Generation of permutation sequences: Part 2

R. J. Ord-Smith

Computing Laboratory, University of Bradford, Bradford, Yorkshire BD7 1DP

The main purpose of Part 2 is to present explicitly the six fastest general permutation algorithms
in an improved and standardised form. A comparison shows the kind of difficulties which can arise
in the implementation of a high level language. An appendix contains an extended bibliography.

A brief account of continuing work is included.

(Received July 1970)

1. Introduction

Delay in the appearance of Part 2 of this paper has enabled the
author to incorporate a few details arising from a fruitful
correspondence with a number of other workers. The names
of the relevant correspondents are given in context but, since
the work referred to is in development and unpublished, the
best that can be offered at this stage is to put anyone interested
in particular details into touch with the originator.

In optimisation applications each arrangement has to be
evaluated. A transposition algorithm may permit the value of
the current arrangement to be obtained by a small correction
to the immediately previous value, rather than ab initio. As
J. D. Murchland points out, this may be an important con-
sideration. He also discusses the pseudo-random sampling of
arrangements when the enumeration of all is impracticable.
To this end J. Lions had developed a generalised permutation
algorithm allowing many arrangements to be skipped but with
a considerable degree of combinatorial control. A. D. Woodall
appears to have discovered an explicit transposition algorithm
different again from those of Wells, Johnson, or Trotter which
promises to have a form which may lead to a very fast algorithm.
Miss E. Brahler has modified the lexicographic algorithm
Bestlex in a manner similar to that used in Boothroyd’s
production of Algorithm 30 (see Section 2.1.3 below). She
claims a speed increase of more than three times. It is clear
that, although it was judged that this paper appeared at a
suitably stabilised point for a general review, there continues
to be important improvement in techniques still taking place.

2. The fastest published general permutation algorithms

There are six published permutation algorithms which are at
present the fastest existent. Three of these are transposition
sequence algorithms and three are lexicographic. All have
undergone some improvements since their original publication.
They are, therefore, reproduced here for the first time in their
improved versions.

2.1. Transposition sequence algorithms

2.1.1. ACM Algorithm 115 slightly improved (ACM 115A4)
Historically this is the first of the six algorithms. Though
Wells (1961) had already proved the existence of transposition
sequences with his algorithm, Algorithm ACM 115A defines
a different transposition sequence to that of Wells. It differs
also from the adjacent transposition sequence described by
Johnson (1963). Due to Trotter (1962) it remained for a number
of years the fastest permutation algorithm of any kind. It
retains a combinatorial interest because it generates a bell-
ringing sequence. This algorithm is also noteworthy for the
subtle manner of its skilful organisation. In general array
access dominates in an ALGOL procedure of this kind. Not-
withstanding the extra array accesses caused by the use of

136

both the signature vector d and an auxiliary vector p the
elegant control exercised in the use of these is worthy of study
by anyone who wishes to be known as a programmer. Thg
very minor improvement is due to Boothroyd.

procedure perm (x, n); value n; integer n; array x;
begin own integer array p, d[2: 10]; integer k, g; real ¢;
if first then begin for k := 2 step 1 until » do
begin p[k] := 0; d[k] := 1 end;
first := false
end;
k :=0;
index: pln] := q := pln] + d[nl;
if ¢ = n then begin d[n] := —1;
goto loop
end;
if ¢ # 0 then goto transpose;
dinl:=1;k:=k +1;
loop: if n> 2thenbeglnn =n-—1;
goto index
end;
q:=1; first .= true
transpose:q :=q + k; k :=q + 1; t := x[q]; x[q] := x[k]; x[k] :=1¢
end of procedure perm;

2.1.2. British Computer Journal Algorithm 29 improved
(BCJ 294)

This algorithm, due to Boothroyd (1967) is a direct 1mple\
mentation of Wells’ sequence, though the algorithm modlﬁeg
the rules given by Wells. This version has been modified by;
Boothroyd from that originally published in order to bring
the specification of the parameter list and the use of a globaﬂ;
boolean variable into line with ‘standard practice’. It 1§
improved to capitalise the fact that only x[1] and x[2] arg
involved in half the transpositions carried out. See als@
comment on this in Section 2.2.2.

o!ue/|u[Luoo/Luoo'dnoo!Luepe:JE//:sdnu WOJ} PSPEOJUMO

procedure perm (x, n); value n; integer n; array x;
begin integer k, k less 1, dk; real temp;
own boolean odd; own integer array d[3:10];
if first then begin odd : = false;
if n> 2 then begin first := false;
for k := 3 step 1 until ndo d[k] := 0
end

