The minimisation of distance in placement algorithms
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The criterion of total length in placement algorithms is examined by means of statistical inferences.
It is shown that it is a poor global constraint and appears to be a good local constraint. This is
verified by coupling a partitioning and placement algorithm and comparing it to a placement al-

gorithm using total length as its only constraint.
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The usual problem in the placement of components of a data
processing machine is to assume a certain geometric figure on
which the components are placed; and secondly, to place them
in such a manner that the total length of interconnections is a
minimum, the assignment algorithm (Mamelok, 1966). How-
ever, if placement is done with this constraint as a principal
one, it is quite possible that wiring may not be achieved
efficiently (Pomentale, 1965; Steinberg, 1961).

In this paper we look at the total length constraint and modify
it by a free parameter, a, which affects the distance metric
between vertices; this abstractly has the effect of introducing
other criteria that certainly exist, due to technological rules and
thereby effect an optimal placement. We also show that this
criterion should not be the constraint in a placement algorithm
on a global basis for linear and square arrays. The calculation
of an optimal distribution of edges is given for certain values
of « along with the properties of these distributions.

Based on the above, consider an algorithm is developed that
does not perform placement on the total package; but initially
partitions the package in such a manner as to enhance wire-
ability and then an assignment algorithm is invoked on a local
basis.

1. Theory

The theory of placement of components of any data processing
machine can abstractly be represented as a linear (non-
oriented) graph G = [V(G); E(G)] where V(G) is the set of
vertices {V} and E(G) the set of edges. The set of edges can
be represented as E(G)<s {(V,,V,):V,V; € V(G)} where {VV;}
denotes an unordered pair. Given graph G, G’ is said to be a
subgraph of G if V(G') = V(G) and E(G’) = E(G). The union
G; U G; and the intersection of G; N G; for (i # j) are defined
as G; U G; = {E(G)) v E(G)); V(G) v V(G))} and G; n G; =
{EG) 'EG); V(G) n V(G)).

The graph that is used to represent the machine is a graph
where each edge is distinguishable from any other and a pair
of vertices may have any number of edges connecting it. We
are concerned now with the average properties of the graph
rather than the individual graphs. If |G| is the cardinality of
the graph with ¥ vertices and E edges, then G is

G = [V(V-1)2]* (1.1)

We now define the total distance of graph g with placement p
and parameter « (where o > 0) as
Dy(g) = 2 ei(9) daPin (1.2)
i<j
where e;;(g) are the corresponding edges of graph g and d*p,p;

is the distance for placement p from the ith to the jth vertex

raised to the a power. The average value for all graphs is
defined as

. E Dy(g)

D¥(g) = 2 (1.3)
{p} 5
{p} g
where the sum in (1.3) is carried out over all permutations. Theg
minimum placement is 3
[0}
. (o}
Diun(9) = min [D{(9)] (14)5
P 3

Therefore, the average minimum distance in the sum over allZ

minimum distances divided by the cardinality of the graph |G|§
is, §
Dz, &
Ds. = hmin (9) 152
|G| 2
9eG 2
S
and it is also equal to %
D* 8
Drin = @ _ p (1.6)2
|] >
geG QE).
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This can easily be shown since e
S
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Substitute (1.2) into the above we have A
o
" 1 ; 3
D(g) = 7 X X ei9) d°pip; (1.3)5
[{p} im iS5 @
o]
or, 2
©
1 . P
D*(g) = ¥ e;/(9) 77— = d°pip; (1.9
i<j I{p}l {p} B
N
Since the total number of edges is =
1 > 4y
E =Y e;(g) and Tl >dpp;= i<y '
i<j Ps| (p} D(D—1)
where D is the number of points in the array. Hence we have
D:\in = D*
Q.E.D.

