On the automatic numerical evaluation of

definite integrals

R. Cranley and T. N. L. Patterson

University of Texas at Dallas, P.O. Box 30365, Dallas, Texas 75230, USA

A critical examination is made of adaptive subdivision as a means of reliably and efficiently per-
forming the automatic evaluation of definite integrals. A model is set up which embodies the basic
features of adaptive schemes. Circumstances are discussed under which adaptive schemes may
inspire false confidence in the result produced. The efficiency of the method is seriously impaired
by any attempts to overcome this difficulty. The conclusions have been illustrated by appropriate
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1. Introduction

In this paper we shall consider the automatic numerical
evaluation of the integral

I= f oy (1)

where f(¢) is an analytical function. All integrals over a finite
range can be expressed in this form.

We define an ideal automatic integrator as one which when
applied to an analytically given function returns a numerical
value which is guaranteed correct up to a specified accuracy.
Such an ideal integrator could be constructed if upper bounds
to the error of a quadrature routine were available. Assessment
of this integrator would be in terms of its efficiency. Since
upper bounds to the error in quadrature formulae are seldom
sharply defined it is probable that the integrator would be very
inefficient. In practical applications one is often forced to
estimate the values of the upper bounds. As a result, the
integrator departs from the ideal and the reliability of its result
comes into question.

There are two basic approaches to automatic quadrature. The
first results when a family of quadrature rules, generally of high
order (for example, Gauss quadrature formulae) are applied
over the entire interval of integration while the second results
when the range of integration is subdivided and a quadrature
formula, generally of low order, is applied to each subinterval
(an example of this would be a composite Simpson’s rule).
These will be referred to respectively as whole interval
formulae and subdivision formulae.

Davis and Rabinowitz (1967) have classified the subdivision
formulae as either adaptive or non-adaptive. When the points
of subdivision of the interval are chosen according to some
strategy dependent on the behaviour of the integrand, the sub-
division is said to be adaptive. A fixed choice of subdivision
points (for example, equidistant points) characterises non-
adaptive subdivision.

The literature on numerical quadrature appears to show a
general preference for adaptive subdivision. Davis and
Rabinowitz (1967) in the context of automatic integration have
noted that if one is confronted with an isolated integral, an
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adaptive Slmpson s rule would seem to be best. Lyness ( 1965);1
has remarked in the context of multidimensional 1ntegratlon3
that subdivision schemes are generally used in practice. A2
perusal of the algorithms for numerical integration presently%
available (Collected algorithms from CACM, 1968) also shows8
a strong bias for adaptive subdivision rules and would en-5
courage the uninitiated programmer to proceed in this direc-%
tion.

There are several reasons why this preference has arisen. The:.
whole interval method is usually equated with Gauss quadra-m
ture and the objection is raised that a result can only beg
improved by applying at least one other formula of different®
order, and consequently providing a possible check on3
accuracy. Since the Gauss formulae of different order have no§;
points in common (except zero), the procedure is likely to be§
very inefficient. This objection is no longer very convincing?
mainly due to the work of Kronrod (1965) who has tabulated;
2n + 1 point rules, whose abscissae include the n pomt Gauss(I>
abscissae and which have degree 3n + 1 when »n is even and”
3n + 2 when n is odd. The result obtained using an n pomt3
Gauss rule can thus be considerably improved without wasting®
the labour already invested. Furthermore, Patterson (1968) hasS
shown how the principle can be extended to generate families of_
high precnslon formulae having the feature that all the pomts'\)
of a given formula are included in the formula of next higher
order. A family of n point formulae of degree (3n + 1)/2 has
been tabulated. These formulae will be discussed in more detail
later.

It is also believed that formulae of the Gauss type cannot be
expected to produce good results unless applied to functions
having a sufficient number of high order derivatives (Haber,
1967). While there is some truth in this, examples will be given
later which show that the degree of deterioration of the
performance of the formulae when singularities are present
depends more on the harshness of the singularities than on
their presence as such.

