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1. Introduction

Many methods are available for the numerical solution of first
order ordinary differential equations with an initial condition
of the form

yB(x) = f(x, y(x)); ¥(Xo) = Yo5 X0, x€[a,b] . (L.1)

In order to apply these methods it is assumed that, as in (1.1)
it is possible to express the first derivative y'*) of the unknown
function y explicitly as a function of x and y. If this is not
possible then a problem of the form

YD) = f(x, y(x), Y (x)); ¥(x0) = Yo; Xo. x€[a,b] (1.2)

is obtained to which the methods previously mentioned are not
immediately applicable. The equation (1.2) will be called an
implicit equation. Implicit initial value problems of the form

Fx, y(x), yP(x)) = 0; y(xo) = yo3 X, Xo€[a,b] (1.3)

have been considered by Altman (1960) and by Verner (1969).
For existence theorems corresponding to (1.1), (1.2) and (1.3)
the reader is referred to Murray and Miller (1954).
It is the purpose of this paper to explain how well-known
predictor-corrector methods for the solution of (1.1) may be
applied to (1.2).

2. The general method

Suppose it is required to obtain the numerical solution of (1.2)
on [a, b], assuming that such a solution exists. Let x, = ¢ and
let y, and y(! denote the numerical estimates of the values
¥(x,) and y(x,) of y and y(*) respectively at x = x,, where

X, = Xo+nh(n=0,1,2,...,N), 2.1)
and xy = b.
Choose {o; k =0, ..., 6} so that
2 6
Y(Xnt1) =k_20aky(xn—-k)+Ilk§3aky(l)(xn—k+3)+Anhp » (2.2)

where p is a positive integer and A, is a bounded function of n;
this is possible provided that a solution of the differential
equation exists having a derivative of order p which is con-
tinuous on [a, b].

Choose {f;; k = 0,...,5} so that

5
YO (xp41) = kgoﬁky(l)(xn—k) +B,h?"! (2.3)
where B, is a bounded function of n.
Finally, choose {y,; k = 0, ..., 6} so that
2 6
Y(Xp41) = Z VY (Xn-)+h Z WYX ks ) +ChHP . (24)

where |C,| < |A | for all values of n.
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Clearly p < 7 but in most practical applications of (2.2), (2.3)
and (2.4) as a predictor-corrector system p < 5 and the values
of the coefficients are chosen to ensure stability as well as the
required accuracy.

The formulae (2.2), (2.3), and (2.4) suggest the followxgg
algorithm for the numerical solution of (1.2) with errogs
O(hP~1):
Algorithm 1:
Given y; and y(V (j = , 5) with errors 0(h?~ '), whege
2(s + 1) is the number of startmg values required, comp@%

1y WwoJj

y¥,andy, ;forn=s,..., N—1asfollows: 8
(0]
3
Compute Ugo = Z G Yn-rth Z 0y k43 (2?)
©
a
and Uzo = Z Bky(l) (2-§)
Q
o
Then fori = 0,1,2,... 2
compute Uy irr = hy3 (s 15 Ui U2,) +0, (22)
and Upivt = Sy 1s Ui U2)) 5 (2-%)
2 6 N
where 6 =T Wkt h T 1 esa - 29
k=0 k=4 ®
w
Using (2.7) and (2.8) iterate until S
o
Max {E,, E,} < eh? 2.10)
where E, = ‘ul,i_h)’sf(xw 1> Ui uz,i)_5n| > (2-%)
and E, = Iu2,i—f(xn+ 1 Ugis "2,i)| . (21?)
In (2.10) ¢ is a given parameter. g
If the value of i for which (2.10) is satisfied is I, then take g

@. 1§)

In this algorithm the number of starting values requlred
depends upon the values of the coefficients in (2.2), (2.3) and
(2.4). It remains to ascertain under what conditions Algorithm 1
will provide a numerical solution of (1.2) with error O(h"~ b,

— ()
Yn+1 = Uyq 5 Yn¥1 = Uz g -

3. Convergence of the method
The following notation to denote partial differentiation will be
used:

"
m nf
60,-’"—60}' S(vy,05,03) .