Let ¥, be the number of pairs of points in a geometrical array
(square, straight line, etc.) with array distance k. Let us also
consider the set of placements with n, edges. The number of
placements p of a given class with ¥ vertices and E edges is

I1 Ve,

P[{e}] = VIE! *— (1.10)
e !
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Let us consider the number of placements of a given distance
D> and E edges as

Py(@)g = {Z)P[{ek}] (1.11)
where the distributions {e,} are constrained to satisfy
e =E (1.12)
k
3 k%, = D@ (1.13)
k

A way to determine Pp(a); is to find the distribution {&,}
which maximises In {P[My]} for Z e, = Eand ): k*e, = D~

For all cases of a straight line we have Ve = W k while for a
square the total number of vertex parts of distance k possible is

Vi kSW) = 2kW(W—k)+k(k*=1)/3  (1.14)*

Now using (1.12) and (1.13) as non-holonomic constraints we
are able, by using Lagrange multipliers, to maximise (1.10) and
we obtain

~ X
e = Vet

(1.15)
It is now possible to evaluate A and p by using (1.12) and (1.13)
3 Vi ke #*

3 Ve H*

For given values of R and « we evaluate a value of u (R%) and
substituting this value into (1.15) and (1.13) and find the
corresponding A (R*). Thus, we are able to find P[é,]. Since,

= R (1.16)

~

P[{&}] = exp[—z & In%k— +NInN+Vin Ii/] (1.17)
k

Using this formulation we are able to calculate the distribution

P[{e}].

2. Conclusion

As the size of the graph increases the average distance of an
edge for a minimum placement also increases; also as a in-
creases the average edge distance increases. This is what one

*Where W is the dimension of the array.

might expect. However, the variance of each graph is small and
as the number of edges increases the variance decreases. It
should be noted that the variance of a square is greater than
that for a linear array. However, as the number of edges starts
to increase, the distribution becomes like a delta function. This
means that for an optimal placement there is a very small
spread in the number of different size edges; and from skewness
this spread is symmetric.

It should be kept in mind that the major reason for placement
is to make the package wireable. Partitioning done iteratively
(to the unit cell) on a geometrical array is placement. In order
to minimise serious interconnections of the form:

=<

partitioning is employed before an assignment algorithm is
used. The criterion of minimisation of the total length does not
necessarily decrease the serious interconnections, and thus may
hinder wireability. 9
Given a set of logic blocks, and input/output connections wg
wish to arrange them in an optimal position on a square arrayQ
In our algorithm the I/O units can only be placed on th§
perimeter of a square while the logic blocks can be placed any=-
where in the interior. The logic blocks are first assigned an
then the I/O are assigned. In the placement of the logic blocksn
one first constructs the total graph for the mterconnectlom
between blocks. The graph G = (X,I') is first decomposed mtqg
three components {X,, X,, X3} such that the mterconnectlonﬁi
between X, and X; are the null set; X; n I'(X,) = ¢, X, rx

rx, = ¢ . . ';cg
All the interconnections are via X. is]
Q

3

Q

X, |X%| X g

: El

2

If the set is a minimum the set of vertices in X; are the points:
of articulation of the graph. =

In order to find the points of articulation, let the booleans
matrix of the graph G be denoted by [N] and the complem
mentary matrix [N] = 1 — [N]. The submatrix of [N] 1S§
defined by the rows corresponding to X, and the columng
corresponding to X,, has all its elements equal to unity irt
accordance with the relations X; N I'(X,) = ¢ and X, n I'(X,¥

«Q
[0}
Table 1—Linear array 5’
a VERTICES EDGES MEAN VARIANCE SKEWNESS KURTOSIS o
>
0-5 10 50 3-34 894 (—02)* 3-08 (—03) 2-64 (—02) g
1-0 10 50 3-68 9-43 (—02) 1-51 (—03) 2:83 (—02) N
1-5 10 50 3-99 9-89 (—02) 7-48 (—04) 2:64 (—02)
2:0 10 50 4-28 1-02 (—02) —2:29 (—04) 2:22 (—02)
0-5 20 50 623 4-00 (—01) 3-88 (—02) 4-57 (—01)
1-0 20 50 7-03 4-15 (-01) 227 (—02) 523 (—01)
1-5 20 50 7-73 429 (—01) 6-10 (—03) 562 (—01)
2:0 20 50 835 442 (—01) —17-81 (—03) 566 (—01)
0-5 10 100 333 4-46 (—02) 5-18 (—04) 8-54 (—03)
1-0 10 100 3-67 474 (—02) 1-22 (—04) 9-77 (—03)
1-5 10 100 3-99 4-96 (—02) —2:90 (—04) 1-12 (—02)
20 10 100 4-28 513 (—02) —1-37 (—04) 3-66 (—03)
0-5 20 100 6-21 2:00 (—01) 1-15 (—02) 1-21 (—01)
1-0 20 100 701 2:08 (—01) 4-15 (—03) 1-56 (—01)
1-5 20 100 773 2:15 (—01) 1-22 (—03) 1-64 (—01)
2:0 20 100 8-36 2-21 (—01) —2-68 (—03) 1-52 (—01)
*8.92 (—02) = 8.92 x 10-2
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Table 2—Square array