20z Iudy 61 U0 Ise

end;
if odd then begm kless1:=2;k:=3;
count: dk := d[k],
if dk # k less 1 then goto swap;
dlk] :=0;
if kK # n then begin k less 1 := k;
k:=k+1;
goto count
end;
first := true; goto exit;
swap: dk := d[k]: = dk + 1;
if dk > 2 then begin
ifk — k-2 x2=0then
kless1:=k — dk

end;
temp := x[k]; x[k] := x[k less 1];

x[k less 1] := temp
end
else begin femp := x[1]; x[1] := x[2]; x[2] := temp
end;
odd := —odd,

exit: end of procedure perm;

The Computer Journal

2.1.3. British Computer Journal Algorithm 30 improved
(BCJ 304)

Boothroyd has standardised and improved his original
Algorithm 30 (1967) to provide a general transposition sequence
algorithm which only possesses the restriction n> 5. It
exploits a repeated pattern in 23 successive entries involving
only elements x[1] to x[4]. Unless some special sequence of
arrangements is demanded, this is the fastest permutation
algorithm to have been published (but see next section). Its
efficiency arises from the considerable use of explicitly
named array elements x[1] to x[4] reducing the use of the
slow subscript mechanism of the implementation of high level
languages.

procedure perm (x, n); value n; integer n; array x;
begin integer j, k, k less 1, dk; real xk;

own real x1, x2, x3, x4,

own integer /; own mteger array d[5:10];

switch s := sl 52, s1, 52, s1, s3, s1, s2, sl, s2, s1, s3, 51, 52, s1, 52,

s1, s4, sl s2 sl s2 sl s5

switch ss := ssl, ss2, ss3, ss4;

if first then begin for &k := 5 step 1 until n do d[k] := O;

x1 := x[1]; x2 := x[2];

x3 := x[3]; x4 := x[4];

i := 0; first := false
end;

i:=1i+ 1; goto s[i];

slixk := x1; x1 := x[1] := x2;
x2 := x[2] := xk; goto exit;
s2:xk 1= x2; x2 :=x[2] := x3;
x3 := x[3] := xk; goto exit;
s3:xk 1= x3; x3 := x[3] := x4,
x4 := x[4] := xk; goto exit;
s4: xk 1= x4; x4 := x[4] := x1;
x1 := x[l] = xk; goto exit;
55k less 1 =4k 1—0
count: dk := d[k]; lf dk ;é k less 1 then goto swap;

d[k] :=0; if k # n then begin k less 1 := k;
k:=k+1;
goto count

end;

first := true; goto exit;

swap:dk :=d[k] :=dk + 1;
ifdk> 2thenbeginif k — k -2 X 2 =
kless1:=k — dk
end;

xk 1= x[k]; x[k] = x[k less 1];

x[k less 1] := xk

goto if k less 1 < ’4 then ss[k less 1] else exit;
ss1 : x1 := xk, goto exit;

0 then

552 :x2 = xk; goto exit;
ss3 : x3 := xk; goto exit;
ss4 1 x4 := xk;

exit: end of procedure perm;

2.2. Lexicographic and pseudo lexicographic algorithms

2.2.1. ACM Algorithm 308 improved (ACM 3084)

Original publication by the author (Ord-Smith, 1967) of this
algorithm, which produces a pesudo lexicographic sequence,
preceded that of the truly lexicographic algorithm ACM 323.
It has been subsequently noted that it is best described as a
modified form of the lexicographic algorithm. See Part 1 of
this paper for further description and also Ord-Smith (1969).
Boothroyd noted the failure of the algorithm in the trivial
case n = 2 and his recommended modification, included here,
removes this restriction.

procedure perm (x, n); value n; integer n; array x;
begin own integer array ¢[3:10]; integer k, m;
real ¢#; own boolean odd;
if first then begin odd := true;
if n> 2 then begin first := false;
for m := 3 step 1 until n do
glm]l:=1 end
end;
if odd then begm odd := false;
t = x[1]; x[1] := x[2]; x[2] :=¢;
goto finish
end;
odd := true; k := 3;
oop: m := qlk]; if m = k then
begin if k& < n then begin g[k] :=1;
k:=k+1

goto loop
end
else begin first := true; goto trinit end

’

end;

Volume 14 Number 2
2

qlk] :=m + 1;
trinit :m :=1;
transpose: t := x[m]; x[m] := x[k]; x[k] :=¢;
m:=m+ 1;k:=k—1;
if m < k then goto transpose;
finish: end of procedure perm;

