Phrase structures in FORTRAN

R. J. W. Housden

Computing Centre, University of East Anglia, Norwich

This paper describes an extension to ICL 1900 FORTRAN which provides phrase structures for
defining the syntax of data. FORTRAN statements embedded in the syntax definitions define the
action to be taken when data is recognised. This extended FORTRAN facilitates the writing of
complex input routines in applications programs and in compiler compiler work.

(Received July 1970)

Many computer programs involve the input and output of
structured data and high level languages such as FORTRAN,
ALGOL and COBOL do not provide adequate facilities for the
definition of such data. Atlas Autocode provides phrase
structures by means of which the syntax of data is easily
specified (Brooker, Morris and Rohl, 1967), and it is therefore
a suitable language in which to write syntax recognisers and
complex input routines. Unfortunately, Atlas Autocode is not
generally available on small machines. Both FORTRAN and
ALGOL have been used as syntax languages. Leavenworth
(1964) describes the use of logical functions in the implement-
ation of a syntax analyser, with code generation as a possible
side effect. However, the transformation of a given syntax into
ALGOL or FORTRAN is not a trivial job and involves much
detailed programming. Several special purpose systems have
been developed for compiler compiler type of work but, with
the possible exception of BCL (Hendry, 1968), none of these
is small enough or sufficiently general to satisfy the needs of
the ordinary programmer. Consequently many programs are
still being written in assembly level languages for the simple
reason that there is no suitable alternative.

This paper describes an extension to ICL 1900 FORTRAN
which provides phrase structures for the purpose of defining
the syntax of data. Embedded in the syntax definitions are
semantic commands, in the form of FORTRAN statements,
which define the action to be taken on recognition of input data.
In this extended FORTRAN, input routines and syntax recog-
nisers can be written and debugged quickly and efficiently.*

The following sections contain a description of the format of
phrase definitions, examples of their use, and a brief descrip-
tion of their implementation.

Phrase definitions

A phrase consists of a named sequence of phrase elements
commencing with the declaration

PHRASE {phrasename) (newline)
and terminated by
ENDPHRASE {newline)

The elements which constitute a phrase are of two main types:
passive elements which define the syntax of data to be
input or output,

and
active elements, or FORTRAN statements, which are
obeyed when they are encountered during the matching
of input data. These FORTRAN statements define the
semantic parts of phrases.

It is intended that any executable FORTRAN statement should
be accepted as a valid semantic element, although in the present
implementation there are some minor restrictions on the

FORMAT specifications for READ statements both in the
phrases, where they are very rarely required, and in the main
body of the program.
The syntactic, or passive elements in a phrase definition may
be either:
literal strings in quotes, which when encountered in
‘output mode’ are copied into the output buffer and in
‘input mode’ are to be matched with characters in the
input stream,

or
phrase names, i.e. reference to phrases, including recursive
references.

A sequence of one or more elements may be compounded to
form a single compound element by enclosing the sequence in
parentheses. A ‘branch’ element, which is a set of two or more
alternative elements, possibly compound, is specified in terms
of the EITHER ... OR ... OR ... notation of BCL. There
are a number of system defined phrases including NULL, the
null phrase, OSP for matching zero or more optional spaces,
NL for matching a single newline, REJECT which is used to
create a ‘non-match’ condition and results in backtracking, and
EXIT for returning from the body of a phrase before END-
PHRASE is reached. A formal definition of phrases is given in
Appendix 1.

Phrase definitions are collected together to form a special
program segment called BLOCK PHRASES which is ter-
minated in the usual way by an END statement. The type and
scope of any variables used in the semantic elements of phrases
are defined by declaration statements at the head of the BLOCK
PHRASES segment. These declarations may include
COMMON and EQUIVALENCE statements, so providing a
means of communication with other program segments. A
number of system defined variables and COMMON areas are
made available to the user in this segment.

Phrases are entered from other program segments, either in
input mode or in output mode, by means of INPUT and
OUTPUT statements of the form

INPUT
OUTPUT {phrasename)

An example of phrase structures

The details of phrases are best described in terms of an example.
Table 1 shows a complete program illustrating the use of
phrases in which semantic elements are embedded in the syntax
definitions so avoiding the necessity to construct any analysis
records. The MASTER segment simply calls for input of a
phrase called DATA which is defined in BLOCK PHRASES
in terms of other user defined phrases, namely INTEGER,
IDENTIFIER and ANSTRING, and the system defined
phrase OSP.