a VERTICES EDGES MEAN VARIANCE SKEWNESS KURTOSIS

05 25 20 285 8:32 (—02) 1:50 (—03)  2:05 (—02)
10 25 20 249 7-84 (—02) 504 (—04)  1-57 (—02)
15 25 20 312 7-41 (—02) —793(—04) 146 (—02)
2:0 25 20 324 7-10 (—02) —1:56 (—04) 127 (—02)
05 25 30 285 545 (—02) 412 (—04)  9:89 (—03)
1-0 25 30 2:99 512 (—02) —1:53(—04) 850 (—03)
1'5 25 30 313 477 (—02) —702(—04) 806 (—03)
20 25 30 324 4-57 (—02) ~127(-03) 830 (—03)
05 100 20 547 3:33 (—01) 8:54(—03) 279 (—01)
10 100 20 578 2:99 (—01) 122 (=03)  2:16 (—01)
15 100 20 6-04 278 (—01) —439(=03) 180 (—01)
20 100 20 6-28 2:60 (—01) —-9:52(—03) 175 (—01)
05 100 30 5-46 2:01 (—01) — 488 (—04) 121 (—01)
1-0 100 30 5-78 1-82 (—01) —293(=03) 983 (—02)
15 100 30 6:05 1-70 (—01) —463(—03) 928 (—02)
20 100 30 6-29 160 (—01) ~610(—03) 898 (—02)

= ¢. The complete submatrix is not a submatrix of any other
complete submatrix for if it were X3 = X — X; U X, where
X = {X,, X,, X5} would not be minimal.

Hence all we need to find are all the complete submatrices of
[N] (primary matrices) which define two subsets X; and X,.
To obtain the primary matrices the Malgrange algorithm was
employed (Kaufmann, 1967). Since we are able to find the
primary matrices the points of articulation are generated X.

Based on the set of vertices in X5, X; and X, are decomposed
into X,,, X,, and X;,, X,, such that the interconnections
between X;, and X, is the null set also the interconnections
between X,, and X, is the null set.

Xll X12

X21 X22

After the subgraphs X, and X, are decomposed, the subgraph
X, is annihilated and its vertices are placed in any one of the
subgraphs, however with the constraint that no serious inter-
connections are created. The evaluation function for the de-
composition of X, and X, is based on probabilistic arguments,
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for example the seeds for X,,, X,, are chosen to be the two
most ‘mutually’ disjoint vertices with the most interconnection.
Obviously the seeds may not be unique; in this case one is
chosen at random from the subset of seeds. In most logic
blocks one will find two-four edges emanating from each
vertex. Hence, if we have 25 vertices, the density of non-zero
elements in the boolean matrix is 0-125. This says that the
matrix is sparse and thus the graph is not strongly connected,
and that evaluation functions need not be all exhaustive to
obtain in general good results.

‘Now that the logic blocks are partitioned the I/O pins are
assigned with the only constraint that serious interconnections
are not created, if so then a logic block or blocks are moved so
that serious interconnections do not evolve.

It is at this stage that an assignment algorithm is employed.
For a complete detail description of the algorithm the reader
is referred to the following reference (Hoffman and Markowitz,
1963). This algorithm is employed on each respective com-
ponent of the graph. Thus, we have employed minimisation of
the total length as a secondary criterion.

A number of 25 x 25 arrays have been studied and it has been
found that using a partitioning algorithm coupled with a
placement algorithm, and using the distance criterion as a local
constraint; wireability was improved by 10%.
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