Flocoder

D. Morris, T. G. Kennedy, and L. Last

Department of Computer Science, University of Manchester

Flocoder is a system for designing, documenting and generating programs, using flow-charts. A file
of flow-chart descriptions is set up, and the system may be called to draw the charts on a graph-
plotter. The chart descriptions can be edited and the diagrams redrawn as necessary. When the
descriptions contain sufficient detail the system may be called to generate the program.

(Received January 1971)

The Flocoder system has been developed as a tool for ‘engin-
eering’ software. In particular it is being used for the design
and production of the operating system and some compilers
of MUS. Its principal merit is that the software produced this
way is readable throughout all stages of its development. By
readable is meant that for a given piece of software:

1. Its designers are always able to quickly aquaint themselves
with the detail of the implementation.

2. The coders of one section can easily check details in another
section.

3. It can be understood by an outsider in the order of a day
or two.

In contrast, high level languages, being primarily designed for
good ‘writeability’, can be difficult to read if used ‘raw’.

Following engineering precedent the design of a piece of
software in the Flocoder system is expressed diagrammatically.
These diagrams (or flow-charts) would have a hierarchical
structure. Thus, the more complicated boxes on a flow-chart
would themselves be described by flow-charts. For the other
simpler boxes a translation in program text is given. Flocoder
uses this heirarchical description in order to generate the
program.

The system is intended for use with ALGOL-like languages,
based on the program model shown in Fig. 1. This starts with a
heading, followed by declarations, possibly including pro-
cedures, followed by an arbitrary arrangement of statements,
blocks and/or compound statements, finishing with an ‘END’.
Inside each procedure or block, the pattern may repeat
recursively, and, in general, each procedure, block and com-
pound statement will be described by a separate flow-chart.
The distinguishing feature of a compound statement is that it
may have multiple entry and exit points, since it contains no
declaratives.

Flow-chart description

A flow-chart consists of a number of standard symbols, here
referred to as ‘boxes’, arranged in columns and rows, with
flow-lines between them. Each ‘box’ describes one stage in the
process.

There are three sections in the description. The first defines
each bex individually by allocating to it a number, stating what
symbol it represents, and listing the text to appear inside it.
If it is a test box, captions to appear on the exits may be
specified. There are five types of box available—caption, null,
circle, rectangle and test. The caption box has no lines around
it, and is mainly used to add comments to the chart; the null
box provides a method of improving the layout and controlling
the paths taken by flow-lines. The remaining three are used for
connectors, computational sequences and branch instructions
respectively.

In order to describe the positions of the boxes relative to each
other, columns and rows are defined, together with a list of the

Volume 14 Number 3

numbers of the boxes contained therein. The third section of

the chart description defines the flow-lines between the boxes.

Each flow-chart description commences with a title statement,
of form TITLE followed by the user’s title for the chart, and
ends with the word END. As an example of the use of notation,
the encoding for the flow-chart in Fig. 2 is given in Appendix 1.

Code description

|w)
<]
S

0.} papeoju

After the flow-chart has been defined, a translation rule forg
each box is given, except for caption and null boxes which =
have graphic significance only. The translation rule may 2

define a box in one of three ways:

(a) as a piece of program text, e.g.
BOX 3 := for i := 1 step 1 until 1 do a[i] := 0;

(b) equivalent to, i.e. having the same translation as another

box on the same diagram, e.g.
BOX 6 = BOX 2

Start —————————— > Begin (or Procedure Heading)

Variable
Declaratives

L Procedure J

l Procedure

3
|
S E Block
T .
A { y
T
E : Compound
M Statement
E
N I .
T I .
S
|
|
|
Y
End

Fig. 1. Model of program

olWwapeoe

202 1udy 61 U0 1sanb Aq | 11.0Z/122/€/ L /a191ue/|uliod/woo dno

1

OUTPUT
BOXP

1

SET PTR ON
START BOX

OUTPUT
CURRENT BCX

IS FLOW TO
NEXT BCX?

i
OUTPUT

GOTO
LAST BOX \\NO
IN COL? y

Y
T LAST COL? >

TNO

ey L
UgEEID FINIGH Box? MO
YES
@ OUTPUT y

GOTO EID
Fig. 2. Code generation algorithm

ADVANCE ||
PIR

y A

MOVE PTR
T0 NEXT COL

(c) equivalent to a label, i.e. a connector, e.g.
BOX 9 = LB/FAULTEXIT
where ‘FAULTEXIT’ is the label.

In addition, the starting and finishing points of the code must
be defined thus:
BOX 1 = START
BOX 27 = FINISH

The starting box must be at the head of a column and the
finishing box at the end of a column.

When the translation of a box is defined by a piece of text,
any line in the text beginning with a ‘z’ is treated specially.
The rest of the line is assumed to be the title of another flow-
chart whose translation is to be inserted at that point.