Adaptive subdivision of course has geometrical appeal. It
seems intuitive that points should be concentrated in regions
where the integrand is badly behaved. The whole interval rules
can take no direct account of this.
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Finally, an often levied objection to the whole interval
formulae is that their weights and abscissae are generally
irregular numbers which have to be stored. Henrici (1964) for
example states, in connection with the Gauss formulae, that
this practically (although not theoretically) limits their
applicability.

The primary object of this paper is to assess adaptive sub-
division as a general method for efficiently and reliably
carrying out automatic integration. To avoid conclusions which
apply only to a specific method a model of adaptive sub-
division will be introduced later which embodies the basic
features of presently available adaptive schemes.

We consider that the most serious defect of any quadrature
procedure is that it inspires in the user false confidence in its
result. No error estimate based on a finite amount of functional
information has any validity in the absence of theoretical in-
formation about the function (Davis and Rabinowitz, 1967).
Thus several independent quadrature formulae could return
results* in agreement to several digits beyond their actual
accuracy. We call this spurious convergence. Low order
formulae are more likely to have this defect. It is generally
recognised (Lyness, 1967) that the efficiency of an adaptive
procedure relies heavily on its error estimates. It is not generally
appreciated however that the reliability may be seriously im-
paired should the error in any of the earlier subintervals be
seriously under-estimated. This will be the basis of our
criticism of adaptive subdivision and an example will be pro-
vided later which demonstrates just how dramatic this reduc-
tion of reliability may be.

It is always convenient to have some means of assessing the
difficulty of any integration and in this respect we used the
whole interval formulae of Patterson (1968) discussed in
Section 2.2, and in a few cases the Clenshaw-Curtis formulae.
It is only in this respect that they are introduced. Although they
generally considerably outperform the adaptive subdivision
model as regards efficiency they are not in their present state
of development to be regarded in the context of this paper as
a competitive automatic integrator.

2. The formulae

2.1 The sub-division formulae
It is straightforward to show that when the interval [—1, 1]
is subdivided into n panels defined by

-1l =<, <....<0,_;<a, =1 2

then the integral I defined by (1) can be written as

I= f " gu(9)dx 3)

where

9s) = Z(“f";"“>f<“f_§‘f‘l x+ oc,~+;,~-1)_ (@)

g,(x) is simply a numerical transformation of the integrand.
Application of an m point quadrature formula to (3) with
abscissae x; (in [—1, 1]) and weights w; results in

I~ 'i wign(x) . (5)

*An example (kindly supplied by the referee) of this occurs when the
7 and 15 point formulae of Patterson (1968) are applied to

1
f exp(—6-793 x?)/(1-000001 — x®)dx. The results agree to 6 digits
-1

while their actual error is 1 in the second digit. Since the integrand
is even about half of the abscissas are wasted so that in this case
these are actually low order formulae.
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This transformation is defined to be either adaptive or non-
adaptive depending on whether the «; respectively do or do
not depend on the behaviour of the integrand. It is reasonable
to require that non-adaptive subdivision should be optimal in
some sense. For example, when the subdivision points are
equidistant, (4) takes the form

6.x) = %Zf([xﬂj— 1—n]n) O]

which is well known (Krylov, 1962) to reduce trignometric
polynomials of degree n — 1 to a constant which can be
numerically integrated exactly by the simplest quadrature rule.
This transformation is best applied when the integrand has a
rapidly converging Fourier expansion. In addition, when used
in conjunction with the midpoint rule, the transformation is
optimal if the first derivative of the integrand is not continuous.
There appears to be no other choice of the «; in the literature
which attempts to optimise (4) in any other sense. It should
be noted that (4) does not lower the degree of an algebraif’
polynomial but only reduces the coefficients of the hxghe§
powers. m

Another numerical transformation is the Romberg schemeg_
which relies on a knowledge of the error functional to make thg
transformation effective (Lyness, 1967). When the erroB
functional has a power series expansion, the Romberg schemg:
can be directly assessed in terms of algebralc precision and i§
thus inferior to the well-known high precision formulae. S

Adaptive subdivision schemes should attempt to optimise th%
transformation with respect to the particular integrand ratheg.
than a general class of integrands. The effectiveness of thesg
schemes depends heavily on the numerical informatiom
accurately reflecting the behaviour of the integrand. Adaptlvg
schemes, as does the model to be discussed next, rely on &
numerical error estimate being available. Should this be
inaccurate, the transformation will at best be inefficient.

