, who have only limited amounts of spare time
in which to learn to program. Unfortunately, at present,
when a new computer system is installed or when pro-
grammers change jobs, the method of communicating with
the computer has to be re-learnt. Even with a widely used
language such as ALGOL 60, different installations have
different input/output procedures.

Here again, the simpler the language and operating
system, the shorter the disruption of normal working after
a changeover. This situation would be avoided by the use
of standard languages and systems. One reason for not
standardising is that some languages are more efficient
than others for particular applications, but a penalty is paid
in the enormous duplication of effort carried out. If a single
computer language were introduced, it would still need to
be translated into several other languages for use by other
countries, but problems of interchangeability of programs
and personnel would be reduced to a minimum.

Considerable thought and effort has been aimed at
improving compiler efficiency. However, if one compilation
error has been made by the programmer a corrected program
will have to be run, doubling the computing time. Thus,
any fractional advantages gained by a fast compiler are
swamped by the wasted computing time caused by human
error. The authors maintain that a considerable quantity of
compiler efficiency could be sacrificed in order to accommo-

date language changes orientated towards reducing human
errors.

Similarly, advantages of reducing the running speed of
compiled programs are recognised, but less apparent is the
time wasted through incorrect data or logical errors. It is
clear to see how data can be mispunched, particularly in
FORTRAN where each character has generally to be in a
specific card column, but not so obvious that some logical
errors can also be induced by poor language design.
Admittedly logical mistakes are inherent in any human task,
but some of the language improvements suggested above
show how these might be reduced.

From the authors’ experience at several establishments
programs often fail because of computer operator mistakes.
Such mistakes include feeding paper tapes in backwards;
omitting to replace punched cards rejected by the card
reader; failing to call up special procedures for graph-
plotting or visual display; and failing to switch on required
output devices. Some of these pitfalls could have been
eliminated by better design of the system, giving direct
cost savings. Introducing new improved systems is not
necessarily advantageous however because adapting from
an old system to a new one appears to require as much
re-training and induce as many programming errors as
changing from one language to another.

Conclusion

When an overall view is taken of the effectiveness of
present computing systems, serious deficiencies are seen in
the functioning of ‘high level’ languages. With the expected
increase in the number of occasional computer users, there
will be a corresponding increase in the costs expended on
training people to program and in the computer time
wasted on program development. This emphasises the need
for a computer language which is easy to understand, easy
to remember and free from error prone conventions. Such
a language is unlikely to be designed by computer personnel
who have had no training in human factor techniques, and
who are unconsciously ingrained with computer jargon that
is incomprehensible to the majority.

Let us hope that those commissioned to write new
languages, or even subsets of the old, will be sufficiently
aware of the needs of the programmer to place him in his
important position as the ultimate consumer, rather than to
exploit his weaknesses with the tedious and, in many cases,
unnecessary conventions inherent in existing languages and
implementations.

Book review

Annual Review in Automatic Programming. Vol. 6, part 4.
‘Joss-II: Design Philosophy’, by J. W. Smith, 1970; pp.
183-256. (Pergamon Press Ltd., 30s = £1.50)

Papers in which system designers make an honest attempt to
review, explain and, where necessary, criticise, the decisions that
they made in designing a software system are all too rare (though
similar papers about hardware systems are virtually non-
existent). This paper on the design philosophy of JOSS-II—and
in particular the sections on list structures and list processing,
conditional expressions and storage management, and the
‘reprise’—is very worthwhile on this account. However, other
sections of the paper describing the details of the JOSS-II

90

language are less successful. Much space is taken up by a rather
discursive account of the rules of the language. A briefer, more
formal description of the language, with more discussion of the
alternatives which had been considered and discarded would
have been preferable.

Even more regrettable is the lack of any attempt to assess the
merits and demerits of the language, relative to other general
purpose languages both conversational and conventional.

A paper such as this should not have had a 22-item bibliography
in which nothing other than papers and reports relating to JOSS
appears.

B. RANDELL (Newcastle upon Tyne)

The Computer Journal

202 udy 61 U0 1s9nB AQ YBEIGE//8/1 /¥ L /I0IUE/UIWOD W00 dNO"dIWspEo.)/:SA]Y WO} POPEOJUMOQ