*A more efficient implementation of the phrase preprocessor with additional built-in phrases, conditional phrase elements and debugging
facilities has become available since this paper was first submitted. Details of these enhancements may be obtained from the author.

224

The Computer Journal

O
o

3

202 udy 61 U0 188n6 A €1 L0ZH/YZZ/E Y L /B10IE/UlLO0 WO dNO"OILIBPEDE//:SAY WO} PAPEO|UM

MASTER TESTPHRASES
INPUT DATA

CALL PROCESS DATA
STOP

END

BLOCK PHRASES
COMMON NAME(2), I, J
PHRASE DIGIT
CALL NEXTCH;

11 CONTINUE
ENDPHRASE

IF(CHVAL .LE. 9) GO TO 11;REJECT

PHRASE LETTER
CALL NEXTCH
1F(CHVAL .GE. 33 .AND, CHVAL .LE, 58) GO TO 10
REJECT
10 CONTINUE
ENDPHRASE

PHRASE INTEGER
DIGIT ; I=
12 CONTINUE
EITHER (DIGIT ;
OR EXIT
GO TO 12
ENDPHRASE

CHVAL

T =T # 10 + CHVAL ; NULL)

PHRASE IDENTIFIER

TCOUNT = 1
CALL copY(8,NAME(1),1,8H ,1)
LETTER

15 TF (ICOUNT .GT. 8) GO TO 14
CALL coPY(1,NAME(1),ICOUNT, CHVAL, 4)
TCOUNT = ICOUNT + 1
14 CONTINUE
EITHER LETTER OR DIGIT OR EXIT
GO TO 15
ENDPHRASE

PHRASE ANSTRING
EITHER (LETTER ;
OR (prGIT
OR NULL
ENDPHRASE

ANSTRING)
ANSTRING)

PHRASE DATA

OSP; INTEGER; J=1;0SP; IDENTIFIER
OSP; ANSTRING; OSP; INTEGER

ENDPHRASE

END

SUBROUTINE PROCESS DATA

COMMON NAME(2), I, J

K=1I+J

WRITE(2,100) NAME, J, I, K
100 FORMAT('X, 2A4, 5X, 316)

RETURN

END

FINISH
Table 1. A complete program using phrase structures

During execution of the input command, the data elements
defined by DATA are stored in COMMON variables, so
making them available for processing by other program
segments. In this example the subroutine PROCESS DATA
could have been called directly from PHRASE DATA with
the data elements NAME, I and J as arguments.

BLOCK PHRASES commences with a COMMON declar-
ation which is followed by phrase definitions. The most basic
of these are DIGIT and LETTER which could have been
defined more explicitly as

Volume 14 Number3

PHRASE DIGIT

EITHER (‘0’; CHVAL = 0)
OR (‘1; CHVAL = 1)
OR (9; CHVAL = 9)
ENDPHRASE

and similarly for LETTER, but for compactness and efficiency
DIGIT and LETTER call the character input routine,
NEXTCH, which leaves the internal value of the next input
character in CHVAL. If the character value lies in the appro-
priate range for digits (or letters) we have a successful match
and control returns from DIGIT (or LETTER) to the calling
phrase, otherwise the system defined phrase REJECT is
entered so creating a ‘non-match’ condition which causes the
input stream pointer to be reset to its value at the last branch
point encountered and control is transferred to the next
alternative in sequence in the current set of alternatives.

The phrase INTEGER defines an integer as a sequence of
one or more digits terminated by a non-digit. The digits are
assembled by the semantic elements I = CHVAL and§
I = I*10 + CHVAL leaving the input integer value in I. 2

An identifier is defined as a string of one or more alpha-
numeric characters the first of which is alphabetic. Up to elghtm
such characters are packed, left justified, into the two elementg
array NAME, using the library routine COPY. Any further3
alphanumeric characters are insignificant and are skipped.

ANSTRING is included as an example of phrase which is?
defined recursively. It defines an alphanumeric string as anyo
combination of letters and digits terminated by a non—alpha-a
numeric character. No semantic action is defined in this phrase, 3
as each character is recogmsed it is skipped until eventually ag
non-alphanumeric character is found. Note that the phraseU
ANSTRING can never fail, since in the event that the ﬁrstg
character is non-alphanumeric a null string is ‘matched’ byg
the alternative NULL.