The following result is easily established:

3.1)

fl(m )(01,Uza'73) =

Lemma:
If (i) f(O(x, », z) (i = 2, 3) exist and are continuous ina closed
interval S = R® where R denotes the set of real numbers;
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(ii) the equations In (3.15) and (3.17) &, and 1, , lie between yF, ;, y¥¥, and

u, = hysf(x,ul’uz)-{-é ys.1+)f, yn(-}-)l** respectively.
up = fxuy,u3) With M defined by
have a solution (u*, u¥) such that (x, u¥, u%) € S, M Max A 3.18)
where / and y, have been defined and ¢ is a constant; (xyz)eS ||1—f§ :
(i) £ gu5)+hys fSO(xu,u) # 1, where £V and f§" are evaluated at (x,y,z), and provided
SO0 u,u) # 1, hlys|M <1, (3.19)

h73f(21)(>~‘, U, uy) # 1

2
0<(1—hlys|M hM *
V(x, u;, u)esS ; <( I)’sl )Ien+1 k§0{|)’k|+ l)’k+4|}|e k

. , , . . 2 6
(@iv) for u} and u), given, and ¢>0 given DS |)’k| +K,eh?*'y h’k| , (3.20)
r_ - < k=0 k=4
s = hys f (x, wi, w) = 5I S8 wheren = s + 3,... .
and |u’2—f(x ui, “2)| > Consider now a class of formulae (2.4) in which
then there exist finite numbers K, and K, such that 2
|uj—u}] < Kie(i = 1,2) . Zl=1. 321

This lemma will be used in establishing the validity of the
general method.
Let y* and y{"* be the exact solutions of the system of

This permits the commonly used predictor-corrector formulae, 2
in particular those of Adams and Moulton to be included 2
in Algorithm 1.

equations Define v, ,(n = s + 3,...) by
w = MO u u) 455y, (D) il =
uz = f(xp g, 43) (1_hl')’3|M)Un+1 =kzo{[)’k|+hM|)’k+4|}Un—k
2 6 =
X _ x . % (1)*
where oy _kgo?kyr—k+hk§4‘)’kyr—k+4 (3.3) +eh?(K, +hK2 Z ka|) G. 22)
Let y¥* and y{U** be the exact solutions of the system with o, > Max {|f*}=0", (323)3
uy = hys f (% g ) 46,4 (3.4)

forr=s+1,s +2,s + 3.

Uy = f (X, 4y, 2) Then it is easily shown by induction that

where 9§, is defined by (2.9) with n replaced by r.

udy 61 Uo 1s8nB Aq ¥000SE/S L L/Z/Y L /o1one/ulod/woo dnoolwepese//:sdiy wo.ll papeo) UM a

Define ¢ el* ¢ ** o (V% by v, =¥ (r=s+1,5+2,..). (3.24)
e = y*—y(x) , (3.5) The characteristic equation corresponding to (3.22) is
e ifjﬁ‘i}fﬁ” ’ O P = (ks - £l + M =0 629
e(D¥* — (D% _ (¥ (3.8)  which has a root z* given by
Define the total cumulative errors e, and e{") by z* = 1+ph (u>0) , (3.26)
e = y,—yx,) , (3.9)  when (3.19) and (3.21) are satisfied.
eV =y _y((x ) | (3.10) A solution of (3.22) which satisfies (3.23) is
Then le.|<|ye—y¥*| + |eF* | +]e¥| » @3.11) v, =08z 757 4 |e*¥| (2T 1), (3.27)
|e$”|<|y£‘)—y$1)**|+|e£”**l+|eﬁ1)*| . (3-12)  wheren=s+ 1,5 +2,...,and
Using the lemma and the convergence criterion (2.10) —eh? 1K+ K,h % kal)
|y, —y¥*|<K e h?, (3.13) e** = — 3. 28)§
|y =y <K, e b (3.14) M X [ .
wherer =s+1,s +2,.... Hence
Putting » = n + 1 and using (3.2), (3.4) and the mean value  |e}*|<d" exp (x,_,—; —Xo)u+ |e**| [exp (x,—s—1 —Xo)u—1]
theorem, (3.29)
ety = h?s{fz WX+ 15 Ens 15 Mt 1)Ens 1 wheren=s+ 1,s +2,... .