2.2.2. ACM Algorithm 323 improved (ACM 323A4)
This algorithm was originally proposed by the author. An
improvement in speed was proposed to the author by Trotter
which involved explicit transposition of the element x[1] and
x[2] in half the cases. This was incorporated into the version
published as ACM Algorithm 323 Ord-Smith (1968). The idea
has subsequently also been used by Boothroyd in his improved
Algorithm BCJ 29A. The version below also incorporates
Boothroyd’s control of the x[1], x[2] transpositions by means
of a local boolean variable and his suggestion to remove the
failure in the case n = 2 in the original.
procedure perm(x, n;
{This is identical to the previous algorithm of 2.2.1 except that the
line which was:
glk] :=m + 1;
now becomes
t:= x[m], x[m] := x[k], x[k] :=1t;
qlkl:=m+ 1;k:=k — 1; }
finish: end of procedure perm;
2.2.3. British Computer Journal Algorithm 28 correcte(é
(BCJ 284)
This algorithm by Ph1111ps was published together witls
algorlthms 29 and 30 in The Computer Journal (Phillips, 1967)3
It is reproduced here in corrected and ‘standardised’ form,3
Standardisation can include regeneration of the 1dent1ty when’
first is reset true. See comment and optional line in the body oﬁ
the procedure. 3
The algorithm dispenses with the need for a signature b}é
making use of the numerical values of the elements of th@
given array. All permutations will be generated only if alf
marks are distinct and the lowest lexicographic permutatlolg
starts the process. If the marks are not all distinct, only unique
permutations are generated. If other than lowest lex1cograph1é
ordering starts the process, only higher orderings are generated\
These conditions may often be advantageous to the user. Where;
they are not restrictive, the algorithm provides both the fastes®
lexicographic algorithm and the fastest general algorithm fog
alln > 1.

procedure perm (x, n); value n; integer n; array x;
begin mteger i, j, k; real xi, xj, xk, xn, t,
own integer nl n2; own real x1, x2, x3;
if first then begm nli=n-— 1;
if n1 = 0 then goto exit;

jumoQ

} p3

n2:=n-—2;
x1 := x[n]; x2 := x3 := x[nl];
if n2 # 0O then
begin first := false;
x3 1= x[n2]
end
end;

t:=xl;
if x2 < xl then begin x1 := x[n] := x2;
X2 = x[nl] t
end
else begin if x3 < x2 then
begin if x1 > x3 then
begin x1 := x[n] := x2;
x2 := x[nl] := x3;
x3 :=x[n2] :=1t¢

end

else begin x1 := x[n] := x3;
x3 := x[n2] := x2;
x2 :=x[nl] :=1¢

20z 1Mdy 61 uo 3senb Aq v1/61E/9¢ L/

end
end
elsebegmt—nZ xi:=x3;j:=n-—3;
search: if j # O then begin xj := x[]],
if xj < xi then goto swap;
i=jyxi:=xj;j:=j—1;
goto search
end;
ﬁrst = true;
comment the next line is optional. If included the final
arrangement is reset to the arlgmal one at the end of
the factorial nth call; i := 1; j := n; goto reset
end;

137

Table 1 A time comparison between the six algorithms

TIMES IN SECONDS FOR n = 8§

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4 COLUMN 5 COLUMN 6 COLUMN 7
Total time Total time Time Elliott Total time Time ICL 1905 Ratio of Ratio of
Elliott 503 Elliott 503 503 without ~ ICL 1905 with with subscript Times in Times in
with subscript without sub- subscript subscript checks with Column 3 Column 5
checks, driving script checks, checks with checks, driving procedure call
program time driving pro- procedure call program time time deducted
ALGORITHM deducted gram time time deducted deducted
deducted
BCJ 30A 361 329 22-8 44 20 1-00 1-00
BCJ 28A 537 47-4 37-3 44 20 1-64 1-00
BCJ 29A 623 54-0 439 48 24 193 1-20
ACM 308A 680 58-8 48-7 48 24 2-14 1-20
ACM 115A 781 66-7 566 54 30 2-48 1-50
ACM 323A 80-0 68-4 58-3 52 28 2-56 1-40
goto exit; Part 1 already published, that this review has been of value,

swap: k := n;
for xk := x[k] while xk < xjdo k :=k — 1;
x[k] := xj; x[j] := xk;j :=n;
reset: xi 1= x[i]; x[i] := x[j]; x[j] := xi;
ir=i+41;j:=j—1;
if j > i then goto reset;
x1 := x[n]; x2 := x[nl]; x3 := x[n2]
end;
exit: end of procedure perm;
3. Implementation overheads
A time comparison (see Table 1) between the six algorithms
probably serves little purpose in practical decision concerning
which to use. The difference in time is sufficiently small to make
the major criterion that of the combinatorial advantage of
the particular permutation sequence generated. The times on
different machines do serve to show that certain features of a
high level language suffer differing penalties in different
implementations. One cannot, therefore, make absolute
judgements in time comparison of algorithms, particularly
when written in a high level language.

