Blocking sequentially processed magnetic files

S. J. Waters
LSE, London, WC2

This paper develops a mathematical algorithm that enables block sizes to be systematically calcu-
lated for sequentially processed magnetic files. A computer systems designer should find the algor-
ithm simple to apply manually, once understood, and it is being programmed into experimental
design software, which, to a large extent, automatically designs and optimises a computer system

for minimum cost.
(Received January 1970)

A research project at the London School of Economics and
Political Science is investigating a computer-assisted method-
ology of systems development; this project, known as CAM,
is financed by the Science Research Council. The overall aim of
the project is to demonstrate the feasibility of applying com-
puters to the systems development function (being systems
definition, design, implementation and maintenance). The
present approach to systems development is manual, apart
from the use of compilers and various isolated techniques,
consequently systems people are involved in much routine
work (e.g. areas of documentation and computer programming)
but are expected, on the other hand, to solve complex technical
problems (e.g. the efficient organisation of a computer system
to meet complex data processing requirements). In the long
term, it is anticipated that a computer-assisted methodology
should result in cheaper and speedier systems development
with increased flexibility and accuracy and decreased numbers
of systems people.

In the short term, it is expected that immediately useful
techniques will ‘fall out’ of the project. This paper is concerned
with such a technique from the current area of research into
computer-assisted systems design. This technique is part of
a larger algorithm which is being developed to structure
computer runs and files from defined data processing require-
ments and computer configurations.

A common problem in data processing systems is the choice
of block sizes for magnetic files. Most of these systems
currently operate in batched processing mode and many
process the files sequentially (updating by the brought forward/
carried forward principle). This problem is currently solved by
adopting a standard block size or by trial and error calcula-
tions; both methods may produce extremely inefficient results.
The following algorithm develops a near optimum solution
systematically.

Central processor unit time is ignored by the algorithm as
this is often immeasurable and less significant with modern
computer configurations; even if this were dominant, the
algorithm merely wastes spare primary storage (for a single-
programming or fixed partition, multi-programming con-
figuration).

The basic algorithm

Consider a program that sequentially processes N magnetic
tape files such that:

1. Each file contains Rn records of fixed length Cn characters
where n = 1,2, ..., N. The ‘information content’ of file

Volume 14 Number 2

n is defined as
In = Rn Cn

2. All magnetic tape handlers have the same characteristicsg

Transfer rate = T kc (thousand character
per second)

Packing density = P bpi (bits per inch)

Inter-block gap length = L c (characters)

Inter-block start/stop time = G ms (milli-seconds).

3. All magnetic tape handlers are switched to one channé
thus there is no simultaneity of information transfe8
between them. o

4. A smgle buffer is to be allocated to each file, being an arei&
of primary (e.g. core) storage large enough to contain an
block of the file; thus, there is virtually no simultaneit$
between the magnetic tape handlers and the centrq
processing unit.

5. The total primary storage available for these buffers 13:
S characters (after total storage has been reduced for thE5
operating system, the program and its work areas); S 15
estimated at system design and is reviewed when thgs
program is operational.

~
—

1} pPSPEOJUMO(Q

PG

opeoe//:sdy

61961

Fig. 1 illustrates such a program that inputs a transaction ﬁle@,
updates a master file and outputs a result file.

The program run time is obtained by summing the followmé
components:

1. Run set-up time (e.g. loading program and initial ﬁle%
which is independent of blocking arrangements.

2. File set-up and take-down times (including rewinds) thai
are not simultaneous with either the run set-up or the ruﬁ%
itself (e.g. spare handlers are not avallable) This time i$’
only dependent on blocking arrangements in so far as a
larger block size might reduce the number of tapes in a
multi-reel file.

3. Central processing unit time which is marginally dependent
on blocking arrangements in that the operating system
packs and unpacks blocks.

4. Total information transfer time which is independent of
blocking arrangements (in the example, this is a total of
213,000,000 characters at 40 kc giving 90 minutes, approxi-
mately).