O 15 Ens 1 flns D)ESVEF) (5% — 65%) +(5¥* = 5,) (3.15) So provided 8" is O(hP~ '), e** is 0(h” ') and will tend to zero
wheren = 5.5 + 1 and asn — oo and A — 0 in such a way that nk remains constant.
- v Consider now e*, An argument similar to the preceding one

e =éo”ky:fk + hkévkyﬁ‘-)ZL _ (3.16) shows that provided (3. i9) is satisfied,
Also 0<(1 —h]y3|M)|e:‘+1|<k§0|ykl e
ef,?l** = f(21)(xn+1’ nt 1> Mas1)€nt 1 6
10 Euers e DEVEE , (3.17) FhZ Il Mieis o] +Ch?(3.30)
wheren =s,5s +1,... . wheren = s + 3, .. andlCl C (yn).
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Define w,,, (n = s + 3,...) by

2
(1_h|)’3]M)Wn+1 =kgo{|)’k|+hM|Yk+4l}Wn-k+ Ch? (3.31)
with w, = s+12/,-[:f+3 {lef]} =o' - (3.32)

The characteristic equation corresponding to (3.31) is just
(3.25).

A solution of (3.31) which satisfies (3.32) is

w, = 5’z*"““+]e*[ N CA R ) I (3.33)
wheren =s + 1,...,and
6
*= —ChTUM T |l - (3.34)
k=3
Hence
lex] < & exp (%, oy —X)u+|e*] [exP (xy-s-1 = XoJt = 1]
(3.35)

wheren =5+ 1,.

So provided ¢’ is O(h" 1), e is O(h?~ 1) and will tend to zero
asn — oo and A — 0in such a way that nh remains constant.

From (3. 11), (3.13), (3.29) and (3.35) it is established that
Algorithm 1 is valid provided that the conditions of the lemma
are satisfied, (3.19) is satisfied, &’ and 8" are both O(h*~*) and
the iterative procedure used to solve the system (2.7) and (2.8)
is convergent. That &' and &” are at least O(h*~') can be
established easily, albeit tediously, by constructing expressions
foref and ¢**(r = s + 1,5 + 2, s + 3) in terms of the starting
values. The convergence of the iterative procedure is examined
in Section 4.

4. Convergence of the iterative procedure
Let u be the column vector defined by

=%
u= (u2> “4.1)
and let F(u) be the vector-valued function defined by
hYSf(xn+1, U, u2)+5n
F =
(U) ( f(xn+ 1o Uy uZ)
f 1(“))
= . 4.2
(fz(u) (*2
Then if the system
u = F(u) 4.3)

has a solution u*, and in the ball U(u*, p) = {u;|ju* — u|| < p}
where

Jo* —ulf = Max {juf~u,} , (44)
and
|F(w)— F(u*)| <Au—u*| (4.5)

with 0 < A < 1, then for all u, in U(u*, p) where u, is the
initial iterate in a sequence {u,} generated from

v, = F(u)
(i) all the iterates u, lie in U(u*, p);
(i) w; > w* (i > 00);
(iii) the solution u* is unique in U(u*, p).

From this it follows that if f; and f, have continuous first
partial derivatives such that

of.
L | <50k- 12 @evan)
k

(4.6)

4.7
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then for any u, eU(u*, p)

(iv) all the iterates u; lie in U(u*, p);

V) u; » u* (i > o0).

For a proof of these results see, for example Isaacson and
Keller (1966).

From (4.2) this means that sufficient conditions for the
convergence of the iterative procedure of Algorithm 1 are

If(21)(xn+ 1> Uy, u2)1<%’ Ifgl)(xn+ 1> Ugs uz)i<lz‘

for all u in a ball U(u*, p) containing uy, = (4y,0, %2,0)-

Since conditions (4.8) may not be satisfied by f it seems
desirable to obtain other iterative procedures which will con-
verge for a wider class of function f. One possibility is to modify
the iterative procedure (4.6) and another is to use Newton-
Raphson iteration. These possibilities will now be discussed.

It can be shown as in Isaacson and Keller (1966) that if f; and
£, have continuous first partial derivatives which satisfy

/1 “fl( )'

(4.8)

4.9)

D
R @10}

} then the sequence {u;

1———()
\ afz

1__() fz

in a ball U(u*, p) = {u; ||u —u*| <
generated from

and

r36peo

u,cU(u*,p)
v, = O0Fu)+I-0)u (i=0,12,..)
0, = (Bijfsjk) (jak =12)

©; being a nonsingular diagonal matrix with

~
>
—

0= 11—~ L@} =1,9(=0,1,2..) @12

OO/LUOO@]O'O!LUGDEOE/@C’HU woJy

will converge to the solution u* of (4.3).
Applying (4.9) and (4.10) to (4.2) the conditions to be satisfied
for the modified iterative procedure (4.11) to be applicable tg

(4.2) are
[1=hys £ 15 g5 )] > |13 f s 1, uss w2)] 5 (4 1%
(4.14}

Il—fgl)(x” 1> Uy, u2)|>|f£1)(xn+1’ Uy, “2)'

foralluin U (u*, p).