Finally the phrase DATA is defined as an mteger preceded by\
optional spaces, the integer value is stored in J, it is followed1
by further optional spaces, an identifier which is stored mm
NAME, more optional spaces, an alphanumeric strmg,\
optlonal spaces and finally a second integer whose value 1s,\)
left in I. After successful matching of data specified by this®
phrase, control is returned to the master segment which theng
calls PROCESS DATA. This program when tested on the data—

VVVV42VVIOHNSONVV20JULY1970VV V12V
gave the expected results, namely

JOHNSONVVVVVVVV42VVVVI2VVVV54

One may ask what the result would be in the event of failure=
to match input data with that specified by the phrase DATA.g
In this case a non-match condition would arise and theS
system would normally backtrack to the next alternative butm
in this program no alternative data specification has beenN
defined. A better definition of DATA which would deal with
this possibility is the following.

PHRASE DATA

EITHER (OSP; INTEGER;
OSP; IDENTIFIER
OSP; ANSTRING
OSP; INTEGER)

OR WRITE(2,101)

FORMAT(1X,20H DATA NOT RECOGNISED)

ENDPHRASE

The reader will have noticed a number of details concerning
the syntax and layout of the program.

First, more than one element may be punched per line using a
semi-colon as element separator. Thus an element separator is
either newline (end of card) or semi-colon. Note, however, that

dnu

e//:

ulwo

ojsenb Aq ¢

J=1

101

225

the first six character positions of any semantic elements
(FORTRAN statements) represent the statement number and
continuation fields of the statement and care should be taken
not to omit these when they follow a semi-colon. For example
the element .. .; J = I;... is not valid and should be punched
as...; VVVVVVI=1;...

FORTRAN statements may not appear as the last elements
of a compound element, i.e. a compound element must finish
with a passive element. This can always be arranged by using
NULL, the dummy passive element.

FORTRAN statement numbers may be used in the usual way
but only with FORTRAN statements. There is no labelling
facility for passive elements. However, the same effect can be
achieved by using CONTINUE statements. Statement numbers
in the range 90000-99999 are reserved for the system and
should not be used. Transfer of control into or out of an
alternative is not allowed as links saved on the system work
stack have to be initialised and tidied up at the start and end
of a set of alternatives. The only valid transfer out of an
alternative is by means of the EXIT statement which is effec-
tively a return from the phrase.

Only the first eight characters of phrase names are significant
and no embedded space-characters are allowed. Particular care
is needed to ensure that certain valid FORTRAN statements
are not misinterpreted as references to phrases. Any element
which consists of a letter followed by an alphanumeric string
and is terminated by optional spaces and a separator is
interpreted as a phrase reference. Thus the elements

CONTINUE
RETURN
END
GOTO19
and CALLNEXTCH
are all assumed to be phrase references whereas

11 CONTINUE
GOTO 19
CALL NEXTCH
cannot be phrase references because they contain embedded
spaces. Clearly no CONTINUE statement should appear
without a statement number and spaces should be used where-
ever they are meaningful. The FORTRAN statements END
and RETURN have no meaning as phrase elements. Control

is transferred from a phrase only on encountering END-
PHRASE or EXIT.

The method of implementation

A preprocessor, which was originally written in BCL but has
now been implemented in the extended FORTRAN des-
cribed in this paper, translates the ssgment BLOCK PHRASES
into a subroutine called PHRASES. Any FORTRAN declar-
ations are passed straight across to the subroutine and several
declarations of system defined variables and common areas
are inserted at the head of the subroutine by the preprocessor
so making them available to the user. A symbol table is com-
piled giving the names and ‘addresses’ of phrases including
the names of all system defined phrases. The address of a
phrase defines the start of the object code into which the
phrase is compiled. The present implementation restricts the
number of phrases to a maximum of 100.

