An ALGOL line-syntax checker

E. W. Haddon* and L. G. Prollt

This paper describes a facility for partially checking the syntax of a line of an ALGOL program as
it is input to a computer from a remote input device.

(Received March 1968, Revised July 1970)

This paper describes a line-syntax checker designed for use in a
multi-access system. In such a system source code is usually
stored in a source language file until the user requests an
attempted compilation of the program. The line-syntax
checker occupies a position between the user at his remote input
device and the source file. Source code typed on the input
device is transmitted into the system in groups of characters
subject to some limit imposed by the computer hardware.
Such a group of characters is referred to here as a line.

A line is passed to the line-syntax checker which determines,
as far as is possible for a line in vacuo, whether the line is
composed of valid source code. If it is, then the checker
arranges for the transfer of the line to the user’s source file.
Otherwise, a descriptive error message is sent to the user and
the faulted line is erased from the system. Although the
syntax checker cannot find all errors in source code because
it is working on a line in vacuo, we believe that it is a very
useful feature of a multi-access system. The immediate verbal
error messages with which the checker responds are more
useful and instructive than the numeric error codes which are
often output from compilers. A full compilation of an ALGOL
program may, as a result of some errors, lead to the output of
meaningless error messages as the compiler becomes confused.
The checker, however, will give clear error messages about
single lines and lead to the creation of a more correct source
file which, in turn, will give a more useful first compilation.
The time taken by the line-syntax checker to check one line
is insignificant as far as the user is concerned. This checker
was written for revised ALGOL-60 (1963); similar checkers
could be written for other languages. Where necessary in this
paper reference will be made to ICL 1900 computers and the
ICL implementation of ALGOL.

General features of the checker and its design

The action of transmitting a message from an input device
generates a request for some service by the system. It was
found that this checker could process one line of input in
about 0-5 millisecond. One copy of the checker should then
be able to service the requests from many consoles without
any apparent loss of response from the system. Since ALGOL
is a completely format free language, the layout characters
(space and newline) may appear anywhere within the significant
characters of the language. Although most programmers, for
readability, terminate a line after the statement terminator (),
it is not necessary for any line, with the exception of the last
line of a program, to end with a completed statement. If
checking is to be worthwhile it is essential that the checker
knows whether the first character of a line is the first character
of a statement or, if not, that the checker can continue checking
at the relevant point. Thus the checker must preserve some
information for each user who is currently availing himself of
the checker’s facilities. Upon getting a request for service,

the checker must first ascertain whether the particular user
last input a complete statement. If not, it must restore various
parameters as they stood at the end of the previous line and
resume checking at the appropriate point for continuation of
the last statement. Ideally, one continuation store area should
be available for holding continuation variables for each 1nputo
device which is connected to the system, but this is notg
economic when storage space is at a premium. In practice theg
number of continuation store areas would be less than the3
number of connected input devices, the proportion being suchZ.
that a user will not often be delayed because of the unavaila-S
bility of a continuation store area. Users of the checker would =
soon realise that it was in their own interests to input complete @
statements whenever possnble
In order to keep the size of these continuation store areas as®
small as possible some restrictions have been imposed on the S
presentation of ALGOL to the checker. These are that all:
1. ALGOL basic symbols, begin, real, etc., and similar ICLC

oB//:

00l

program description symbols list, program, etc.]
2. Identifiers. 3
3. Number structures. S
4. Parameter delimiters, i.e. the comment separator of=
procedure parameters. g
must be completely contained within one line of input. It is2

not expected that these restrictions will seriously inconvenience
the user: a survey of users of normal batch input on cards has™>

Table 1 The variables whose values must be retained to check
continuation lines

VARIABLE FUNCTION

61 uoisenb Aq 20.6¥£/821

1 Indicates whether the line currently being checked
is part of a comment.

2 Indicates whether the line currently being checked >
was preceded by a label or a ‘FOR’ statement or =
‘ELSE’. §

3 Indicates the point in phase 3 at which to start =
checking a continuation line.

4-10 Used in searching the various transition tables and

for holding return links from the routines for check-
ing designational, arithmetic and Boolean expres-

sions.

