MP/1—a FORTRAN macroprocessor*

l. A. Macleod

Department of Computing and Information Science, Queen’s University, Kingston, Ontario

This paper describes a macroprocessing system which accepts input and generates output in the
standard FORTRAN format. A wide range of macro names is allowed, thereby allowing syntactic-
ally meaningful macros to be constructed so that in effect, syntactic extensions to FORTRAN can be

developed.
(Received May 1970)

This paper outlines the main features of MP/1, a macroproces-
sor developed specifically for use with FORTRAN. The main
aim of the design has been to produce an efficient macro-
processor for FORTRAN programmers in which operations
for particular classes of problems can be expressed more
naturally than in the existing FORTRAN syntax. By its
relation to FORTRAN MP/1 differs from other recent macro-
processors such as LIMP (Waite, 1967) and ML/1 (Brown,
1967) which are not biased towards any one language, but are
intended for more general use. This paper also compares MP/1
with these and other macroprocessors.

As far as possible the notation used by Brown in his recent
survey of macroprocessors (Brown, 1969) has been followed.
The use of a macro is termed a macro call. A macro definition
is made up of a macro name, which defines the syntax of the
macro call, and replacement text, which specifies the object
code with which the macro call is to be replaced. Operations
used inside the replacement text to control the actual gener-
ation of code are called macro-time operations. The language
generated by the macroprocessor is called the base language.

As well as the question of efficiency, three major aspects need
to be taken into consideration in the evaluation of a macro-
Processor.

First, the way in which macro names can be defined is of
primary importance in macroprocessors designed for use with
high level languages where one of the major applications will
be to enrich the syntax of the base language. This consideration
is less important in macro assemblers such as the 360 macro
assembler (Freeman, 1966) where the macros are similar in
format to assembler language statements. This paper is,
however, more concerned with macroprocessor applications
to high level languages. Second, the way in which parameters
are handled is important both from the point of view of ease
of use and also in that it can affect the range of allowable name
constructions. Finally, the macro-time operations should be
straightforward and easy to use. This is particularly important
if a macroprocessor is to develop beyond being a specialised
tool largely restricted to software writers and become a pro-
gramming aid easily usable by less sophisticated programmers.
The tailoring of a macroprocessor to a specific language
allows a significant advantage in this respect since the syntax
of the macro-time statements can be derived from that of the
analogous statements in the base language.

Macro name syntax

In MP/1, a macro name is made up of a set of one or more
delimiters separated by a formal parameter. In this respect the
name construction differs from that used by Brown who defines
the macro name to be the initial delimiter of the construction.

In addition the macro may begin or end with a formal para-.
meter.
For example,
ADD @@ TO @@
@@ + @@
are both instances of valid names. (The @@ symbol denotes &
formal parameter). Thus MP/1 differs from most other macro<’
processors in that a formal parameter can precede the ﬁrst_?r
delimiter of the call. While this necessarily increases the times
required to match macro calls, it allows a greater range of~
macro names. Infix constructions, for example, which woulc§
seem to be desirable in a high level language macro facility aré&>
allowable. Both GPM (Strachey, 1965) and the current PL/ E
macro facility (IBM, C28-6571, 1966) have much more re2
stricted name formats. In PL/1 for example the macro name;
takes the same form as a procedure name, thereby providings
very little in the way of syntactic extension. LIMP allows
names to be constructed in much the same way as in MP/1 bu€
has no provision for allowing a parameter to represent &
variable length list of elements.
For example, in MP/1 the macro name

ADD @AND@ TO @@
would match both of the calls

ADD A AND B AND C TO X

ADD CTOD
i.e. the formal parameter @AND@ corresponds to a variable,
length list of actual parameters where each element of the lis§;
is separated by a predefined delimiter which in this case is thé
symbol AND. This facility can however be simulated in LIMPg
though presumably less efficiently, using the macro-time facili=.
ties available. ML/1 has a similar feature, but macro names’
representing infix operations cannot be constructed. PL/E
requires macros to have a fixed number of arguments. Macras
calls are delimited by a warning character, normally a %32
character, and the implicit end of line character. Where calls
are continued over more than one line, the normal FORTRAN
convention for indicating continuation lines is used.