All passive elements and branch points (EITHERs and ORs)
are compiled into an object code represented by an array of
integers which is interpreted at execution time by a syntax
analysis routine (SAR). At each occurrence of one or more
passive elements the preprocessor generates a set of FORTRAN
statements for entry to the SAR segment together with para-
meters specifying the entry point in the array of integers. Any
semantic element (FORTRAN) is passed across to the sub-
routine PHRASES and if it follows a passive element causes the

226

compilation of object code representing a return from the
interpreter SAR to active mode. Thus the subroutine
PHRASES consists of the semantic elements and calls to the
SAR to deal with the syntax defined by passive phrase elements.
SAR returns control to PHRASES to deal with the semantic
phrase elements.

Any references to other phrases are dealt with by the SAR.
Also, in the event of a non-match condition arising, transfer
of control to the next alternative in sequence is effected inter-
pretively and any remaining semantic elements in the alter-
native which failed are skipped. We find therefore, that as a
result of backtracking and references to other phrases, the
flow of control through the semantic elements may be out of
step with that in the passive elements and on return from the
SAR to subroutine PHRASES it is necessary to switch control
to the appropriate semantic statements. This switching is
implemented by using the ASSIGNED GO TO command.
A typical call to the SAR is compiled into the following
statements.

ASSIGN 90006 TO 1ZZZ
CALL SAR(123)
GO TO 1Z2ZZ

90006 CONTINUE

Before the return from SAR to PHRASES the appropriate
value is assigned to the variable IZZZ which is COMMON to
both SAR and PHRASES. This particular feature is dependent
upon the implementation of the ASSIGNED GO TO in 1900
FORTRAN but could easily be modified if any changes in the
FORTRAN compiler make this necessary.

Appendix 2 gives a full listing of the FORTRAN segments
compiled from the source statements in Table 1. It will be seen
that an INPUT statement is compiled into a call to subroutine
PHRASES, as is an OUTPUT statement also. Of the two para-
meters specified in this call the first is a locator for the phrase
to be entered and the second is either zero or one, representing
input and output mode respectively. Although the listing of
subroutine PHRASES is very long it should be remembered
that most of these statements compile into not more than two
or three machine orders each. The segment PHRASES given
here compiles into 280 words together with about 70 integers
to be interpreted by the SAR.

The Input/Output mechanism

When a non-match condition arises backtracking results and
the input pointer is moved back, possibly over more than one
input record. It is therefore necessary to keep several of the
previous input records so that they are available for rescanning
should the need arise. To facilitate this the input data is held in
a set of four cyclic buffers, allowing backtracking over at most
four input records. This is usually quite sufficient. Characters
are fetched one at a time from the cyclic buffers and their
internal values looked up in an array called CHSET by the
subroutine NEXTCH. A subroutine PEEP is available for
picking up the value of the next input character without
incrementing the input buffer pointer CHPOINT. The
character set consists of 1900 a-shift characters with values in
the range 0-63, plus newline which is represented by the value
64. By planting flags in the array CHSET any character can be
declared as insignificant and is then ignored by subroutines
NEXTCH and PEEP.

In addition to the normal WRITE statements, routines called
DECPRINT and OCTPRINT are available for outputting
integers in decimal and octal form respectively. Character
strings of specified lengths can be output by a subroutine
called OUTCHS. These three subroutines send characters to an
output buffer which is printed either when full or when the
phrase NL is encountered in output mode or when the routine
NLPRINT is called. For most compiler compiler work it is

The Computer Journal

20z udy 61 U0 188n6 AQ €1 1L0ZH/¥ZZ/E/b L /B1014e/|ufoo/W0d"dNo"oILePEDE)/:SARY W) PAPEO|UMOQ

found that the FORTRAN input/output routines are not
required.

Acknowledgements

The interpretive implementation of passive phrase elements
used in this work is in some ways similar to that developed by
D. F. Hendry at the University of London Institute of
Computer Science. The author is indebted to Mr. Hendry and
other members of the BCL group for many helpful discussions.

Appendix 1
The function of the preprocessor is to translate input source
statements into a FORTRAN program. This involves the
recognition of:

(@) INPUT and OUTPUT commands,

(b) the segment BLOCK PHRASES,
and (c) the program terminator, FINISH.

Other statements are not analysed in detail but are assumed
to be valid FORTRAN statements which require no pro-
cessing at this stage. Thus the phrase (FORTRAN statement),
used in the definitions below, represents any string of characters
which has not already been recognised by the preprocessor and
is terminated by a separator ((sepr)). Similarly, in the defini-
tion of BLOCK PHRASES the phrase {(any FORTRAN
declarations) is any statement which is not recognised as a
phrase declaration.