11 Holds a count of the numbers of string quotes
encountered in a statement.

12 Holds the bracket and parenthesis count.

13 Holds a count of ‘THEN’ ‘ELSE’ pairs in con-
ditional, arithmetic and Boolean expressions.

14 Similar to 13 for ‘IF’ “THEN’ pairs.

15 Similar to 13 for ‘IF’ “THEN’ and ‘THEN’ ‘ELSE’

pairs in conditional designational expressions.

*Formerly University of Southampton, now Computing Centre, University of East Anglia, Norwich
tDepartment of Mathematics, University of Southampton, Southampton

128

The Computer Journal

shown that (1), (2) and (3) is the normal practice and that (4)
is a very infrequently used feature of ALGOL. The removal of
these restrictions would lead to the continuation store areas
doubling in size. Fifteen quantities are currently preserved in
each continuation store area. The functions of these quantities
are indicated in Table 1.

A further restriction, relative to the ICL 1900 ALGOL
compilers, concerns those basic symbols for which there is an
alternative representation. For example, ‘LT’ is a valid
alternative for <, “** is a valid alternative for 1, etc. With
the exception of < (which exists on most teletype keyboards)
as an alternative for the two-character symbol :=, only the
more natural (ALGOL report) representations are recognised
by the checker. Thus ‘LT’ would be faulted by the checker
despite being acceptable to the compiler. These alternatives
could easily be incorporated into the checker but have been
omitted, partly for reasons of size and also because the authors
believe that beginners should learn, and use, pure ALGOL.

Design of the checker

The aim of the checker is to implement as much of the ALGOL
report as is possible when ALGOL code is being treated as
statements in vacuo. Errors such as multiple use of identifiers
or misplaced declarations cannot be detected by a line-syntax
checker without the use of tables, etc., as in a compiler. This is
impossible on two counts:

1. Much extra storage space would be required, both for
users actively inputting ALGOL code and for incomplete
dormant files.

2. The input of code for concatenation with other existing
files or for replacement of sections of edited files would
not have the necessary tables.

The structure of the checker is in three distinct, successive
phases which conveniently allows for the possibility of over-
laying to conserve core store.

Phase 1 checks whether a line is a continuation line, replacing
the continuation variables if necessary or initialising the
continuation variables in the checker otherwise. Its basic
function is to scan the input buffer which contains the line,
seeking space characters. Since these have no significance they
may conveniently be removed, and the non-space characters
are then compacted into the same input buffer. The number of
non-space characters is counted for use in phase 2. If the line
is not faulted during phases 2 or 3, only this compact, non-
space line is transmitted to the file store. Storage space is thus
saved at the expense of a compressed listing of the user’s file,
should one be requested. If any error is detected in phases 2
or 3, the error message refers to the compacted characters.
A further advantage gained by this removal of space characters
is that the subsequent phases do not have to contain code to
detect and step past the space characters.

Phase 2 performs two functions simultaneously on a pass
through the compact line produced by phase 1. The major
part of this phase is a classification of the elements of the line
into groups, where the elements of each group have the same
syntactical properties as far as the checking performed by
phase 3 can distinguish. The various groups are shown in
Table 2. A single numeric character is set in a transformed line
to indicate the type of element detected in the compact line.
The basic symbols begin, for etc., are represented in 1900
ALGOL by the sequences ‘BEGIN’, ‘FOR’, etc. Phase 2 also
checks these basic symbols for correct letter sequences: the
opening apostrophe causes entry to a routine which calculates
a unique numeric value for each symbol from the internal
numeric values of the constituent letters. Exit from this routine
occurs on detection of a closing apostrophe or on the elapse
of 10 characters from the opening apostrophe (since the largest
basic symbol is procedure having only nine letters). The