A model of adaptive subdivision will now be described based:
on an algorithm proposed by O’Hara and Smith (1968, 1969)2
Suppose that I defined by (1) has to be evaluated with max1mun£
absolute error ¢ and that a quadrature rule Q and absolute:
error estimate E, are available. At step s in the application o
the scheme let [—1, 1] be subdivided into s panels for each og
which the result of applymg Q and EQ is known. If the sum of
E, over the panels is < ¢ then the integration is termmated}’
and the sum of Q over the panels taken as the adaptlve subn
division result. Otherwise that panel on which Ej is greatest 1g
halved and Q and E, applied to each half. This takes us t@
step s + 1 with [—1, 1] subdivided into s + 1 panels and the.
procedure for step s can be repeated. Step 1 of the schemc;>
consists of applying Q and E, over the entire interval [—1, 1]=
No panel of [—1, 1] is excluded from possible further sub
division at any time by this scheme, in contrast with the O’Hara®
and Smith algorithm which, as the integration proceeds, ex-
cludes an increasing portion of the left-hand side of [—1, 1]
from further subdivision according to a criterion depending on
¢. The termination of subdivision in certain regions could lead
to serious errors if the interval used at the time of termination
was insufficiently fine to resolve rapidly varying parts of the
function. It is clear that the strategy is heavily dependent on the
accuracy of Ej,.

With adaptive subdivision there is likely to be some wastage
of computational labour as an integration proceeds since when
an interval is halved the new points in the half intervals at
which the integrand has now to be evaluated may not include
all of the points at which the integrand was previously evaluated
in the whole interval. If / is the number of integrand evaluations
lost each time an interval is halved, then after n panels have
been generated using a closed m point rule n(im — 1 + I) — [/

e/|ult0®
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+ 1 integrand evaluations will have been carried out. It is thus
clear that the choice of the quadrature formula to be used on
each panel has an important influence on the efficiency of the
integration. If a high order quadrature were used on each
interval then most of the computational labour would be lost
when the interval was halved. The efficiency E of a formula
can be defined as the number of integrand evaluations needed
to apply the m point quadrature rule to n panels divided by the
number of integrand evaluations actually required to generate
the n panels by the adaptive subdivision scheme. Thus,

E = [n(m—-1)+1]/[n(m—-1+D)—1+1] . @)

The Clenshaw-Curtis quadrature formulae are particularly
suited to the adaptive algorithm since they are usually not only
very accurate but also have easily applied error estimates avail-
able. As n — oo the values of E for the 4, 5, 7, 9, and 13 point
Clenshaw-Curtis formulae (which respectively have / = 0, 2,
2, 6, and 8) are respectively 1-0, 0-67, 0-75, 0-57, and 0-60. The
error estimate of the 4-point rule was found to be too crude
to make effective use of the adaptive algorithm so that the
7-point formula was adopted. Table 1 gives the weights and
abscissae of the rule and its error estimate. To generate n panels
the rule requires 8n — 1 integrand evaluations.

Table 1 Clenshaw-Curtis 7-point formula and error estimate

Q= glwif(xi) » Eg = Elwlff(xi)

tx; w; wi
1.0 1/35 16/945
J3/2 16/63 -32/945
1/2 16/35 32/945
0 164/315 -32/945

2.2 The whole interval formulae

The family of whole interval formulae we shall principally use in
this paper are those given by Patterson (1968). Formulae using
3,7, 15, 31, 63, 127, and 255 points have been tabulated,* the
m point formula having degree (3m + 1)/2. The formulae were
derived using a procedure for augmenting an m point quadra-
ture rule with m + 1 points chosen so as to gain the greatest
increase in integrating degree. We shall refer to these as the
optimal degree common point formulae. The above set of
formulae were based on an initial 3-point Gauss formula and
have the following important features:

1. The formulae form a common point family, that is, the
abscissae of a given member of the set are all included in
and interlace the abscissae of the member of next higher
order; thus no integrand evaluations are lost as one pro-
ceeds to higher order, a common objection to the Gauss
formulae.

