Parametric curve fitting

M. Grossman

Centre for Computing and Automation, Imperial College, London, SW7

An iterative method is described for least squares curve fitting, when both the abscissae and ordinates
are subject to error. The ordinate and abscissa are fitted by parametric functions, using a con-
structive non-linear optimisation procedure. The order of the data points is maintained, and hence

multi-valued data may be fitted.
(Received August 1969, Revised April 1970)

1. Introduction

The problem of least squares curve fitting when both ordinate
and abscissa are subject to error, has been of interest for some
time. A recent successful algorithm for solving it is described
by O’Neill et al. (1969). Given a set of experimental data
(x,,y), 1 < i< n, with x; and y; subject to error with weights
w,, and w,, it is required to calculate points (x},y;) that lie on
a continuous curve, so as to minimise the sum of squares of
weighted perpendicular distances from the points (x;, y;) to
the curve, i.e. to minimise

S = 3 [l X+ W, (= 3)’]

In O’Neill’s work, y’ is derived as a polynomial in x’, and
the discrete values x; corresponding to (x;, y;) are calculated
iteratively. The idea can be generalised by introducing a third
variable, u, and functions f, and f,, called the parametric
functions, such that

x' = f(u)
Y =W

For this work, polynomials, because they are very convenient,
have been used as parametric functions, i.e.

K ky
£ = 3 a,u and fw) = 3 a0

Also, because the data sets to be processed had a natural
ordering, it was further stipulated that the order of the data
points be maintained, which enabled the fitting of multi-
valued data sets, and even loops.

The parameters to be calculated are the n-vecto u and the
polynomial coefficients, i.e. (n + k, + k, + 2) unknowns. In
this paper it is shown that there are several valid solutions, in
the sense that they produce a minimum of S. An iterative
technique is described, without a proof, which generally
converges to the best solution in least squares sense, without
using derivatives. Although polynomials are used throughout
the analysis, most of it is general, and can easily be applied to
other parametric functions.

2. Theory

2.1. The objective function
The function to be minimised is given by

_ _ n ks 2 ky 2
S(axv ay’ u) = .gl{wxg[xi_ goaxru;] + wygI:yi_ goayruri] } (1)

Let k = max (k,, k,).

Then S'is a polynomial of order (2k + 2)in(n + k, + k, +2)
independent variables. As such, S has at most k.k, real
minima.

Intuitively, (1) appears to be underdetermined; if u is linearly
transformed, compensatory changes in 4, and 4, would still

Volume 14 Number 2
3

lead to the same minimum solution. By following the method of
O’Neill, and applying the Newton-Raphson technique, this
property of S is clearly demonstrated; the resulting system of
equations has (n + k, + k, + 2) unknowns, and only
(n + k. + k) equations. The two variables eliminated from,
the system, were u, and u,, for reasons discussed below. Theré&
are algorithms for computing local minima of S, but they arey
rather inefficient for n > 20 (e.g. Powell, 1965). 8

woJy pap

2.2. The constraints
Ordinary least squares fitting takes no account of the order ofz
the independent variable. The reason for fitting x and y if
terms of u is that a possibly multi-valued, ordered data set is§
separated into two independent, single valued sets. This lasg
property ensures that the order is not lost by the least squares;
fit, if the parametric functions are themselves single valued by’
nature, e.g. polynomials. To obtain correct separation for alk
data, some order must be induced in u. The natural choice was3
made, that u; < u;,q, 1 <i<n— 1, with u, and u, fixedZ
Because of the properties of linear transformation, it is onlys
the distribution of u in the.range u, to u, that affects the value
of S. The values of u, and u, are arbitrary; they were choseri
asu; = —2and u, = +2 for reasons discussed in Section 3.1g

LIZIvLI

2.3. Non linear programming
The constraints change the nature of the problem from &3
standard minimisation one to a non linear programmings
problem, with a non-convex objective function and lineaf3
constraints. There are many techniques and programs availabler
for the solution of such problems, but none of them take®
advantage of the relative simplicity of this particular problem:gD

| Uois

2.4. Algorithm
It occurred to the author that the problem may be split into>
two simple parts. Given a set of u;, 1 < i < n, it is a relatively=.
trivial matter to compute the functions f, and f,, using least3
squares; and vice versa—given the functions f, and f, and a~
valid approximation to u, then subject to certain conditions

(to be discussed below), a new approximation to U that

results in a reduced value of S, may be computed by local

minimisation of S with respect to each u; in turn. For this to

be successful, the components of u should be reasonably

independent. Loosely defined, this means that the wu-values

should be ones that arise due to the nature of the data, rather

than being forced by the constraints, i.e. the ultimate u-values

should be well away from violating the constraints. This

condition was found to be sufficient, but not necessary, as

explained in more detail in Section 3.2.