Clearly (4.13) is easily satisfied by taking 4 sufficiently smaHl
which leaves (4.14) as the decisive criterion. Referring to (3. 183
(4.14) is equivalent to the requirement

M<1 .

and

A

GE/E

6 Aq

4. 15)

The following algorithm is then obtained for the numerlcﬂ
solution of (1.2):

udy 61

Algorithm 2:
Given y; and y{V (j = 0, . .., 5) with errors O(h"~ D) compu%
Yn+q and yV forn =s,..., N—1 as follows:
Compute u;,, and u,,, from (2.5) and (2.6) respectively.
Then fori = 0, 1, 2, ... compute 0,;, 05, Uy,54 1, Uzpi+1 from
0y, = 1/{1_h73f(21)(xn+1a Ui “z,i)}
0, = 1/{1 ARG Uyis “z,i)}
Uy irr = 0y {hysf(Kus 1 Ui U2,) +0,) +(L—01)uy;
Ugivr = 05, (Xpa1s Up,i Uz ) +(1—03 )uy;
where §, is defined by (2.9).
Iterate until criterion (2.10) is satisfied and then obtain y, .
and y}, from (2.13).
If it is dlfﬁcult to calculate or evaluate £ and £ they could
be approximated by a simple difference replacement such as

f(zl)(xa})az):{f(x:ny'sl’Z)_f(x’y3z)}/sl } (4 16)
fgl)(x,y,z)z{f(x,y,z+z—:2)—f(x,y,z)}/82 '
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where ¢, and ¢, are conveniently chosen parameters.

Since the iterative procedure described in Algorithm 2
requires the evaluation of the partial derivatives £$" and f{»
one could with little additional effort use Newton-Raphson
iteration for the solution of (4.3) provided that the convergence
conditions are not too stringent.

Consider the system

sw=(00)-

Then it can be shown that if:
(i) g, and g, are defined and twice continuously differentiable
on a subset T of R?;
(ii)) G(u) = 0 has a solution u* €7T;
(iii) Det (H(u*)) # O,

(4.17)

0d.
where the matrix H(u) has elements 6—5' W (,j = 1,2) (ueT),

then there is a number p > 0 such that the sequence {u;}
generated by Newton iteration starting from an initial iterate
u, converges quadratically to u* for all u, eU(u*, p) = T. For
discussion of this result see Henrici (1964).

With
A e R B
Newton iteration will converge provided that:
@) 'f (x4 15 Uy, uy) is continuous in T (i, j = 2, 3);
(ii) " u*eT;
(i) " £ 5 s 1o T, w3 Fhys [ (Npe g, uT, u3) # 1 (4.19)

Hence it would appear that Newton iteration will converge
for a wide class of function f. This gives rise to the following
algorithm:

Algorithm 3:
Given y; and y{V (j = 0, . . ., s) with errors 0(#”~ ') compute
Vatp and y (n = s, , N—1) as follows:

Compute uy, g, U, and 5 from (2.5), (2.6) and (2.9) respective-
ly. Then fori = 0,1, 2,. . . compute u,,;,, and u,,;,; from

Upipr = Uy i+4q;

Upipg = Uyt 45

where
A = {(0p—uy ) (1—fg”(i))+hy3(f(i)—u2,ifgl)(i))}
1, = I
Ay = {f(i)—(”1,i—5n)f(21)(i)—u2,i(l "Yshf(zl)(i))}
n H

in which f$(0) = f§(%0 1, uypus) (G =2,3) ,
f(l) = f(xn+1, ul,i’ u2,i) ’
and H = 1- ) —hys f00) .

Iterate until criterion (2.10) is satisfied and obtain y,,, and
y§Q, from (2.13).

The analysis of Section 3 will remain valid for Algorithm 3,
as indeed it will for Algorithm 2.

5. Second order method

In this section a second order method for the numerical
solution of (1.2) is given in which the values of « and y corre-
spond to the second order Adams-Moulton method and the
values of f have been chosen to give a sufficiently accurate
initial estimate of y{!),. For a discussion of the Adams-
Moulton formulae see Henrici (1962). In this section a starting
procedure is also given for the second order method.