2. The weights of all the formulae are positive so that
cancellation effects and non-uniform convergence of the
quadrature rules are less likely.

3. The formulae generally integrate high powers of the
integration variable more accurately than the Gauss
formula beyond their theoretical integrating degree.
Although the formal integrating degree of the m point

*The last member of this family has not yet been published.
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member of the set is (3m + 1)/2, with actual machine
precision (say, 16 digits) the integrating degree of the high
order members of the set up to power 2m — 1 is indis-
tinguishable from the Gauss m point formula.

The Clenshaw-Curtis formulae whose abscissae and weights
are easily calculated also have the important features (1) and
(2) and could be adopted as suitable common point whole
interval formulae. Their general performance, however, is
inferior to the above formulae as later examples will show.

3. Results and discussion

There are two requirements which must be demanded of any
automatic integrator:

(a) Some attempt should be made to minimise the computa-
tional labour. The procedure should be fairly efficient in
comparison with presently available quadrature schemes
(e.g. Clenshaw and Curtis, 1960; O’Hara and Smith,
1968; Patterson, 1968) on smooth integrands without
requiring an excessive amount of labour on what are
regarded as awkward integrands.

(b) Although, as we have observed earlier, spurious con-
vergence cannot be ruled out, it should be possible to
improve confidence in any result without performing an
inordinate amount of labour.

Any adaptive subdivision scheme which excludes a subinterval
from further consideration when it has satisfied a convergence
criterion cannot possibly meet requirement (b). The model of
adaptive subdivision described earlier does not have this draw-
back in that the entire domain of integration is under surveil-
lance. The result produced by an adaptive scheme at any point
depends on what is usually a long series of decisions each con-
ditional on the validity of the previous decision. The inac-
curacies introduced by an incorrect decision are compounded
until such time as the strategy checks the validity of this
decision. The lag between making an incorrect decision and
discovering it may be so great that sufficient confidence is
inspired to terminate the procedure. It is not difficult to find
integrals which practically illustrate this defect. Such an
integral is:

1
I [sech?10(x — -2) + sech*100(x — -4) + sech®1000(x — *6)] dx
0
= -2108027354 .

Fig. 1 shows how the whole interval and adaptive subdivision
formulae perform on this integral. Both the true error of the
adaptive formulae and the requested error are given (that is ¢
as described in Section 2.1). The convergence of the adaptive
formulae is completely spurious. The reason for the failure, of
course, is that discussed above. Most of the abscissae are con-
centrated into the peaks at x = -2 and x = ‘4. An incorrect
decision is made in the region of x = -6 and consequently the
abscissae are too sparsely distributed to detect the peak there.
A slight shift in the third peak to x = -593 dramatically changes
the situation. The result is shown in Fig. 2. The spurious con-
vergence is partially removed although false confidence in the
result would be inspired until about seven digit accuracy is
requested when the earlier incorrect decision is detected. It is,
of course, always possible to contrive examples which produce
poor performance from any integration formula. However, the
point we wish to emphasise is that under conditions which
should exploit the useful properties of adaptive subdivision,
results are produced whose accuracies are several orders of
magnitude inferior to those indicated by the convergence
criteria. It might be argued that a more accurate error estimate
would avert this situation. The reasons for the failure we have
discussed are, however, in essence unrelated to the actual error
estimate but are a result of a basic failure of the strategy of
adaptive subdivision.
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Fig. 1. Results of integrating
1
J' , [sech? 10(x — :2) + soch® 100(x — 4) + sech® 1000(x — 8)] dx

with & = 6. log,, | E | versus log,N is plotted where E is the error and
N the number of integrand evaluations required to obtain the result.
Curve 1 shows the true error of the adaptive subdivision algorithm
while Curve 2 shows the error actually requested from the algorithm
(that is € of Section 2.1 of the text). It is notable that the actual
error is several orders of magnitude greater than the indicated error
for 8 = 6. Curve 3 gives the true errors produced by the common
point whole interval formulae (Patterson, 1968). On all the curves
only the circles have significance. They have been joined to improve
clarity

-8_

-9_.

