|:Optimal Fit, M=5
2: First Fit, M=5
3:0ptimal Fit, M=9
|2l 4: First Fit, M=9

Fig. 1. Curves of G, the number of garbage collections, against R,
an index of length or difficulty of the computations, for the two
strategies

show the stages at which computations exhaust the available
space in storage before finishing. The chief advantage of the
optimal-fit method from this point of view, as Fig. 1 shows,
is not that it leads to more economy in garbage collection
(although that is true), but that it gives a long calculation a
better chance of finishing in general. The smallest value of
M on Fig. 1 is M = 5, because the trial computations did
not reveal any obvious advantages of one method over the
other for M < 5, except perhaps that the first-fit computa-
tions tended to run faster. For 5 < M < 9, the curves of G
against R for either method fall into the region between the
curves shown for M = 5 and M =9 for that method in a
regular way. The value M = 9 is the largest that has been
used here, because no non-commuting quantities which the
programs have analysed successfully so far have required
blocks of more than nine words.
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The contrast between the values of Wy, W, and S for the
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of the first-fit method. For each M in Table 1, the displayed
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which optimal-fit computations have finished while first-fit
computations have not.

Although the algorithm described here has been applied
to lists of blocks containing 1, 2, . . . , M words, in principle
the method and the accompanying theory can be applied
without change to lists of blocks of sizes x, 2x, ..., Mx,
which increases its potential usefulness. I am indebted to the
referee for pointing out that fact.
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Correspondence

To the Editor

The Computer Journal

Sir,

With reference to my paper published in the November, 1970

issue of this Journal, ‘Surfaces for Interactive Graphical Design’,

1 would like to point out an error which has been indicated to me.
In listing the conditions under which a curve will retain its

character, I state in (d) that the new curve should lie totally on

the same side of the original curve. This condition is wrong as it
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is only necessary that the displacement of every point on the
curve should be in the same direction. This change does not
affect any other part of the paper.

Yours faithfully,
K. J. MacCALLuM

Centre for Computing and Automation
Imperial College

Prince Consort Road

London SW7

27 November 1970
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