176

In 22) take ag = 1, 0; = o, = 0, a3 = 3/2, a0y = —1/2,
as = ag = 0, s0 that p = 3;in (2.3) take B, = 2, B, = —1,
B2=ﬂ3=ﬁ4=ﬁs=O;in(2.4)take'}70= 1,'}’1 :'))2:0,

Y3 = Y4 = 1/2, y5 = y¢ = 0. With these values of the co-
efficients, all three algorithms may be used to give second order
accuracy provided that a suitable starting method is available
and that the function f has the appropriate properties for
convergence of the iterative procedure.

To provide starting values for the second order procedure,
denote the numerical estimates of y(x,) and y*(x,) with errors
0(h") by y,,, and y(!) respectively. The if f is such that the
iterative procedure of Algorithm 2 is likely to converge, com-
pute y{!) from

= 1/{1= f{(xo, yo, up)} (5.1

and u;,q = 0,f(xg, yo, u)+(1—60)u; (i = 0,1,2,...) . (5.2)

 Tterate until u;i— f(xo0, Yo, u;)|<eh? (5.3)
If criterion (5.3) is satisfied when i = I take 5
Y = . (542

. . . . o
In this iteration x, and y, are known and u, can either be3l
found directly from the equation in fortuitous cases* orS

estimated graphically or by the method of bisection, the latterd
being more suitable for machine use. 3
Next compute y,,, from g
Yau = Yot hyth . (553

Finally, compute y$!) from §
0; = 1/{1_f(31)(x1, V2,15 Ui} (5-6)g

Uivy = 0; fxq, Yo, u)+(L=0)u; (i = 0,1,2,..) (5-7)2
with u, given by 8
o

up = (y2,1—yolh , (5. 8)§

iterating until (5.3) is satisfied when, say, i = J and takmg“:,’_
y(zl =uy . (5. 9);

Alternatwely it might be possible to use Newton- Raphson§
iteration in the same way to obtain y{!3, y,,;, and y§'). >
The validity of the starting procedures given in this section§
is established using the following lemma which is easilyS
proved: -
<

Lemma: Q
If 2
(i) the function f of a single variable x has a first derivativeg
which exists and is continuous on a closed interval I; >

(ii) the equation x = f(x) has a root x*el; 2z
(iii) f(x) # 1 (yxel); =
(iv) X" — f(x)| < & where x'el is given and ¢ > 0is given; S
then |x" — x*| < Le where »

_ Max 1
= xel ———ll—f(”(x)| .

This lemma ensures that (5.4) gives ™V with error 0(h?).
Indeed

ly(zl’(),——y(l)(xo)lngghz s (5.10)
Max 1
h L, = —_— 5.11
where 17 (xyz)es {Il—f%"(x,y,Z)I} (
Using (5.5), (5.10), and
h? ’
y(x,) = yo+hyP(x0)+ ?y(z)(éo) (5.12)

*In which case this iteration is unnecessary.
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Table 1 Solution of (7.1) using Algorithm 2

x SECOND ORDER METHOD FOURTH ORDER METHOD
(e, X 1019 (e, X 10%9)
h =01 h=005 h=01 h = 0-05
0-0 0-0 0-0 0-0 0-0
02 —0-028 —0-069 —-0-014 —0-042
0-4 —0-069 —-0-17 —0-014 -0-19
0-6 —0-097 —0-26 —0-083 —-0-32
0-8 —0-14 —0-35 —-0-18 —0-46
1-0 —0-12 —0-42 —0-35 —0-64
1-2 —1-1 —-20 —-13 —2-7
1-4 —22 —-36 —2:4 —-51
1-6 —-29 —-49 —3-8 -75
1-8 —40 —62 —-49 —-10-0
2:0 —4-7 —-7-5 —60 —12-0
where xo < &, < x4,
h2
|YZ,1_)’(X1)l<L18h3+ 2 ly(z)(éo)| . (5.13)

If y®(x) exists and is continuous on [a, b], so that
[VP)| <L, (5.14)

forzsome L,, (5.13) implies that (5.5) gives y(x,) with error
O(h?%).

Finally,
Y =y Dxy) = Y5 = f(x15 ¥2,15 ¥ED

+ (1 Y2, YED = (1, (x1), yP(x1))
implies that

D5 = f (x5 y2,0, Y8
[1-/5(x1, & 1))
f(zl)(xl’ $1sM1)

[1—/5(x1, &1 m0)]

where &, and #, lie between y, ,,

respectively.

Then (5.15) implies that
|y(2’,}—y(l)(xl)[sLl£h2+M(L1£h3+h2L2/2)

where M is defined by (3.18).