The phrases (space), (newline), {digity and (letter) have
their usual meanings, (null) represents the null phrase and
{not prime) represents any string of characters which does not
include prime.

{osp) ::= {space) osp) | {null)
{EOL) ::= {osp) {newline)
¢sepr) ::= (osp); <sepr) | Cosp); | CEOL) (sepr) | (EOL)
{ospr) ::= {sepr) | (null)
{anstring) ::= (letter) <anstring) | {digit) {anstring) | (null)
{phrasename) ::= (letter) {anstring)
(literal) ::= ‘(notprime)’
element) ::= {osp) NULL | {osp) (literal) | {osp)
{phrasename) | {osp) {branch) | {osp)
{compound) | (FORTRAN statement)
{branch) ::= EITHER <{element) {alternative)
{alternative) ::= (ospr) {osp) OR {element) {alternative) |
{ospr) {osp) OR (element)
{compound) ::= ({element) {elements) {osp))
elements) ::= (sepr) {element) {elements) | {null>
{any further elements) ::= (sepr) osp) ENDPHRASE
(sepr) | {sepr) {element)
{any further elements)
{phrase declaration) ::= {osp) PHRASE {osp)
{phrasename) {sepr) {element)
{any further elements)
{block phrases) ::= {osp) BLOCK <osp) PHRASES {sepr}
{any FORTRAN declarations)
{phase declarations)
{any further phrase declarations)
{osp) END {sepr)
any further phrase declarations) ::= (phrase declaration)
{any further phrase
declarations) | {null)
{input command} ::= {osp) INPUT {osp) {phrasename)
{sepr)
output command} ::= {osp) OUTPUT {osp) {phrasename)
<sepr)
{source statements) ::=
{input command) {source statements) |
{output command) {source statements) |
(block phrases) {source statements) |
{osp) FINISH (EOL) |
(FORTRAN statement) {source statements)

Volume 14 Number 3

99999

90001

90002

90003

90004

90005

90006

10

90007
(o}

90008

90009

90010

90011

Inni1e

MASTER TESTPHRASES
CALL PHRASES(25,
CALL PROCESS DATA

STOP

END

SUBROUT INE. PHRASES (1L0OC »MODE »

INTEGER WS(2000), INBFR(88),CHPDINT>CHVAL,EODSET,EODRESET
INTEGER OUTBFR(32),0UTBPTR,CURELR,>MAPP , GROUPP,FREESP ,ASF:

INTEGER CHSET(64)

COMMON /IN/ INBFR,CHPOINT,CHVAL,EODSET,EODRESET
COMMON /0UT/ OUTBFR,OUTBPTR

COMMON /ZSAR/ CURELR,MAPP, GROUPP,FREESP ,ASP
COMMON /MAPS/ WS»10FLAG»12ZZ

.COMMON /7ZCHSET/ CHSET

COMMDON NAME(2), 1, J

IFCINITSAR.EQ+0)READ(1,99999)IN, (WS(I)>1=1,N)

FORMAT(200010)
INITSAR = 1
wS(101) = ILOC

I0OFLAG = MODE

ASSIGN 90001 TO I1zZZ
CALL SARC 101)

G0 'TO 1zZzZ

CONTINUE

RETURN

PHRASE DIGIT

ASSIGN 90002 TO 1z2ZZ
CALL SARC 104)

G0 TO 1z2zZZ

CONTINUE

CALL NEXTCH

IF(CHVAL <LE. 9) GO TO 11
ASSIGN 90003 TO 1zzZzZ
CALL SARC 106)

GO TO 1zzZZ

CONTINUE

" CONTINUE

ASSIGN 90004 TO 1Z2ZZ
CALL SARC 109)

G0 TO 1z2z2Z

CONT INUE

PHRASE LETTER

ASSIGN 90005 TO 1zZZZ
CALL SARC. 110)

G0 TO 1zZzZ

CONTINUE

CALL NEXTCH

IF(CHVAL «GE. 33 .AND. CHVAL .LE. 58) GO TO 10

ASSIGN 90006 TO 1ZZZ
CALL SARC 112)