The algorithm therefore consists of two processes—each
major iteration consists of (» — 2) minor iterations for the
new u-values (¢, and u, being held fixed), and a least-squares
fit to calculate the new polynomials which must, by definition,
reduce S further or leave it unaltered. The major iteration is

169

repeated until convergence is reached.

The author is aware that this is a simple-minded approach to
a complex problem, but in combination with a good first
approximation to , it has given rather interesting results.

3. Computational techniques

3.1. Least squares derivation of polynomials
The method used wasthat of orthogonal polynomials (Forsythe,
1957). The parametric functions are given by,

1) = 3 C,2,w)
ky
) = 3.C, 8,0)

If the functions @ are orthogonal over the set of points, then
it can be shown, without stating the nature of &, that

n

z xi¢r(ui) Z t¢r(ui)
C,, = '="1 and C, = =nl————
> OHuy) > BHu;)

i=1 i=1

If the orthogonal functions are polynomials, they can be
generated by the three term recurrence formula

q§r+ l(u) = j'r(u _ar) ¢r(u)_ﬂr— 1 dsr— l(u)
where the values of o and [3 can be shown to be

> udl(u)
ar p— l:—
> D7 (uy)
i=1
S ®2(u)
and ﬂr—l — =1

with B, =

A, is an arbltrary multiplier, which governs the value of the
leading coefficient in the orthogonal polynomials, and thus
the optimum range of u. With A = 1 throughout, it can be
shown that the highest degree of computational precision is
obtained with —2 < u < 2 with fixed point arithmetic, and
has been found to be so, in practice, with floating point
arithmetic.

d,, too, is an arbitrary function, usually taking the value 1;
however, the fact that @, is a factor of all the higher poly-
nomials, is useful for the imposition of end conditions (Section
3.5).

The polynomials, f, and f,, are ultimately generated by
summing up the coefficients of the powers of », multiplied by
their respective C, and C, values.

3.2. Iteration for u-vector
The contribution at the i
deviations is given by

s(u)) = wo[xi—f(u)] +w,[yi—f,u)]?

It is a (2k)™ order polynomial in u;. A new value u} is to be
found, such that s(u})<s(u;), subject to u;_, <u}<u;,,. Figs.
1 to 5 show typical s/u behaviour, in order of decreasing
frequency of occurrence. The program is written so that the
local minimisation starts from u,. Hence, at the i'® point, in
the j™ iteration, the value of u;_, is from the current iteration,
and u; . , is the value from the (j — 1)"" iteration. Fig. 5 depicts
the problem that was encountered by O’Neill, but is less likely
to occur, since it depends on the turning points of two functions.

point to the sum of squares of

170

I s
Ui u Wit Uy u Y+l
Fig. 1 Fig. 2
S s
]
o
S
=3
o
uj_1 u Uit] (U] u Uit %
Fig. 3 Fig. 4 =
S
3
S >
=i
@
N
9
Q.
()
2
S
o
c
©
Q
o
3
u i-1 u lli+ 1 8
Fig. 5 _3
Figs. 1 to 5. Typical behaviour of the it* contribution to the sum of =
squares of deviations, with varying u; 2
=
N

Behaviour as in Figs. 3 and 4 is more common, because it =
can be caused by inflexions in f; and f}, and by certain com-
binations of derivatives of f, and f,. Fig. 1 is the most desirable £
behaviour; it is the geometrical representation of independence &
between successive u values. Fig. 2 is a case that occurs g
frequently in the early iterations; as the u values are tackled in<Q
order, cases such as Fig. 2, that would generally converge to o
Fig. 1 cannot do so because of the constraints.

There are many ways of locating the minimum of s, of = 5
varying sophlstlcatlon The method finally adopted, a snmple
constant step-size search, was found to be more than adequate. 1
It was a little inefficient in the first iteration, but this fact was
more than offset by the simplicity of the program. The approxi- ¥
mate position of the minimum is sought in steps of (#;,; —
u;_1)/20, starting from wu; (reversing direction if necessary).
The position is refined by parabolic interpolation, and the
process repeated with a step-size 1/100 of the original. The
average number of calls to the function that evaluates the
polynomial s(u;), was found to be 6 to 8 per point.

No satisfactory solution has been found for problematic
s/u curves. Generally speaking, successive u values tended to
move in the same direction, that is when u;_; — u;, u; tended
to increase too. Cases such as Figs. 3 to 5 were rarely found,
and then there would not be more than k& such points.

One possible improvement to the program, is when a pair
of u values persistently tends to violate their mutual constraint,
the pair might be moved together. Such a case is a theoretical
possibility, but has not been found in practice in any of the
data experimented with.