Volume 14 Number 2

Table 2 The classification of elements of the compacted line

ELEMENT OF COMPACTED LINE CHARACTER IN

TRANSFORMED LINE

Identifier 0
Number structure 1
) {if not followed by} 2
[3
] 4
< > = # ‘GFE’ ‘LF’ 5
* / ? ‘I’ {integer division} 6

7
‘AND’ ‘OR’ ‘IMPL’ ‘EQUIV’ 8
(9
: 10
; 11
: = {two characters}<— 12
‘TRUE’ ‘FALSE’ 13
‘NOT’ 14
> {apostrophe, printed herein} ‘or’ 23
,) : comment (28

w1y pepeojumoq

numeric value so calculated is then sought in a table of the
values of valid basic symbols (see Table 3). If the sequences
between the apostrophes represents a valid basic symbol of thcﬁ'
ALGOL report, a character to indicate a basic symbol and§
the position of the basic symbol within the table are depomtecﬁi
in the transformed line. ICL symbol and character representas
tions which are also enclosed in apostrophes are checked by
the same routine but lead to deposition of characters in th&
transformed line as shown in Table 2, with the exception of
string quotes represented in 1900 ALGOL by ‘(and). OI‘B
detecting a strmg the checker checks the whole string and it
valid, records it in the transformed line as an identifier, sinc&:
a string must be used as a parameter of a procedure. If no»
coincidence of the numeric value created from a sequence ms
apostrophes and the values in the table is found, the sequencéx
is not valid. A mistake easily made by newcomers to programg
ming and indeed, not infrequently found in programs prepared;
by more experienced programmers, is the omission of one of
the apostrophes enclosing a basic symbol. This, in commo@
with a number of other errors, can cause great confusion in arg
attempted compilation of a complete program with the possible
masking of other errors in the program. The use of the line2
syntax checker will prevent such errors being presented to &
compiler and therefore result in the elimination of mang
frustrating and useless compller diagnostics. 2

When an error is detected in a line, either during phase 2 olr>
phase 3, a descriptive error message is returned to the user—
This will immediately follow the line in error and will quotg
four characters from the compact line to indicate the approxi=
mate position of the error. Since phase 3 works on the trans-
formed line produced by phase 2, the latter must establish a
mapping vector which gives the correspondence between the
compact line and the transformed line. For each character in
the transformed line there is an entry in the mapping vector
giving the position in the compact line of the first character
of the corresponding element (see Fig. 1). Phase 3, in checking
the transformed line would detect an error at the 10th character
of the transformed line. The mapping vector, position 10,
contains 24 showing that the error occurs near the 24th
character of the compact line. The user would then receive
the message

ERROR IN ARRAY BOUNDS NEAR 4,CO

Note that one character preceding the position of the detected
error is output in the error message. This is done because

129

Table 3 The basic symbols
BASIC SYMBOLS REMARKS
1 REAL
2 INTEGER
3 ARRAY Can be combined in various
4 PROCEDURE declarations
5 BOOLEAN Allowable
6 OWN opening
symbols
7 COMMENT ofa
8 BEGIN statement
9 END
10 FOR Individual checking required
11 GOTO
12 IF
13 SWITCH
14 EXTERNAL Can only be followed by ; g
15 ALGOL (ICL 1900-ALGOL symbols) =
Q
16 STRING Can only be followed by lists §
17 LABEL of identifiers 3
18 VALUE 3
=
o
19 STEP £
20 UNTIL g
21 WHILE)
22 DO Individual checking required 2
23 THEN e
24 ELSE ®
3
25 GE g
26 LE 3.
2
Q
27 TRUE 5
28 FALSE %
Sequences of &
29 AND Classified characters whic%
30 OR in phase 2 are enclosed @
31 IMPL (see Table 2) in apostrophes 3
32 EQUIV in 1900 ALGOI§
o
33 NOT a
3
34 / ‘)’ is integer division g
35 (‘C and ‘)’ are string quotes i
36) E
B
37— Program description symbols; treated separately R
‘Character position 1 23 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Line as typed ARRAY"’ MATRI X ROwW, -1 COL] ;
Phase 1:
Compact line ‘' ARRAY’® MATRI X[4 , COL 1 ;
Phase 2:
Transformed line 233 0 4 1 100 281 280 3 11
Mapping vector 1 2 8 14 1516 17 20 21 24 25 28 29
Fig. 1. Example of stages created in checking a line