5. Total inter-block start/stop time (in the example, this is
the total number of blocks times 20 ms).

uo }

Clearly, this last component dominates the choice of blocking
arrangements and the objective is to minimise the total number
of blocks.

109

600,000 transaction records of 15 characters

(R1 = 600,000; C1 = 15; I1 = 9,000,000)

1,000,000 brought forward records of 100 characters

—>.

(R2 = 1,000,000; C2 = 100; I2 = 100,000,000)

1,000,000 carried forward records of 100

(R3 = 1,000,000; C3 =

40,000 output records of 100 characters

100; I3 = 100,000,000)

(R4 = 40,000; C4 = 100; I4 = 4,000,000)

A
T = 40 kc
| _P = 800 bpi
L =500c
G = 20 ms

Fig. 1. Example of an update program

Buffer 1
Buffer 2
Total
—| Buffer
characters Storage
Buffer 3 is 50,000
characters
Buffer 4
Program
Operating
System

Primary Storage

Let the number of records per block for each file be Bn,
giving block size Bn Cn, then the total number of blocks, B
to be minimised is given by

n=N Rn
B = E — 2
n=1 Bn)

subject to the constraint that total buffer storage must not
exceed available storage,

—N
S> E "= Bn cn 3)
n=1

The Appendix derives the solution as

Rn Z:nzN —
\/a/ et VRn Cn 4)
1 n=N — 2
B=§<E e «/1n> ®)

Fig. 2 illustrates the result of applying this basic algorithm
to the example; there is a significant saving in run time and

/"4dpy wouy pepeojumoq

tapes. Even if only 4,000 characters were available for buffer®
storage, the algorithm saves 20 minutes run time and twom
tapes over standard blocking.

Note that the length of a file is approximately Rn/P(Cn + L/Bn)B
inches which may be converted to a number of reels by d1v1dmgo
by the length of one magnetic tape.

Multi-reel files

Each tape of a multi-reel file requires loading, rewinding andé
unloading which often increases information transfer tlme\
s1gmﬁcantly (e.g. by a third); thus, b]ocklng arrangements:'
should aim to reduce the number of tapes in such files. ThefD
basic algorithm achieves this as, from (1), (4), the buffer snzeb

is given by
I =N —
Sn=Sx/1n/ E :_1 VIn

which clearly weights large files (e.g. note the tape savings ing
the worked example).

Thus, the algorithm is applied and the number of tapes in
each ﬁle is calculated. Any spare handlers are allocated oneO

0o/woo dn

2
q6196¥€/60L/2/

enﬁ

Single blocking Standard blocking | Optimised blocking

File Buffer size 15 charas 1,000 charas 6,000 charas

1 Number of tapes* 14 1 1
Files | Buffer size 100 charas 1,000 charas 20,000 charas
2,3 Number of tapes* 27 7 5
File Buffer size 100 charas 1,000 charas 4,000 charas

4 Number of tapes* 1 1 1

Total number of blocks 2,640,000 213,000 12,500

Total start/stop time 14 hrs. 40 mins. 1 hr. 11 mins. 4 mins.

*Magnetic tape length is taken as 2,400 feet.

Fig. 2. Worked example of basic algorithm

110

20z ludy 61 U

The Computer Journal

each to the larger files so that, by ‘ping-ponging’, the load,
rewind and unload overheads are effected simultaneously to
information transfer; the first tape load and the last tape
rewind and unload contribute to run time. The overheads for
all remaining files, including multi-reel files on one handler,
also contribute to run time.

Varying handler performances
The basic algorithm assumes that all magnetic tape handlers
have the same performance which is the usual situation;
however, some hardware configurations include low-speed
and high-speed handlers. In this case, those files with the
higher information content are usually allocated to the higher
performance handlers.

Let the inter-block start/stop time for each file be Gn then
the objective is not to minimise the total number of blocks but
the total start/stop time; thus, the objective function (2) must

be modified as
: n=N GnRn
B =
n=1 Bn

Clearly, formulae (4), (5) are modified by simply replacing
Rn by Gn Rn.