6667</691

The Computer Journal

3.3. The initial approximation to u
There are two ‘natural’ choices for the initial values of u;,
2<i<n-—1,asfollows:

(a) Equally spaced, i.e. v; = u;_, + h, where
_ U,—Uy
" on—1

(b) Linear approximation to arc-length, i.e. joining the data
points by straight line segments, and relating u to the
lengths of these segments as

U; = U;_y +m\/(xi—xi—1)2+(J’i_J’i—1)2

where m is a constant, such as to maks u, = 2. (@) is the
simpler of the two, but (b) may be justified qualitatively, as
follows: Given the functions f.(x) and f,(u), and their
derivatives, f(u) and f(u), the arclength o is related to u
by

do 2 ’2
— = [+
i.e.
Ao~ Au[2 (u)+ £, 2 w)]*
and

AumAo[P +£,*w)] ™* @

(any text on elementary Differential Geometry, e.g.
Eisenhart, 1960).

If the functions are a good approximation to the data points,
the constant m can be thought of as an a priori approximation
to the mean (over n points) of the bracketed expression in (2).
In words, the concentration of u is directly related to the
concentration of the data points.

In practice, it has been found that starting from either (a)
or () led to the same solution, but, as hoped, (b) always gave
a much better starting point.

In an attempt to locate all the minima of S, other initial
approximations have been tried for several sets of data. These
approximations were logarithmic, with values of concentrated
at either end of the range. The minima obtained in these cases
were different from the ones found using (a) and (b); they were
in every instance worse, both in starting point and final value
of objective function.

Method (b) was finally adopted as the best first approximation.
Results obtained led the author to believe that it would
normally lead to the global minimum.

3.4. Convergence

The question of convergence is rarely a simple one. The
obvious way is to compute the derivatives of the objective
function with respect to the variables, and stop iterating when
their values are sufficiently small (except when variables violate
their mutual constraints). It was decided, however, that calcu-
lating derivatives would detract from the simplicity of the
program, and would slow it down considerably. Because of the
high speed of the program, it was permitted to iterate until
the limit of precision of the machine is reached (about 8% d.p.
in single precision). The initial sum of squares of deviations,
Sy, is calculated; iteration stops when the reduction in S in
two successive iterations is less than S, x 10-%, or when a
predetermined number of iterations (read in as data) have
been completed, whichever occurs earlier.

3.5. Weighting and imposition of end-conditions

Discrete weighting of data points is a standard feature of
least-squares fitting, and is included simply in the derivation of
the orthogonal polynomials. It was made optional in the
program.

Volume 14 Number 2

The other form of ‘weighting’ experimented with, is the
imposition of an exact fit at the end-points. The method used
consists of splitting each of the functions f, and f, into three
parts, as follows (Clenshaw and Hayes, 1965):

Jx(u) = p(u) px(u) +v<(u)
Ju) = u) p,(u)+v,(u)

where u(u) is called the ‘zeroising’ function; it causes p(u)
p(u) = 0 at the end points, and v(u) supplies the desired values
of the functions at the end points.
px(u) and p,(u) are generated, using the orthogonal poly-
nomials method, after separating p(x) and »(x) from the data.
In practice, only »(u) need be subtracted from the data, and
u(u) p(u) can be computed directly, by putting @ = p(u)
(Section 3.1).

4. Results
4.1. Data
A typical set of data for which this program was developed
is shown in Fig. 6, with the solution superimposed. Many
data sets of this kind were successfully tackled by the program
using cubics and quartics for parametric polynomials. Typica
x/u and y/u curves generated are shown in Figs. 7 and 8.

As an experiment, the program was applied to data that ha@
been generated by parametric quartics. The computed quarticss
were found to be identical to the generated ones—Fig. 950
within the precision of the computer.

Theoretically, the technique should be able to tackle a loo
in the data. Data was generated using the equation

X = y? 05+y
05—y

and was fitted with parametric quartics—Fig. 10.

These examples illustrate the great ﬂexxblllty of the algorithm 2 =
given enough degrees of freedom in the polynomials, mosta
shapes could be fitted. Unwanted oscillations between thes
points were found to be much less severe than with a y/x ﬁtg
probably because low order parametric polynomials permit a5
quality of fit only attainable by very high order polynomials of=

ylx.

4} PEPED|UMO]

Uftuoo/woo dno-ojwapeoe//

6667</691

4.2. Effects of weighting
As expected, neither discrete weighting nor the imposition otiJ1
end-conditions (Fig. 10), affected the efficacy of the technique
For some data (e.g. Fig. 6) the free fit was so close, that:B
imposed end-condition had no material effect on the result.

udy 61 U0}

4.3. Timing
The computing time was found to be approximately pro—=
portional to the number of points, the first iteration usually"J
taking longer than the others. The times on the IBM 7094%
II, were typically 2:3 msec/point/iteration for cubics, and
2-7 msec/point/iteration for quartics.