Additionally MP/1 can require arguments to be balanced
algebraically with respect to left and right parentheses, a
facility also available in Waite’s Stage 2 macroprocessor,
(Waite, 1970), and also allows default values to be given. For
example, in the macro name
ADD @(,) = '@ TO @@
the first formal parameter corresponds to a list of balanced
arguments separated by commas. If no actual argument is
present in the call the default value is 1. Thus for
ADD A,B(1,1), CTOD

there are three elements in the first argument and

peojumoq

clocv/eee/el/v PP

*This work was supported in part by the National Research Council of Canada, grant number A7326.

Volume 14 Number3



ADD TO D
in which the first argument is omitted, is equivalent to
ADD 1 TO D

Of all the current macroprocessors, XPOP (Halpern, 1967)
offers the greatest variety of name constuctions. In addition
to the normal delimiter constructions, XPOP allows ‘noise
words’ which may be optionally included in the macro call and
keyword parameters, similar in principle to the equivalent
facility in the 360 macro assembler, which allow parameters
to appear in any order. Thus the same macro call can often be
written in many different ways. While this degree of flexibility
can sometimes be useful its value in conjunction with a
FORTRAN type of base language is debatable.

Macro-time facilities and parameter inserts

In MP/1 the macro-time statements are designed to resemble
as far as possible equivalent execution time statements in
FORTRAN. For example, the macro name given above
could be defined as follows:

%/ DEF ADD @(,) = ‘I'@ TO @@

o/ CALL ARGS (@1@,#LV)
o/ #LW = 0
% 10 #LW = #LW + 1

@2@ = @2@ + @1:#LW@
% IF (#LW.LT.#LV) GO TO 10
°/ END

Variables are preceded by a # symbol, @1@ refers to the
first argument and @2@ to the second, while @1:#LW@
refers to the #ZLWth element of the first argument, which is
assumed to be a list. The subroutine ARGS stores the number
of elements in the first argument into the variable #LV. All
macro-time statements are preceded by a 9 sign. Thus

ADD A,B,C(1,2) TO X
generates
X=X+ A
X=X+B
X=X+ C(,2)
Alternatively, the macro could be written as

%DEF ADD @(,) = ‘'@ TO @@
@@ = @2@ + @1:+@
%END
In this case the above call generates
X=X+A+B+C(l,2)
This indicates how an argument list can be reproduced with a
different argument separator.

MP/1 also allows both string variables and limited string
matching operations using the same FORTRAN type logical
IF statement. The full range of macro-time statements and
facilities are described elsewhere (Macleod, 1969), but the
first macro definition given above illustrates their FORTRAN-
like nature.

In the PL/1 preprocessor, the macro-time statements are
virtually identical to the execution-time PL/1 statements.
The replacement text for LIMP, on the other hand, is written
in a SNOBOL-like language. While this provides an extremely
powerful string processing facility there is a corresponding
increase in macro expansion time. It is interesting to note that
Waite’s second macroprocessor, Stage 2, has abandoned the
SNOBOL type statements. Most other macroprocessors have
either developed their own syntax for macro-time operations
or take the GPM approach of treating macro-time statements
as ordinary macros.

Other features

In common with most macroprocessors, MP/1 allows macro
calls to appear in non-macro statements and as arguments

nested in other macro calls. In both cases the nested macros
are delimited by square brackets. The same delimiters are used
to denote macro calls inside definitions. One interesting feature
of MP/1 is that macro calls can be generated dynamically in the
replacement text and this property can often be utilised to
avoid bracketing of nested macro calls.