Variable length records

The basic algorithm requires modification for files containing
variable length records. Let such files have normal record
length Cn characters and maximum record length Mn characters
then the basic algorithm is applied to optimise the normal
situation.

However, some operating systems impose the further con-
straint that block size must not be exceeded by the maximum
record size

JS.Mn<Bn Cn

If this fails after applying the algorithm, then allocate a block
size of Mn characters and reapply the algorithm to the remain-
ing files after reducing the total buffer storage S by these
allocated buffers of Mn characters. It may be shown that this
second optimisation yields smaller block sizes for the remain-
ing files than the first optimisation; thus, it is in order to omit
all files failing the constraint together and the constraint must
be reapplied after the second (and possibly successive)
optimisations.

Multiple buffering

The basic algorithm assumes that each file is single-buffered
which is rarely the case. Generally, files are double-buffered
to achieve simultaneity between file handling and processing;
occasionally, files are multiple-buffered to smooth an uneven
relationship between file handling and processing.

Let the number of buffers allocated to each file be Dn then
constraint (3) becomes

S>2n=N
n=1

Clearly, formulae (4), (5) are modified by simply replacing Cn
by Dn Cn. Alternatively, if all files are to be double-buffered,
the S factor may be replaced by S/2 throughout.

Note that if, as a result of multiple buffering, the magnetic
tape moves continuously without starting and stopping
between blocks then the inter-block start/stop time should be
replaced by the inter-block transfer time; in the example,
20 ms is replaced by 500c/40 kc secs = 12+5 ms.

DnBnCn

Multiple channels

The basic algorithm assumes that all magnetic tape handlers
are on one channel but they are usually allocated to two,

Volume 14 Number 2

sometimes more, channels so that the handlers on one channel
may operate simultaneously with those on another; note that
multiple (e.g. double) buffering is usually necessary to achieve
this simultaneity.

The algorithm is applied and the handling time of each file is
calculated. The files are then allocated to channels so that the
total handling times of the channels are as close as possible;
the run time contribution is the total handling time of those
files on the dominant channel.

Direct access devices

The basic algorithm and its extensions have been developed
for sequentially processed magnetic tape files; there now
remains the task of interpreting the various formulae for
sequentially processed direct access device files (updated by
the brought forward/carried forward principle).

The characteristics of direct access devices may be compared
to those of magnetic tape handlers as follows:

1. Transfer rate is typically much faster.

2. Packing density is measured as number of characters per,
track. g

3. Inter-block gap length is typically much smaller.

4. Inter-block start/stop time is replaced by the followin§
components: e

(a) Seek time (e.g. disc head movement and selection). Thi
is usually negligible if only one file is required from the;
device; even if several files are to be sequentially processed
in parallel from the device, they may be arranged to;
share cylinders so that seek time is again negligibleg
However, seek time is sometimes significant and must b
included (e.g. if the direct access device is shared by
several programs run together in a multi-programminé
environment). g

(b) Search time (e.g. latency or rotational delay), being half &
track revolution on average. Note that if the optionad
check facility is taken on an output file then an extrg
track revolution must be included for reading after writings

OJuM:

=
=

Thus, the algorithm is equally valid for sequentially processe&:
direct access device files if the objective is to minimise run timex

Most computer systems impose the further constraint that
block size must not exceed track size 3

.P>BnCn

If this fails after applying the algorithm, then allocate a blocg
size of P characters and reapply the algorithm to the remaining
files after reducing the total buffer storage S by these allocated
buffers of P characters. It may be shown that this second
optimisation yields larger block sizes for the remaining fileg
than the first optimisation; thus, it is in order to omit all files
failing the constraint together and the constraint must bg
reapplied after the second (and possibly successive) optimis :)
tions. S

Some operating systems further insist that block size must
equal one of a restricted set of values (e.g. one eighth, one
quarter, one half or a complete track). The algorithm may be
used to establish which value is closest to the optimum.