=10

LOG, N

Fig. 2. As for Fig. 1 but with § = -593.
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Obviously the better the error estimator one uses, the less
likely it is that such a situation can arise but, in principle, a
failure can always occur. Any attempt to improve the error
estimator would almost certainly lead to a reduction in
efficiency. The model of adaptive subdivision described in this
paper is likely to be unique in that the error estimate requires
no additional function evaluations.

It is of interest in relation to remark (@) to investigate the
efficiency of the model with respect to common point whole
interval formulae. Sets of test integrals with various analytical
properties have been given and discussed by O’Hara and Smith
(1968) and Davis and Rabinowitz (1967). These test integrands
range from smooth functions to functions which might be
regarded as awkward and are selected to avoid intentionally
favouring one method over another.

The results of the various schemes for these integrals are
shown in Table 2. To make comparison easier the same
number of points has been used for the Clenshaw-Curtis
formulae as for the formulae of Patterson (1968). The
Clenshaw-Curtis formulae will no longer have interlacing
abscissae but their integration propertles should not by
affected. It is clear that the actual accuracies of the subd1v1snoﬁ
model are at best comparable to and typically require frorg
two to four times as much work as the whole interval formulacs

Additionally, the actual errors in the model are frequently:
several orders of magnitude better than the tolerance requesteds
It might be concluded, on the basis of the criteria for automatig
integration proposed by Lyness (1969) that the model was oveS
cautious’. The results are typical of many tests undertaken
mcludmg all the examples of O’Hara and Smith (1968). 8

It is clear that with the present model the probability of
spurious convergence is unacceptably high. Although the in2
troduction of more conservative criteria in the strategy would
lessen this probability, the inevitable decrease in efficienc
which is already unimpressive, would make it difficult to satlsf
requnrement (a). 3

It is interesting to note that if the sign of the error estlmatg
were reliable, considerable improvements in the rates of con=.
vergence of the subdivision model could be expected as a resu]%
of cancellation effects. It was found in some cases that whem
the estimated error was replaced by its true value, then thb?
efficiency was 1mproved by about a factor of two if accoun@
was taken of the sign of the error estimate. However, the signs
of the presently available error estimates are not regarded a8
being trustworthy and so the absolute scheme was adopted\’
These error cancellation effects which might have been ex‘
p101ted can be seen in Table 2 where there is a large oscxllatxolg
in the magnitude of error in some cases

(e.g. fﬂdx/(S +4 cos x)

202 Iudy 6 Uo)s

with 39 points).

The whole interval formulae are not specifically designed te:
deal with functions with a low order of differentiability or
analytic functions with singular points close to the interval of
integration. Special optimal formulae have been developed
(cf. Krylov, 1962; Sard, 1949; Meyer and Sard, 1950; Stern,
1967) to deal with integrands which have specific analytic
properties. However, there are many such integrands which
can be better handled by the whole interval formulae than by
the so-called optimal formulae. Tables 3, 4 and 5 show examples
of this situation on integrands for which the midpoint rule and
the second order formula of Stern (1967) (referred to by him as
Formula 2) would be optimal. It can be seen that only in the
first two examples do the optimal formulae even compete with
the optimal degree common peint formulae. In the first example
fer K = -01, it is notable that the midpoint rule exhibits
spurious convergence. Thus, although the special formulae are
optimal for a complete class ef integrands, their behaviour may
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Table 2

Errors of quadrature formulae

1
j dx/(1+x?)