130

The Computer Journal

several errors only become apparent when the next element is
inspected.

The major syntactic checking is performed upon the trans-
formed line by phase 3. If the line being checked is a continu-
ation line, the continuation variables will have been restored
and one of these, by the use of a multi-way switch, causes entry
to phase 3 at the point reached by the previous line. The state
of the continuation store area must be retained until the
continuation line has been checked since if the continuation
line contains an error the continuation variables must be
retained for another attempt at a correct continuatio n line.
It is possible, however, for the mistake to lie, not in the
continuation line but in an already accepted line: for example,
the line

X:=A+B
would be accepted and stored with continuation variables
set for a continuation line. If the continuation line is then typed
as
—D)*C;

an error is detected on examining the right parenthesis. If a
left parenthesis should have preceded A in the first line the
user must have a facility for direct input of his continuation
line without checking. Subsequent editing, using normal
facilities, could insert the left parenthesis.

If a line of input is not to be interpreted as a continuation line
it must start a new statement and the only legal first characters
of a statement are the apostrophe of a basic symbol or a letter.
With reference to Table 3, only the first 18 basic symbols may
open a statement. Thus if ¥ is the position of a basic symbol
within the list in Table 3, a value of ¥ > 18 is illegal at the
beginning of a statement. If the starting symbol is legal and
V > 15 the checker proceeds to look for a list of identifiers.
Ifnot, but ¥ > 6, control passes to individual checking routines
for the appropriate structures. Any other value of V indicates
a symbol which may be used singly or in certain combinations
in type declarations or specifications, such as ‘REAL’ or
‘OWN’ ‘BOOLEAN’ ‘ARRAY’. ¥V < 6 causes entry to that
part of the checker which checks the use of these symbols.
This is achieved through the use of a transition table which is
typical of the checking employed in various situations where
elements may be connected in alternative sequences. The
particular transition table and its method of use is shown in
detail in Figs. 2 and 3. Entries in the transition table are
selected according to the position reached via previous elements
and the value of the next element of the transformed line. This
entry is then tested to determine the next stage in use of the
transition table or a branch to a further structure check or the
occurrence of an error. The entries in these transition tables
are only small integers and may conveniently be packed into
store to provide a more compact checker (Day, 1970).

The structure of ALGOL makes it impossible or impractical
to use large transition tables, for many elements of such tables
would then denote illegal states. Much of the checking of
phase 3 is performed through transition tables with particular

REAL INTEGER ARRAY PRO- BOOLEAN OWN
WV CEDURE
N\ 2 3 4 5 6
1 2 2 ~1 -2 2 3
2 0 0 -1 -2 0 0
3 4 4 0 0 4 0
4 0 0 ~1 0 0 0

Fig. 2. Transition table used in checking some type declarations

Volume 14 Number 2

Entry with
V in range 1-6
N := TABLE[N, V]