The number of iterations required was found to be un-
predictable. In some cases, both initial and final fit were bad,
resulting in extremely slow convergence. In other cases,
practically complete convergence was attained within 3 to 4
iterations.

4.4. Validity of results

No mathematical proof has been found that a program based
on this algorithm should converge to a valid solution, global
or otherwise. In practice, however, no data has been found for
which it failed. As a check on the results and the convergence
criterion, the problem was set up as a non-linear programming
problem, and solved by a general problem solving package.
The package is based on a variant of the Method of Feasible

17

.

N

S —— S

Fig. 6. Ship cross-sectional
curve (quartic fit)

Fig. 8. y/u curve for data
of Fig. 6 (quartic)

Fig. 7. x/u curve for data
of Fig. 6 (quartic)

AR

L\ j)

Fig. 9. Symmetric parametric
quartics (quartic fit) converged
to the generating functions

Fig. 10. Example of a loop, or multi-valued data, generated from
x2 = y2(0-5 + »)/(0:5 — y) for —1-2 < x < 3-36 (quartic fit), with

exact fit at end points.

Directions (Benbow and Whitehead, 1968), and results from
the author’s program were used as the initial feasible solution
vector. Several sets of data were tried, and in no case was there a
further reduction in the objective function. This, combined
with the relative slowness of the general problem solver,
confirmed the validity of the author’s approach.

4.5. Artificially found minima

As mentioned in Section 3.3, various first approximations to #

References

BENBOW, J., and WHITEHEAD, P. (1968).

Imperial College.

CLEnsHAW, C. W., and HAYEs, J. G. (1965).

EISENHART, L. P. (1960)

were tried, in an attempt to locate all the constrained minima
of S. In some cases, up to three additional minima were found
(verified by the general problem solver, as in Section 4.4).
As expected, these additional solutions were always worse
than the one obtained using the arc-lengths as first approxima-
tions. It has not been possible to prove that it would be so in
every case.

4.6. A possible improvement

It is possible to include the parametric functions in the local
minimisation iterations. This means performing a least squares
fit each time a value wu; is moved, so that the functions
remain true least squares; this clearly eliminates the least
squares fit at the end of the major iteration. At first sight it
seems impractical, but on further scrutiny it turns out that a
few intermediate sums would have to be stored in the fitting
program; only these sums need be updated, and a few divisions
result in the new polynomials. This is somewhat similar to
O’Neill’s method with constraints.

Intuitively, the same results should be obtained as with the
basic method, but in fewer iterations. Some tests showed, &
however, that the increase in computation time per iteration S
roughly offset the reduction in the number of iterations, and 8 9
the program required was more complex, so the idea wasQ
abandoned.

5. Conclusions

Two questions arise immediately from the results.

(a) Can convergence to a minimum be guaranteed" and

(b) If so, can it be proved to be the global minimum in everym

case? :

No direct mathematical proof has been found for (a), buto
the results can be validated in every case by a technique thatU
is known to converge to a minimum, and no data set has beeng
found, which caused the program to fail. The answer to (b) isg
much more difficult. Such a proof exists for very few non-3_
linear programming technlques It can therefore only be stated\
that, based on experience, the program tends to converge toz
the global minimum. If the above statements are untrue,:
it should be possible to construct data to disprove them;%
the author would appreciate such data.

Where does this leave us? We have a stable and efficient
algorithm, with a rather frail mathematical basis. It is also very
flexible, and can be tailored to meet particular demands.

peoe//:sdny wouy

6YEI6OLIZIY

6. Acknowledgements

The author wishes to thank J. Benbow and P. Whitehead for3
their helpful comments, and for their invaluable assistanceo
with the non linear programming part of the work; and also_x
the Minister of Technology for permission to publish lhlS>
paper. The work was done under a Ministry of Technology=.
contract entitled ‘The Application of Computers to ShipS
Design’. R

s onb Aq 566

}

Method of Feasible Directions in Non-Linear Programming, to be published as Ph.D. Thesis at

Curve and Surface Fitting, J. Inst. Maths. Applics., Vol. 1, pp. 164-183.
A Treatise on the Differential Geometry of Curves and Surfaces, Dover Publications.

FORSYTHE, G. E. (1957). Generation and Use of Orthogonal Polynomials for Data Fitting with a Digital Computer, J. Soc. Indust. Appl.

Math., Vol. 5, pp. 74-88.

O’NEILL, M SINCLAIR, I. G., and SmiTH, F. J. (1969).

The Computer Journal, Vol 12, No. 1, pp. 52-56.

PoweLL, M. J. D. (1965).

Computer Journal, Vol. 7, pp. 303-307.

Polynomial Curve Fitting when Abscissas and Ordinates are Both Subject to Error

A Method for Minimising the Sum of Squares of Non-Linear Functions without Calculating Derivatives, The

172

The Computer Journal