0
No. of integrand
evaluations 3 7 15
Patterson 13 (—4)* 46 (—9) exact**
Clenshaw-Curtis 2:1(-3) 34 (=7 7-5(—14)
No. of integrand
evaluations 7 15 31
Actual subdivision
error 33(-7) 6-:0 (—10) 10 (—14)

Error requested

10 (—2) —10 (—4)

10 (—5) —1:0 (—6)

10 (—8) —1-0 (—9)

*Denotes 1:3 X 1074, **Indicates accuracy in excess of 16 digits.

fldx/(l +100x?)
0

No. of integrand

s
5
a
8
g‘
3
5
8
evaluations 3 7 15 31 3
o
Patterson 42(-3) 60(—4) 60(=7) 50(-13) =
Clenshaw-Curtis 47(-2) 19(-3) 66(-7) 23(—-12) %
=
2
No. of integrand g
evaluations 7 15 23 31 39 55 95 2
>
Actual subdivision o
error 20(=3) 10(—=4) 1:0(=5 1'1(=7) 55(-9 23(-9 50(-12 ‘é
Error requested 1:0(-2) 1:0(—3) 10(—4) 1:0(-5 10(—-6) 10(=7) 10(-=9) B
~10(-8) g
«Q
2
S
1 ©
f dx/(1—-98x%) >
0 El
~
R
No. of integrand
evaluations 3 7 15 31 63 127
Patterson 4(-1 1(=1 4 (-4 2(—6) 1-5(—11) exact
Clenshaw-Curtis 73 29(=1) 117(=3) 41(—-4) 55(-7) 60(—13)
No. of integrand
evaluations 39 55 63 71 111 143 215
Actual subdivision
error 1-22(=3) 111(-=5 30(=7) 70(-8 60(=9 41(-10) 2:0(—11)
Error requested 1(-2) 1(=-3) 1(—4) 1(-5) 1(—6) 1(=7) 1(-38)
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Ildx/(l+x)

No. of integrand

evaluations 3 7 15
Patterson 2:5(-95) 24 (—10) exact
Clenshaw-Curtis 1-:3(-3) 63 (—98) 2:7(—15)

No. of integrand
evaluations 7 15 23 39

Actual subdivision
error 63 (—8) 50 (—10) 24 (=11) 45(—13)
Error requested 1(=2) —1(-5) 1(=6) —1(=7) 1(-98) 1(-9)

J dxf(1—-5x%)
0

No. of integrand

evaluations 3 7 15 31
Patterson 4-5(-3) 6:0(—6) 11 (—11) exact
Clenshaw-Curtis 44 (-2) 111 (—4) 87(—9) 40(-195)

No. of integrand
evaluations 7 15 23 31 47 63 95

Actual subdivision

0z 1udy 61 ko 1senb Aq z#005e/681/2/1 L /e10mE Ul OO/wOO'an'O!wepeow/:sdlL woyy papeojlimod

error 1-1(—4) 54(—6) 1-1(=7) 36(=9) 41(-10) 2:2(—11) 2-1(-12)
Error requested 1(=2)—-1(=3) 1(-4 1(-95) 1(-6) 1(=7) 1(—8) 1(-9)
1
f e*dx
0
No. of No. of
integrand integrand
evaluations 3 7 evaluations 7 15 23
Patterson 82(-7) exact Actual sub-
Clenshaw- division error 64 (—11) 2(—13) 1(—13)
Curtis 5-8 (—4) 6-5(—11) Error requested 1 (—=2) —1(—6) 1(=7) —1(-=8) 1(-9)
1
J dx/(1+25x%)
0

No. of integrand

evaluations 3 7 15 31
Patterson 1-1(=2) 8 (-9 2:5(-9) exact
Clenshaw-Curtis 9-7(-3) 19 (—4) 83 (-8 2:3(—13)
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No. of integrand
evaluations 7 15 31 39 63 87

Actual subdivision

error 1-8 (—4) 2:7(=5) 2.7 (—11) 47 (-9) 1-7(—-12) 43(-12)
Error requested 1(-2) 1(=3) —-1(-4) 1(=5) —-1(-6) 1(=7) 1(-98) 1(-9)

n/2
j dx/(1+cosx)