Columns 5 and 6 give the fairest comparisons of time that
can be obtained, and Columns 6 and 7 the respective ratios of
speed. It is not possible to control the built in array bound
checks provided in compilers available to the author as it is
for the Elliott 503 ALGOL operating system in use at the
Hydro-University Computing centre of the University of
Tasmania.*

The improvement in algorithm 308,323 relative to 29,115
for ICL 1905 arises because 1900 ALGOL implementation
particularly benefits subscripted variables with explicit
subscripts, which are treated as simple variables. The pro-
portions of such variables assigned during use is higher for
these algorithms. On the other hand, the very noticeable
discrepancy in ratio for algorithms 28, 30 arises from slow
implementation of switches in 1900 ALGOL. Algorithm 30
relies heavily on a multiple switch. Elliott 503 implementation
does not carry so obvious a burden because goto statements
and switches share a common mechanism. Implementation for
both computers showed a worthwhile improvement for
algorithms 29, 308, 323 by using an own boolean variable as
described in Section 2.2.2. above, and this is incorporated in
the versions given here. This may not, however, be an improve-
ment for all compilers.

4. Conclusions and acknowledgements
The author is encouraged to believe, from the reaction to

*The operating system was written by W. G. Warne, formerly
officer-2nd-in-charge, HUCC, later with Radio-physics Division
CSIRO, currently with UNIVAC (Australia) Pty Ltd.

138

and that it might serve both to take stock of the situation and
to stimulate and promote further studies.

It is clear from literature search and from comments received
that book references are insufficiently used or quoted in
periodical references. Though textbooks suffer worse from

being outdated in a quickly moving subject, they contain ¢

important work for all that and it is hoped that the bibliography
given in appendix will help to remedy the situation.
The author is indebted to many persons, some named and

some not, for helping him to produce this paper. Essential

tribute must be paid again for the mammoth work of Mr.
Boothroyd throughout the exercise. The appendix was com-
piled by Mr. K. Boateng as part of his M.Sc. dissertation
submitted for work in this field at Bradford University.

Appendix
Related periodical references other than those already given
in Part 1.

Permutation algorithms

BrRATLEY, P. (1967). Permutations with Repetitions, Algorithm
306, CACM, Vol. 10, p. 450.

Eaves, B. C. (1962). Permute, Algorithm 130, CACM, Vol. 5,
p. 551.

HEeap, B. R. (1963). Permutations by Interchanges, The Computer
Journal, Vol. 6, p. 293.

HoweLt, J. R. (1962). Permutation Generator, Algorithm 87,
CACM, Vol. 5, p. 209.

SAag, T. W. (1964). Permutations of a Set with Repetitions,
Algorithm 242, CACM, Vol. 7, p. 585.

ScHRAK, G. F., and SHIMRAT, M. (1962). Permutation in Lexico-
graphic Order, Algorithm 102, CACM, Vol. 5, p. 346.

Random permutation generators

DURSTENFIELD, R. (1964). Random Permutation, Algorithm 235,
CACM, Vol. 7, p. 420.

RosinsoN, C. L. (1967).
Vol. 10, p. 729.

Permutation, Algorithm 317, CACM,

Permutation inverse
BoonsTtrRA, B. H. (1965).
CACM, Vol. 8, p. 105.
MEeDLOCK, C. W. (1965).

Vol. 8, p. 670.

Inverse Permutation, Algorithm 250,

Remark on Inverse Permutation. CACM,

Permutation representations
SNAPPER, E. (1968). The polynomial of a Permutation Representa-
tion, Jour. Combinatorial Theory, Vol. 5, p. 105.

The Computer Journal

202 udy 61 U0 188n6 AQ 1/ 67E/9E L/Z/t L /B1014e/|uf00/W0d"dNo"oILLSPEDE//:SARY W) PAPEOUMOQ

Combinations

KURTZBERG, J. (1962).
5, p. 344.

Mirsup, C. J. (1963). Combination in Lexicographic and in any
Order, Algorithms 154, 155. CACM, Vol. 6, p. 103.

WoLFsoN, M. L., and WRIGHT, H. V. (1963). Combinatorial of m
Things. Algorithms 160, 161. CACM, Vol. 6, p. 161.