For example, the macro definitions

7%DEF *@@
@l@
%(END
%DEF *(@(,)@)
NULIST(*@1], [*@1)
%(END
%DEF @@— > LIST@(,)@
@1@ = NULIST([*@2], [*@))
°/END

associated with the call
L — > LISTA, (B, (C,D)),E

would generate the following steps:
L = NULIST([*A], [*(B, C, D)), [*E])
L = NULIST (A, [*(B, (C, D))], [*E])
L = NULIST (A, NULIST([*B], [*C, D)]), [*E])

and so on, until finally the expansion is output as
L = NULIST (A, NULIST(B, NULIST(C, D)), E)

This partlcular series of definitions illustrates how complex
macro expansions may be handled by the system. Note in this 3
case that the submacro [*(B, (C, D))] could be taken as a call &
of either the first or second macros defined. This apparent 3
ambiguity is resolved in the matching process by searching :
backwards through the defined names so that an attempt will
initially be made to match the call against the most recently
defined macro. This partlcular example would thus be matched &
against the name *(@(, )@) in preference to the name *@@.

As indicated earlier, macro calls are normally preceded by

a 9 character which flags the beginning of a macro call.
However the user may specnfy that some alternative character @
is to be used as a warning flag. For example, a blank can be =
used, in which case the format of a macro call becomes identi-
cal to that of a FORTRAN statement.

A further feature of MP/1 is that macro-time statements are
compiled rather than interpreted which increases markedly the
efficiency of looping operations within the replacement text,
such as, for example, indexing through an argument list.

FORTRAN related features of MP/1

Apart from the syntax of the macro-time statements, the
tailoring of MP/1 to FORTRAN provides a number of other
features which can only be provided awkwardly, if at all, by
other macroprocessors.

The format of input to, and output from, MP/1 is exactly
the same as in FORTRAN, i.e. continuation times, label fields
etc., are treated in the same way as by a FORTRAN compiler.
On output, continuation lines are generated automatically if
necessary. The user need not make any provision for the
generating of unique labels within the replacement text, as
this is again handled automatically.

While some FORTRAN compilers allow Hollerith constants
to be replaced by character strings, others do not. MP/1 has
therefore been given the facility to convert quoted strings in
macro arguments and replacement text into Hollerith con-
stants during evaluation.

Where a macro call is labelled this label is normally trans-
ferred to the first statement generated by the replacement text.
However, if this statement is itself labelled, a FORTRAN
CONTINUE statement will be first generated and given the
label of the macro call.

The Computer Journal

/:sdny woJy papeojumoq

Iy

Q
3
el
'O
8

O

3

=

1

O

(D

N

I\)

o

uo 1senb A

N

J>

6

¥20¢ I



Certain FORTRAN compilers require statements to be
input in the order specified in the ASA FORTRAN standards
and MP/1 accordingly contains macro-time statements which
can be used to order statements in the output stack according
to the ASA specifications.

Finally MP/1 follows the normal FORTRAN convention of
treating blanks as non-significant characters. Thus the macro

name
LIST @@
would match either of the macro calls
LIST A
or
LISTA

This means that MP/1 does not follow the ML/l approach
of storing macro delimiters as atoms, and that matching is
therefore performed character by character.

Summary

MP/1 was originally implemented on a list structure basis,
as is LIMP. While in principle this gives a greater degree of
flexibility in designing macro-time operations, it was found that
for MP/1 a stack based system was much more efficient and
that all the features considered desirable could still be easily
incorporated. This finding supports Brown’s suggestion
(Brown, 1969) that the use of list processing techniques may
well generate overheads making the use of the macroprocessor
impractical.

As mentioned earlier, MP/1 uses a character by character
scan in matching macro calls against the appropriate macro
name, this being necessitated by the FORTRAN convention
of treating blanks as non-significant characters, thereby
preventing the use of an atom based match of the type used by
ML/1. Certainly if this consideration were not important a
much faster name matching algorithm could be constructed
using an atom based system in conjunction with a hash table.