GO TO 1222

CONT INUE

CONT INUE

ASSIGN 90007 TO 12ZZ
CALL SARC 115)

GO TO 1222

CONTINUE

PHRASE INTEGER

ASSIGN 90008 TO 1ZZZ
CALL SARC 116)

GO TO 1zZz2zZ

CONT INUE

I = CHVAL

CONTINUE

ASSIGN 90009 TO 1ZZ2Z
CALL SARC 119)

GO TO 1z2zZZ

CONT INUE

I =1 % 10 + CHVAL
ASSIGN 90010 TO 1ZZZ
CALL SARC 124)

GO TO 1z2z2Z

CONT INUE

GD TO 12

ASSIGN 90011 TO 1Z2ZZ
CALL SARC 130)

GO TO 1ZZ2Z

CONT INUE

PHRASFE. IDENTIFI

ASSIGN 90012 TO 1ZZZ
CALL SARC 131)

GO TO 1zZZZ

CONT INUE

ICOUNT = 1

CALL COPY(8,NAME(1),1,8H
ASSIGN 90013 TO 1z2ZZ
CALL SARC 133)

G TO 1Z2Z

CONT INUE

IF CICOUNT. «GT. 8) GO TO 14
CALL COPY(1,NAME (1), ICOUNT,CHVAL,4)

ICOUNT = ICOUNT + 1
CONTINUE

ASSIGN 90014 TO 1ZZZ
CALL SARC 136)

GO TO 1Z2ZZ

20z udy 61 U0 188n6 AQ €1 1L0ZH/¥ZZ/E/b L /B1014e/|ufoo/W0d"dNo"oILePEDE)/:SARY W) PAPEO|UMOQ

90014

90015

90016
Cc

90017

90018

100

CONTINUE

GC TO 15

ASSIGN 90015 TO
CALL SARC 149)
GO TO 127z
CONTINUE

PHRASE ANSTRING

ASSIGN-90016 TO
CALL SARC 150)
GO TO 1zzZ

CONT INUE

“"HRASE DATA

ASSIGN 90017 TOD
CALL SARC 163)
GO TO 1zzZz
CONTINUE

J=1

ASSIGN 90018 TO
CALL SARC 167
GO TO 1Z2ZZ

CONT INUE

END

122z

12z2Z

1272z

1zzz

SUBROUTINE PROCESS DATA

COMMON NAME(2),
K=14+J

1, J

WRITE(2,100) NAME, J, I, K
FORMAT(1X, 2A4,3X, 316)

INPUT and OUTPUT commands may occur in any segment
except BLOCK DATA and BLOCK PHRASES. BLOCK
PHRASES on the other hand will occur only once, and once
dealt with need not be looked for again. The efficiency of the
preprocessor is therefore improved if BLOCK PHRASES is
the first segment of the program.

Appendix 2

In subroutine PHRASES the preprocessor provides access to
the input and output buffers and to their character pointers. A
number of stack pointers are also made available to the user.
Perhaps the most useful of these is FREESP which points to
the next available location on the system work stack where
integer values may be saved, as required, in recursive calls on
phrases. Such local work space is reclaimed in the normal way
on return from a phrase.

Entry to PHRASES is always by means of a call representing
an INPUT or OUTPUT command. The two parameters
involved in such a call specify a phrase locator and the mode
of entry (input or output). Entry to the specified phrase is

e achieved by planting the phrase locator in WS(101) and g
FINISH calling the SAR with this address as parameter. On exit from =
this phrase, control will return to the statement labelled 90001
which is followed by a RETURN statement.
The source program in Table 1 is compiled into the following
FORTRAN program.
References

BROOKER, R. A., MORRIs, D., and RoHL, J. S. (1967). Compiler Compiler facilities in Atlas Autocode, The Computer Journal, Vol. 9, p. 350.
HENDRY, D. F., and MoHAN, B. (1968). A BCL Manual, University of London Institute of Computer Science.
LEAVENWORTH, B. M. (1964). FORTRAN 1V as a Syntax Language, CACM, Vol. 7, pp. 72-79.

202 udy 61 U0 188n6 A €1 L0ZH/YZZ/E Y1 /B10IE/UlLOO WO dNO"OILIBPEDE//:SAY WO PAPEO|UM

228 The Computer Journal