CHECK ARRAY

CHECK PROCEDURE
4 DECLARATION OR
DECLARATIONS cprlter ™
OR TION
SPECIFICATIONS

0 NO|

CHARACTER AN
APOSTROPHE

V := NEXT
CHARACTER,
i.e. NEXT
BASIC SYMBOL

CHECK LIST OF
IDENTIFIERS

YES

ERROR

cﬁbO'ogLuepeae//:sduq woJ) papeojumoq

Fig. 3. Flow diagram illustrating the use of the transition table
Fig. 2

/ulod

hand-coding being used to pass from one transition table t®
another. For example, ‘ARRAY’ must be followed by a lisg-
of identifiers. The identifier, however, may be terminated by &
semi-colon if ‘ARRAY” is being used in the specification parﬁ
of a procedure declaration (and since the checker is working:
on lines, in vacuo, it does not know), or by the [of array;
bounds. This causes entry to a checking sequence for array;
bounds which requires access to checking of arithmeti¢;
expressions, including the possibility of nested conditionab
arithmetic expressions. 3

Switch declarations also show the same degree of complexityg
since although the elements of the switch list are designationap
expressions, which are generally simple labels (i.e. identifiers)3
the following structure

‘SWITCH’ S := SI, S2, Q[I*(J — 1) + P[3]],
‘IF’Y > 0 ‘THEN’ S3 ‘ELSE’ S4%

Vv 61 Uo

is perfectly valid. Access is thus required to those sections OE
the checker designed to check arithmetic expressions, Boolear™
relations and the conditional ‘IF’... ‘THEN’ ... ‘ELSE’
structure. When the latter is used as a designational expression
it is possible to check for the existence, and correct sequencing
of the basic symbols ‘IF’ “THEN’ and ‘ELSE’, even if S3 and
S4 are other than simple labels. The conditional statement is,
however, more difficult to check in its general use since there
are the two forms
‘IF’ R ‘THEN’ S1;
and
‘IF’ R ‘THEN’ S2 ‘ELSE’ S3;

in which R represents a Boolean relation and S1, S2, S3 can
take many forms. In these structures it is possible for the
checker to determine the correct matching of ‘IF’ ‘THEN’
pairs. The checking of ‘THEN’ ‘ELSE’ pairs can only be
taken as far as checking that the number of ‘ELSE’ symbols in

131

a statement does not exceed the number of “THEN’ symbols
which have occurred. A further complexity of the second
structure arises from S2 having the possibility of being a
compound statement, e.g.

‘IF’ R ‘THEN’ ‘BEGIN’ A := B; B := 0 ‘END’ ‘ELSE’ S3;

Since the compound statement may itself be extremely lengthy
and of course, involve the same structure nested within itself,
it is not practical for the checker to check the complete
structure of a conditional statement. The decision was therefore
made to check a conditional statement only as far as the
first semi-colon. In this example therefore, checking re-
commences with B := 0 as of a statement in isolation. The
checker cannot thus determine whether ‘ELSE’ is being used
correctly, though if ‘ELSE’ is detected, as here, with the ‘IF’
‘THEN’ count at zero, the ‘ELSE’ must have been preceded
by ‘END’ or by ‘END’ comment with no semi-colon between
the ‘END’ and the ‘ELSE’.

Perhaps the most difficult constituent of ALGOL as regards
line-syntax checking is the checking of expressions. Complete
checking of an expression when taken out of the context of
the program is impossible—for instance, TEMP(X + 2) is
valid if TEMP is a procedure identifier but not otherwise.

The basic philosophy of expression checking is that a transition
table is used to determine whether one element of the expression
is a legal successor of the previous element. Obviously, this
will not trap all errors, for example

X:=A+B‘OR’C;

would not be faulted. More thorough checking of expressions
could have been introduced, even without detailed analysis of
the expression, but only at the expense of much larger transition
tables, increases in the size of the continuation store areas and
extra hand-coding for intermediate checking within the
expression. A consideration in favour of this reduced form of
checking for expressions was the result of a survey of user
programs being presented to the batch ALGOL compiler.
This showed that the majority of errors in arithmetic expressions
which could be detected in a line, in vacuo, would, in fact, be
trapped by this simple method.

One relatively common error in expressions which the above
checking technique can not detect is the imbalance of paren-
theses and brackets. This is of sufficient occurrence to warrant
a special check and hence the line-syntax checker will determine
the correct sequencing and matching of parentheses and
brackets. For example, the statement

X := A + B(C,D(E[2,3 + X)], F);

would be faulted. Only one variable is used to hold the count
of parentheses and brackets for any conceivable depth of
nesting.