Box 0 is reserved for a special function. It is used to hold the
heading of the procedure, block or compound statement. Its
contents are always output first.

Generation of code

At the head of the program the translation rule for Box 0 is
applied. Normally Box 0 will be defined as a piece of program
text starting with a procedure heading or BEGIN. Except in the
case of a compound statement, some declarations would
follow. Procedures defined by other flow-charts may be inserted
at this point by means of the ‘z’ facility mentioned above.

The rest of the code is generated by working through the
definitions a column at a time beginning with the column
headed by the ‘start’ box. GOTO statements are inserted as
appropriate. These occur mainly at the ends of columns which
have flow out of them. In particular, if the finish box is en-
countered before the last column is output a GOTO END is
generated. All boxes which are referenced by GOTO state-
ments will be labelled by the system.

The system assumes that application of the translation rule
for a test box will generate code terminating with a conditional

222

GOTO to which a label must be appended. If one of the flow-
lines from the test box is to the next box in the column then the
label will be assigned on the other path. Otherwise it will be
assigned to the flow-path defined last and an extra GOTO will
be inserted to the other (first defined) path. All labels generated
by the system are formed from the letters ‘LB’ followed by
decimal digits representing a unique number. Thus the user
should avoid introducing names which have this structure.

The code generation algorithm is further described by the
flow-charts comprising Fig. 2 and Fig. 3.

Conclusions

In its present form the system can be used to draw flow-charts
and generate programs. The main part is written in ALGOL.
It has been used to generate itself. The flow-charts are actually
drawn by a Calcomp plotter attached to a PDP8. Paper tape
output produced by the ALGOL program is used to steer the
plotter.

Although in its present form the system is adequate and its
inherent simplicity is a boon, development is inevitable. Direct
control of the plotter from ALGOL code procedures would
be advantageous, but the most exciting prospects lie with the
use of on-line graphics terminals for creating and interrogating
the flow-chart structure.

Acknowledgements
The Flocoder system has been developed entirely by final year

(=1
=)
o
o
"
o
[=N
[=1
o
-
o
»
-+
o
[N
o
=
-
»
5
-
=
o
o)
@
o
)
=
-+
3
o
=
-
o
=
@)
o
3
kel
=
(=g
o
-

Science of the University of Manchester. Major contributions
have been made by the following earlier participants: R. J.
Collins, H. D. Ellison, T. Mott, and R. Phillips. We are also
indebted to our colleagues whose assistance has been freely

given.
@

(1S BOX LABELLED? pN—

\ Y
\4
OUTPUT LABEL
Y

[
1S BOX LBJNULEA? >
N

SET PTR

1
[L DOES LINE HAVE #2 >
N

RECURSIVE
CALL OF
OUTPUT FC

OUTPUT LINE N

ADVANCE PTR

LAST LINE?

< WAS BOX A TEST? »N

YY
OUTPUT LABEL N
OF DEST 30X

¥

.

The Computer Journal

Fig. 3. Apply translation rule for box

|w)
o
S
o
o
o
[

sdpy wouy p

oe//

m
o
[0
3.
o
o)
=
o°

202 1udy 61 U0 1senb Aq | 110Z¥/122/€/v |/31o1e/|ulwod/Wwod

Appendix 1

TITLE FIG II
0 CA FIGII CODE GENERATION ALGORITHM
1CI ENTER

2 RE OUTPUT | BOX0

3 RE SET PTR ON | START BOX

4 RE OUTPUT | CURRENT BOX

5 TE | 6-NO | | 7-YES | IS FLOW TO | NEXT BOX?
6 RE OUTPUT | GOTO

7 TE | 8-YES | | 14-NO | LAST BOX | IN COL?

8 TE | 12-YES | | 9-NO | LAST COL?

9 TE | 10-YES | | 11-NO | FINISH BOX?

10 RE OUTPUT | GOTO END

11 RE MOVE PTR | TO NEXT COL

12 RE OUTPUT | END : END

13 CI EXIT

14 RE ADVANCE | PTR

15 NU

16 NU

17 NU

0COL 12.13
1COL1.2.3.15.4.5.6.7.8.9.10.11.0
2COL 16.14.17

0 ROW 15.16
1 ROW 8.14
2 ROW 12.9
3 ROW 11.17

FLOW 1-2-3-15-4-5-6-7-8-9-10-11-17-16-15
FLOW 5-7-14-16

FLOW 8-12-13

FLOW 9-11

END

Volume 14 Number 3

20z udy 61 U0 188n6 Aq |1 L0ZH/1.2Z/E/tL/B10M4e/|ufoo/Wod"dno-oIepED.)/:SARY W) PAPEo|umoQ

