go unrecognised, and focusing attention onto lost oppor-
tunities.

With the esoteric content of programming eliminated, a
much broadersection of the population will become potential
computer users. Not only would more people be capable of
using a computer, but those who had previously considered
it frustrating and time-consuming might now find it worth-
while. For example, with the advent of scientific manage-
ment, managers could well use the computer for small
simulations or analyses of local problems requiring immedi-
ate solution. In general, professional people can expect the
routine tasks to be performed by computer, leaving them
more time to concentrate on the fundamental aspects of
their work. Apart from the sociological desirability of this
trend, it should bring tremendous indirect advantages in the
form of improved industrial efficiency, better designs, etc.

An area where direct cost savings would occur is in
training. Accepting that less involved high level languages,
such as Atlas Autocode, are more easily assimilated by new
users, one would expect that training periods could either
be shortened or a better training given in the same time.
This would attract those potential users, such as senior
managers, who have only limited amounts of spare time
in which to learn to program. Unfortunately, at present,
when a new computer system is installed or when pro-
grammers change jobs, the method of communicating with
the computer has to be re-learnt. Even with a widely used
language such as ALGOL 60, different installations have
different input/output procedures.

Here again, the simpler the language and operating
system, the shorter the disruption of normal working after
a changeover. This situation would be avoided by the use
of standard languages and systems. One reason for not
standardising is that some languages are more efficient
than others for particular applications, but a penalty is paid
in the enormous duplication of effort carried out. If a single
computer language were introduced, it would still need to
be translated into several other languages for use by other
countries, but problems of interchangeability of programs
and personnel would be reduced to a minimum.

Considerable thought and effort has been aimed at
improving compiler efficiency. However, if one compilation
error has been made by the programmer a corrected program
will have to be run, doubling the computing time. Thus,
any fractional advantages gained by a fast compiler are
swamped by the wasted computing time caused by human
error. The authors maintain that a considerable quantity of
compiler efficiency could be sacrificed in order to accommo-

date language changes orientated towards reducing human
errors.

Similarly, advantages of reducing the running speed of
compiled programs are recognised, but less apparent is the
time wasted through incorrect data or logical errors. It is
clear to see how data can be mispunched, particularly in
FORTRAN where each character has generally to be in a
specific card column, but not so obvious that some logical
errors can also be induced by poor language design.
Admittedly logical mistakes are inherent in any human task,
but some of the language improvements suggested above
show how these might be reduced.

From the authors’ experience at several establishments
programs often fail because of computer operator mistakes.
Such mistakes include feeding paper tapes in backwards;
omitting to replace punched cards rejected by the card
reader; failing to call up special procedures for graph-
plotting or visual display; and failing to switch on required
output devices. Some of these pitfalls could have been
eliminated by better design of the system, giving direct
cost savings. Introducing new improved systems is not
necessarily advantageous however because adapting from
an old system to a new one appears to require as much
re-training and induce as many programming errors as
changing from one language to another.

Conclusion

When an overall view is taken of the effectiveness of
present computing systems, serious deficiencies are seen in
the functioning of ‘high level’ languages. With the expected
increase in the number of occasional computer users, there
will be a corresponding increase in the costs expended on
training people to program and in the computer time
wasted on program development. This emphasises the need
for a computer language which is easy to understand, easy
to remember and free from error prone conventions. Such
a language is unlikely to be designed by computer personnel
who have had no training in human factor techniques, and
who are unconsciously ingrained with computer jargon that
is incomprehensible to the majority.

Let us hope that those commissioned to write new
languages, or even subsets of the old, will be sufficiently
aware of the needs of the programmer to place him in his
important position as the ultimate consumer, rather than to
exploit his weaknesses with the tedious and, in many cases,
unnecessary conventions inherent in existing languages and
implementations.

Book review

Annual Review in Automatic Programming. Vol. 6, part 4.
‘Joss-II: Design Philosophy’, by J. W. Smith, 1970; pp.
183-256. (Pergamon Press Ltd., 30s = £1.50)

Papers in which system designers make an honest attempt to
review, explain and, where necessary, criticise, the decisions that
they made in designing a software system are all too rare (though
similar papers about hardware systems are virtually non-
existent). This paper on the design philosophy of JOSS-II—and
in particular the sections on list structures and list processing,
conditional expressions and storage management, and the
‘reprise’—is very worthwhile on this account. However, other
sections of the paper describing the details of the JOSS-II

90

language are less successful. Much space is taken up by a rather
discursive account of the rules of the language. A briefer, more
formal description of the language, with more discussion of the
alternatives which had been considered and discarded would
have been preferable.

Even more regrettable is the lack of any attempt to assess the
merits and demerits of the language, relative to other general
purpose languages both conversational and conventional.

A paper such as this should not have had a 22-item bibliography
in which nothing other than papers and reports relating to JOSS
appears.

B. RANDELL (Newcastle upon Tyne)

The Computer Journal

202 udy 61 U0 1s8n6 AQ Z0FISE/06/ 1/ L /A101E/UlWOD/W0d Ao dlWspeoe)/:SA]Y WOJj POPEOUMOQ