The checker and its environment

The checker was designed to be one of a set of interacting
modules forming a multi-access system. The major module of
such a system would be a command interpreting module
(CIM), to detect input commands from the attached remote
devices and instigate action in other modules. A command verb
SYNCHECK input from a remote device could be used to
inform the CIM that until another command verb was input
from that device each line of input was to be held in a buffer
for servicing by the syntax checker. The checker would, when
free, check the contents of the buffer and leave a flag set in
one of two states to inform the CIM that the contents of the
buffer, i.e. the compact line, were now to be added to that

References

user’s file and the user invited to input another line or that
the line contained an error. In the latter case the checker would
have set up some coded error message together with the four
characters from the compact line. The CIM could now call in
a message sending module which would assemble the verbal
message, according to the code provided by the checker, from
a system dictionary and transmit the error message to the user,
followed again by an invitation to input another line.

The checker could alternatively be set up as a private program
to assemble files of checked lines of ALGOL program in
user’s files which could then be processed in an existing system
such as MINIMOP.

The checker has been coded in 1900 PLAN and, without
overlaying, occupies about 1-5 K words. With overlays and a
more careful coding the checker should require only about 1 K
words of store.

Conclusions

We believe that such a syntax checker can be a useful feature
of a multi-access system. The newcomer to ALGOL pro-
gramming would find the error messages both instructive ando
time-saving. It is also suggested that experienced programmersé
would use the facility since the use of the checker rather than a3
direct mode of input weuld not cause a noticeable increase m(I>
input time. Moreover it offers two distinct advantages over:
the direct mode of input: first, that any errors detected by theg
checker can be corrected immediately simply by re-typing aj
corrected line. If the errors were only detected during anm
attempted compilation they would have to be removed by usem
of the editing facilities which would involve extra work.2 8
Secondly, by using the checker, the user has an 1ncreased3
probability of a successful compilation at the first attempt and,
even if his program still contains errors, the first compllatlono
might then detect more errors than would otherwise be possible.3

These advantages to the user are also helpful to the system,=
the first since editing requires both time and extra storageg
space for edited files and secondly there will be fewer complla-s
tions. S

As has been stated previously, the checker cannot detect alls
the errors in the statements presented to it. It is asserted,=
however, that no correct ALGOL line will be faulted (thought
some ICL departures from the ALGOL report such as ‘FOR’y
I:=1°‘STEP’ 1 ‘WHILE’ B ‘DO’ S; have purposely not been§
implemented). The checker has been thoroughly tested as a<
free standing program using a sample of users’ program53
(mcludmg experiences users) submitted for the batch compiler2
as specimen test data; each card being interpreted as one line of'8
input. The results obtained from the checker were compared"’
with the output from attempted compilations. These testsS
showed that the checker was finding 769 of the independento
errors in the programs, the other 249 of the errors bemg%;>
mainly due to errors in declarations and block structures,\J
which the checker could not detect by its very nature. Thaﬁ
ALGOL compiler was, however, only finding 619, of the
independent errors—a worse performance due basically to the
masking of some errors in the confusion caused in the compiler
by previous errors in the programs. The use of the checker
followed by an attempted compilation should result in a
significantly higher proportion of independent errors being
extracted by the end of the first compilation.

Acknowledgements

The authors wish to thank the referee for his helpful comments
and suggestions. We are also indebted to various colleagues
with whom we have had valuable discussions.

(1963). Revised report on the algorithmic language ALGOL 60, The Computer Journal, Vol. 5, pp. 349-367.
(1965). ICL 1900 series ALGOL manual. Technical publication 3340.
Day, A. C. (1970). The use of symbol-state tables, The Computer Journal, Vol. 13, pp. 332-339.

132

The Computer Journal