YE1—yPxy) =

+

=y(xy)) (5.15)
y(l)(xx)

(J’z,1

y(x,) and ¥4},

Table 3 Solution of (7.1) using Algorithm 3

X SECOND ORDER METHOD FOURTH ORDER METHOD
(e, x 1075) (e, x 10%5)
h—=01 h=005 h=01 k=005
00 00 00 00 00
02 —0014  —0028  —0014  —004
0-4 —0042  —0069  —0-069 00
06 —0069  —0-11 0-069 0-069
0-8 0097  —0-15 0-21 0-17
1-0 —012 —019 0-31 0-24
12 —0-67 —0-89 0-44 00
1-4 —13 —15 00 —0-67
1-6 —22 ~22 — 067 ~13
1-8 ~2:9 ~2:9 —11 ~2:0
20 —35 ~35 16 —2.7

O
—59/24, a5 = 37/24, 0y = —9/24 50 that p = 5; in (2.3) take
Bo=4p=—6p,=4PB3=—1,8,=Ps=0; in (2.
takeyo = 1,7, = 72 = 0,73 = 9/24,7, = 19/24,y5s = =524
Y6 = 1/24.

A fourth order starting procedure has been constructed bL@
is extremely complicated and it would seem preferable to start
the fourth order method using the second order method witB
a shorter step length.

7. Numerical results

As an illustration of the use of the algorithms presented i

Sections 5 and 6 two equations are solved.
Firstly, the equation

dy\* | dy
2(22) + 2 —xy =1;30) =0
x (dx> + 2 —xy = 1330

is solved on [0, 2]. The analytical solution of (7.1) is y(x) =
For (7.1),

,\
~l
) 112 1 /o18hue/ | WDoo/woo dndiwepese/:

~
|

f=xy=x*(0P)’+1,
so that (4.8) is not satisfied. However M < 1 for f given by
(7 2) so that Algorxthm 2 should be applicable. Also for ‘{§
given by (7.2) (4.19) is satisfied for /4 sufficiently small s@
Algorithm 3 should be applicable.
For (7.1) the exact value of y(x,) is known from tl@
equation itself. The numerical solution of (7.1) would b%
expected to have high accuracy since y'™(x)= 0 for all n > Z;

Hence (5.9) gives y(x,) with error 0(4?). A more testing equation is >
©
d d >
6. Fourt?n order method (_y S y=e*;y0) =1 (7.3
To obtain a fourth order method the values of o and y corre- dx dx N
i};ggdllrrl’géoz;htzlizurth_or(]ier Ad_ams-l\:[_oglton I_I_]etshsog 4maylf which is solved on [0, 1]. The analytical solution of (7.3) s
- n (2 t = Loy = =003 =552, 0s = ) _ ex For (1.3),
Table 2 Solution of (7.3) using Algorithm 2 Table 4 Solution of (7.3) using Algorithm 3
x SECOND ORDER METHOD FOURTH ORDER METHOD x SECOND ORDER METHOD FOURTH ORDER METHOD
(e, x 10?) (e, x 10%) (e, x 10%) (e, x 109)
h =01 h=005 h=01 h = 0-05 h =01 h=005 h=01 h = 005
0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 00
02 —0-47 —-0-12 0-0 0-0040 0-2 -10 —0-25 0-0 0-0094
0-4 —045 —0-091 0-51 0-031 0-4 —0-99 —0-24 0-35 0-052
0-6 —0-44 —0-085 0-51 0-059 0-6 —096 —023 12 0-10
0-8 —0-46 —0-079 0-39 0-062 0-8 —-092 —-0-22 2-1 0-17
1-0 —0-41 —-0-078 —0-073 0-061 1-0 —0-88 —0-21 33 0-25
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S=0W)P+y—ex, (7.4)
so that again (4.8) is not satisfied. However, M < 1 for f given
by (7.4) and (4.19) is certainly satisfied on [0, 1] so both
Algorithm 2 and 3 should be applicable.

The numerical results for the solution of (7.1) and (7.3) using
Algorithm 2 are shown in Tables 1 and 2 respectively, which
give the cumulative errors e,, defined by (3.9). The numbers
shown in Table 1 should be multiplied by 10-15, and the errors
are due in this case to round off owing to the fortuitous be-
haviour of the higher derivatives of y. The numbers for the
second order algorithm in Table 2 should be multiplied by
1072, and those for the fourth order algorithm in Table 2, by
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