The tailoring of MP/1 to FORTRAN has allowed the
implemented system to be both efficient and easy to use, in that

References

BrownN, P. J. (1967). The ML/1 Macro Processor, CACM, Vol. 10, pp. 618-623.

BrownN, P. J. (1969). A Survey of Macroprocessors in Automatic Programming, Vol. 6, Pergamon Press Ltd., Oxford.
Extensions to the Macro Language, IBM Ltd., Hursley, England.

FreeMAN, D. N. (1966). Macro Language Design for System/360, IBM Systems Journal, Vol. 5, pp. 63-77.

HALPERN, M. 1. (1967). A Manual of the XPOP Programming System, Lockheed Missiles and Space Company, California.
IBM (1966). PL/1 Language Specifications C28-6571, IBM Corporation, Poughkeepsie, New York.

MacLEoD, . A. (1970). SP/1—A FORTRAN Integrated String Processor, The Computer Journal, Vol. 13, pp. 255-260.
MACcLEOD, 1. A. (1969). An Information Processing Language, Ph.D. thesis, Queen’s University, Belfast.

MANDIL, S. (1970). Ph.D. thesis, Queen’s University, Belfast (in preparation).

Macro Instruction Extension of Compiler Languages, CACM Vol. 3, pp. 214-220.

OppeN, D. (1970). A String Processing Extension of PL[1, M.Sc. thesis, Queen’s University, Kingston.

STRACHEY, C. (1965). A General Purpose Macro Generator, The Computer Journal, Vol. 8, pp. 255-251.

Davies, K. E., and PARADINE, C. (1969).

McILroy, M. D. (1960).

the macro-time statements are FORTRAN-like thus following
Mcllroy’s suggested approach to the design of macro systems
(Mcllroy, 1960). Further, the macro name syntax allows the
system to be used to provide a significant extension to the base
language. The PL/1 preprocessor, while providing macro-time
facilities whose syntax is essentially that of PL/1 itself, has an
extremely restricted name format, making the processor
unsuitable for syntactic extension. Some of the defects of the
current preprocessor are illustrated in a recent work on the
incorporation of a pattern directed string processor in PL/1
(Oppen, 1970).

It is the author’s belief that the tailoring of a special purpose
macroprocessor to a particular language is justified both
because the processor can cater more efficiently for the idio-
syncrasies of that language, and also because the facilities of
the processor can be incorporated into a syntax already familiar
to programmers in that language. In the context of language
extendability it is certain that some sort of macro-like facility
will become common in future programming languages. It is
noteworthy that a recent proposal (Davies and Paradine, 1969),
has advocated extensive changes in the PL/1 preprocessof’
which will allow the construction of ‘trigger’ macros. Thé
macro name syntax in this case is similar to that of ML/1 bu
the arguments of trigger macro may themselves be macros§
called syntax macros, which have a less restrictive notation ang’
can for example be used to represent infix expressions. 3

While it is not claimed that MP/1 is the ideal macroprocessox%
it is hoped that it will be of use in the design of similar facilitie§.
in both present and future programming languages. 8

Applications of MP/1 include the incorporation of a SNOBO@
like extension into FORTRAN-IV (Macleod, 1970). The.
system is currently being extended to allow its use in developing
interactive problem solving languages (Mandil, 1970). S

02/W09

Acknowledgements

The author wishes to thank Professor R. M. Pengelly for many.
helpful suggestions made during the course of this work anéf
also the referee for several useful criticisms. '

20z Idy 61 uo isenb Aq LZ1L0zZv/622/S/v Lo

WArITE, W. M. (1967). A Language Independent Macro Processor, CACM Vol. 10 pp. 433-440.
WAITE, W. M. (1970). The Mobile Programming System: Stage 2, CACM, Vol. 13, pp. 415-421.

Volume 14 Number3

231