Combination, Algorithm 94, CACM, Vol.

Related algorithm
FeNICHEL, R. R. (1968). Distribution of Indistinguishable Objects
into Distinguishable Slots, Algorithm 329. CACM,Vol. 11, p. 430.

Review of permutation techniques
Proceedings of Symposium in Applied Mathematics, Vol. 10.
Particularly papers by Hoffman, A. J. and Lehmer, D. H.

Book references

Permutation theory

Combinatorial Mathematics, Ryser, H. J. Mathematical Association
of America, 1963.

Introduction to the Theory of Groups, Alexandroff P. S. Blackie, 1959.

Theory of Groups, Marshall Hall. Macmillan, New York, 1969.

Background to Set and Group Theory, Mansfield, D. E., and Bruck-
heimer, M., Chatto and Windus, 1965.

Survey of Modern Algebra, Birkhoff, G., and Maclane, S. Macmillan,
New York, Revised, 1953.

Elements of Abstract Algebra, Moore, J. T. Macmillan, New York,
1962.

Linear Algebra and Group Theory, Smirnov, V. I. McGraw-Hill,
New York, 1961.

Algebra, Volume 1, Redei, L. Pergamon, 1967.

Modern Algebra, Ayres, F. Schaum, 1965.

Algebra, Archbold, J. W. Pitman, 1961.

A University Algebra, Littlewood, D. E. Heinemann, 1950.

Permutation theory (Statistical context)

Elements of Statistical Inference, Huntsberger, D. V. Prentice-Hall,
1962.

Introduction to Statistical Analysis, Dixon, W. J., and Massey, F. J.
McGraw-Hill, 1957.

Brief accounts in many other books.

Permutation sequence algorithms

Applied Combinatorial Mathematics, Edited by Beckenbach, E. F.
John Wiley (1964). Contains an important chapter entitled ‘TheJ
machine tools of Combinatorics’ by Lehmer, D. H.

Book review

Switching and Finite Automata Theory (Computer Science Series).

by Z. Kohavi, 1970; 592 pages. (McGraw-Hill, £7-90)
Some weeks of devoted work would be needed to give a fair review
of this book, and many months to study it properly. For theoretically
oriented Computer Scientists, Logic Designers or Control Engineers,
the book must be a very valuable one, and one feels that it will
probably be from such investigations that fundamental discoveries
of value may well spring. It is hard to believe that it can rank as a
text for either under- or postgraduate courses, in spite of the preface.
One would have difficulty in incorporating more than a small
fraction of the contents into such courses unless they were very
specialised ones. For this reason it seems unnecessary to attempt to
make the book free standing and some of the first two chapters
dealing with binary arithmetic, codes, and sets and lattices, might
well be assumed knowledge. Certainly some of these early sections
are the least well written part of the book.

The second part of the book introduces Switching Functions,
AND, OR and NOT operations, and Boolean Algebras. A neat and
unified structure is exposed if in the rather refined terminology of
set theory. The fourth chapter goes into considerable detail concern-
ing algorithms for the minimisation of switching functions, and
explains very clearly some of the techniques which have been
developed. However, it is very much oriented towards hand manipu-
lation which, Kohavi admits, become cumbersome for more than six

Volume 14 Number 2

Ulwoo/woo dno-olwapese//:sdny WoJj papeojumo

variables. Though the Quine-McCluskey method is systematig
enough for computer implementation, we are told on page 90, ng:
explicit references to such work is given. The methods are furthep
weakened when NAND and NOR logic is introduced in Chapter &
and one is told that the methods prove less effective in this casey
However, the discussion of NAND and NOR logic in this Chapteg;
and of Threshold logic in Chapter 7 are very valuable, perhaps moré
than the network logic of Chapter 6. Part 2 ends with a usefub
chapter on design and testing of faults. I approve of the use of th&
word ‘fault’ in this context cven though the word ‘error’ is useg
instead in the introductory Chapter 1.

Chapters 9 to 13 of Part 3 are devoted to applications of thgg
techniques of Part 2 to sequential circuits and finite state machines,
Again there is a wealth of information which most computer.
scientists will find is marred by the combination of terse theoretic
vocabulary and hand based methods. Although the same may bg
said for Chapter 14, most will find here a valuable survey of memory,
and information loss and retention in finite machines which it i3
hard to find given so concisely elsewhere. Chapter 15 returns to ai
important subset of finite machines, those which are linear. The last
chapter is a rather abstruse one concerned with the characterisation
of finite state machines.

R. J. OrD-SMITH (Bradford)

139