(0]
No. of No. of
integrand integrand
evaluations 3 7 15 evaluations 7 15 23
Patterson 1-6 (—4) 2-8 (-9 exact Actual sub- o
Clenshaw- division error 5-3 (_-7) 47 (-9) 1-8 (—10)2
Curtis 61 (-3 53(=7) 4-1(—14) Error

requested 1(=2) —1(=4) 1(=5 —-1(=6) 1 (=7

jn dx[(5+4cos x)

No. of integrand

evaluations 3 7 15 31
Patterson 31(-2) 2:1(—4) 1-0 (—8) exact
Clenshaw-Curtis 47 (-2) 2:3(=9) 1:33(=7) 40 (—14)

No. of integrand
evaluations 7 15 31 39 55

Actual subdivision
error 2-:3(—5) 42 (-5) 43(—-10) 1-0(-38) 5(—10)
Error requested 1(-2) 1(=3)-1(-4) 1(-5 1(—6) 1(=7) —1(-98)

j 4dx/(1 4+ 256[x—3/8])
0

yzbz ludy 61 U0 1s9R6 Aq ZH00SE/68 L/2/v /a1 e/ |t/ wod dno-oiwepeoe)/:sdyy woulpapeoju

No. of integrand

evaluations 3 7 15 31 63 127
Patterson 29 (=1 22(=1 33(-2) 2(—9 84 (—7) exact
Clenshaw-Curtis 1-6(—1) 28(-=1) 32(-2) 54(—4) 18(—7) exact

No. of integrand
evaluations 7 39 71 87 111

Actual subdivision
error 2:7(-1) 9(—6) 2(-7 2(-9) 8 (—10)
Error requested 1(=2) —-1(-3) 1(—4) 1(=5) 1 (—6) 1(=7)
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fldx/(l —+998x%)

No. of integrand
evaluations 3 7 15 31 63 127

Patterson 1-0 55(=1) 16(—=1) 2:5(=3) 2(-9 5(—10)
Clenshaw-Curtis 8-2 (1) 62 74(=1) 37(=2) 28(-3) 53(-95)

No. of integrand

evaluations 63 79 87 95 167 231
Actual subdivision
error 1-8(—=3) 3(-95 7(—6) 122(=7) 5(-9) 4 (—10)
Error requested 1(-2) 1(-3) 1(—4) 1(=5) 1(-6) 1(-7)
1
J‘ Jxdx
0
No. of integrand
evaluations 3 7 15 31 63 127
Patterson 2:5(=3) 1-4(—=4 70(-6) 33(-7) 1:6(—-8 79(-10)
Clenshaw-Curtis 29(=2) 55(—4) 40(-5 40(—6) 46(—-7) 54(-9

No. of integrand

evaluations 7 15 31 47 63 95 127
Actual subdivision

error 55(=4) 19(—4) 24(-5 30(-6) 38(=7) 17(=8) 21(-9)
Error requested 1(-2) 1(-3) 1(—4) 1(=5) 1(—6) 1(=7) 1(-98)

1
x32dx
0

No. of integrand
evaluations 3 7 15 31 63 127

a0z udy 61 uo 1senb Ka zp005e/681/2/v L /010 LuuwOO/wOO'an'O!wepeoe /:sdpy wouy pspeojumbd

Patterson 19 (=4) 1(=6) 18(=9) 21(—11) 27(=13) 20 (—15)
Clenshaw-Curtis 24(=3) 29(=6) 57(=8) 12(=9) 32(—11) 9:3(-13)

No. of integrand
evaluations 7 15 31 39 55 79 127

Actual subdivision
error 29 (—6) 50 (=7 1:6(—8) 29(=9) 51(-10) 19(—11) 67 (—13)
Error requested 1(-2) —-1(-4 1(-5) 1(-6) 1(-7) 1(-8) 1(-9) 1(-10)
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1
f dx/(1+-5sin107 x)
0