Note that the size of a direct access device file is approximately
Rn/P(Cn + L/Bn) tracks.

617€/6

The complete algorithm
The basic algorithm and all its extensions are now combined
into a unified algorithm for a single program that sequentially
processes N magnetic files; file n contains Rn records of normal
length Cn characters and maximum length Mn characters
(Mn = Cn if the records are fixed length) therefore its normal
information content is In = Rn Ch.

The procedure to minimise the run time of the program is:

1. Allocate the files to magnetic devices; often, the higher

111

information content files are allocated to the faster devices
(note that replaceable disc devices are commonly the
fastest and that a costed saving in run time may outweigh
the higher cost of disc packs compared to magnetic tapes).
The device characteristics Tn, Pn, Ln, and Gn are thus
defined for each file.

. Allocate the devices to channels.

. Allocate a number of buffers, Dn, to each file.

. Apply the following algorithm to optimise block sizes as

Sn = BnCn

H LN

- n=N ,—
= SVYGnRn.Dn Cn/Dn E nel vGnRn.DnCn

e n=N —_—
= Sv'GnDn In/Dn E ne1 ~GnDnIn

5. Apply any direct access device constraints that
Pn>Sn

and reoptimise if necessary.
6. Apply any variable length record constraints that

Mn<Sn

and reoptimise if necessary.
7. Calculate run time.

Device, buffer and channel allocation may be varied and the
algorithm reapplied to assess the affect on run time.

Finally, having optimised each program of a computer system
in isolation, the interactive constraints of the entire system
must be applied as follows:

1. Runs must be device compatible (e.g. a file output to a
disc device must be subsequently input from a disc device).

2. Runs must be block size compatible (e.g. a file output with
a particular block size must be subsequently input with
that block size). If several runs handle a particular file
and their optimisations result in different block sizes for
that file, then the smallest block size may be chosen.

Note that if a file passes from one program to another via a
sort program then it escapes the above constraints as its
device and block size may vary between sorting.

Conclusion

The author would be pleased to assist any organisation wishing
to apply this algorithm and to be informed of results obtained
from its use.

Finally, the author wishes to acknowledge the assistance of
his colleagues at the LSE, particularly Mr. F. F. Land and

Dr. A. H. Land of the Statistics, Mathematics, Computing
and Operational Research Department.

Appendix
To solve (2) and (3) ,let the equality apply then

S— E "=N pncn =0
n=1

Using a constant Lagrange multiplier, A4, then (2) may be
written as

B = E nzN&—l(S— E n=1\;BnCn>
n=1 Bn —-;- n=1 Y
M =N (R
— —iS+ g " (-—" +ABn Cn)
n=1 \Bn
| ST S

The minimum value of this function is found by equating all
partial derivatives to zero

(1.1)

_ 0B
" 0Bn
Rn .
= — B_r12 +ACn
C.Bn = ﬂ
ACn

noting that positive values must be taken. From_(1.1),

— 1 n=N
Vi = §Zn=1 ~Rn Cn

Rn E :n=N
S Bh=S | —
n \/Cn/ nel vRn Cn

~
=
N

g/|ulWooioo dno-olWwapeoe//:sdny WoJj papeojumoq

1 n=N 2
B =— 1.3
5 (E ne1 vRn Cn) (2
It can be shown that the true minimum has been derived and%
not merely a local minimum. N

Some operating systems require that the Bn are integral sos
that records do not spill from one block to the next. One
method of choosing such integral values is to ignore the§
fractional parts of the Bn by truncating to the integer below ;o
it may be shown that this increases B by no more thanZ

1 n=N _
IOOSZn=1 Cn%

(which is often less than 109 in practice).

0z Iudy 6 uo }senb

N
Footnote: The basic algorithm was also developed by Ewing S. Walker and published in the August/September, 1970 issue of Software Age (whileh

this paper was still being refereed).

112

The Computer Journal