No. of integrand

evaluations 3 7 15 31 63 127
Patterson 1:33(=1) 1-11(=1 89(=2) 12(=3) 1:6(-5 3(-9
Clenshaw-Curtis 1'5(—-1) 55(=2) 91(=2) 59(=3) 21(=5 1(-9
No. of integrand
evaluations 7 31 63 127
Actual subdivision
error 55(=2) 43(-3) 22(-95 <1(-9)
Error requested 1(-2) 1(-3) 1(—4) —1(-5) 1(—6) —1(-10)
g
1 :
j dxj(1+e€%) 5}
° 2
2
No. of integrand No. of integrand e
evaluations 3 7 evaluations 7 15 1%
Patterson 18 (=7) 17 (— 14) Actual subdivision &
Clenshaw-Curtis 35(-5) 83 (—11) error 83 (—11) 2:6 (—13) )
Error requested 1(=2) —-1(=7) 1(-8) -1 (—10)%
(o]
1 2
J xdx/(e*—1) S
° g
3
No. of integrand No. of integrand :’;
evaluations 3 7 evaluations 7 15 o
N
N
Patterson 9-8 (—9) 1 (—16) Actual subdivision >
Clenshaw-Curtis 1.0 (=5) 9-1(-13) error 9-1 (—13) 3:3(-15) S
Error requested 1(=2) —1(=8) 1(=9) —1(-103
~
Table 3  Fractional errors (error/true value) in g
«Q
1 V3 ®
K — | | dx. 2
f —1CXP|: x+ 20 ] X A
o
>
No. of integrand E
evaluations 3 7 15 31 63 127 255 §
Mid-point 92(=3) 72(-3) 65(-=3) 62(=3) 60(—=3) 59(-3) 59(-3)
K = 10-2
Patterson 35(—4) 1'5(-5 17(=5 71(=7) 13(-6) 38(—7) 40(-9)
Mid-point 31(=3) 19(—-4) 26(=5 67(—=6) 29(—=6) 10(-7) 63(—=7
K =10
Patterson 33(-3) 14(—-4) 17(—4) 68(—6) 12(-5 36(—-6) 35(-7)
Mid-point 36(—2) 43(—-3) 85(—4) 20(—4) 57(-5 10(=5 63(-6)
K=1
Patterson 20(=2) 82(—4) 10(=3) 42(=5 75(=5 21(=5 21(-6)
Mid-point 76 (—1) 27(=1) 71(=2) 17(=2) 42(=3) 1:0(=3) 26(—4
K=10
Patterson 42(-1) 111(-3) 50(—6) 23(=7) 42(-7) 13(=7) 12(-9)
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1
Table4  Errors in j f(x)dx — 5881513703
-1

f&) = (x+1)7 —1=x< 13
= [1-13(1—x)/-87]7 ‘13<x<1
No. of integrand
evaluations 3 7 15 31 63 127 255
Mid-point rule 81(=2) 1:0(-1) 41(=2) 1-1(=2) 14(=3) 95(-5 80(-95

Patterson

30(—=1) 83(=2) 64(=2) 79(=3)

24(=3) 89(—4) 71(=5)

1
x3n x dx =10
0

Table 5 Errors in 16 I

No. of integrand

evaluations 3 7 15 31 63 127 255
Stern 27(=2) 24(=3) 25(—4) 30(=5 36(—6) 44(-7) 54(-9
Patterson 1-:3(=3) 43(=7) 63(—10) 31 (—13) exact exact exact

be inferior to the high precision formulae on many of these.
It would therefore seem justifiable to use the whole interval
formulae to test efficiency.

4. Conclusions

This paper has concentrated mainly on an assessment of
adaptive subdivision as an automatic integrator. In the light of
our findings we suggest that a more profitable approach to
automatic integration may be found using families of whole
interval formulae. We have not attempted an analysis of the
whole interval scheme referred to in the paper but would note
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only that in its present state of development the comparison®
of successive members of the family would be used to check§
convergence. Although, as an earlier example has indicated,g'
this can lead to spurious convergence the unconditional and<
essentially independent way in which successive results are3
obtained, unlike adaptive subdivision, makes it possible to3
meet requirement (b) of Section 3 in a fairly satisfactory
manner.
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