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In this paper we will describe a reliable computational pro-
cedure for estimating the state vector of a noisy system from a
set of noisy measurements. The state of the system,

x() = [x,(0), x,(0), - - . x, (D17,
is described by a sequence of transition equations,
xtk+1)=F(k)xtk) + Gk)wk), k=0,1,..,N—1, (1)

where F(k) and G (k) are n x n matrices and w(k) = [w,(k),
wy(k), . . ., w,(k)]" is the process noise vector. The measure-
ments z(k) = [z,(k), z,(k), . . ., z,(k)]T are given by,

z(k) = H(k) x(k) + Q(k) v(k) @
where H(k) and Q(k) are m x n and m x m matrices res-
pectively and v(k) = [v,(k), v,(k), . . ., v,(k)]T is the measure-
ment noise vector.

An estimation procedure for sequentially estimating the state
x(k), (k =0,1,..., N — 1), using orthonormal Householder
transformations was described in a recent paper by Dyer and
McReynolds (1969). That paper showed that this procedure
was equivalent to, and substantially more accurate than, the
Kalman Filter (1960) and gave numerical results. However,
few details were given of the computational algorithm and
there was little effort made to maximise the efficiency of the
routine. In this paper details of a refined form of the algorithm
are given.

These details amount, in part, to referring the reader to the
literature which describes reliable computational methods for
solving a linear least squares system which may be of deficient
rank (or nearly so) from a numerical point of view. This will
be of great help to the reader who must implement the algor-
ithm for some technological application.

It should be stated that this algorithm requires a rather large
investment in programming to develop from the beginning.
(We feel one-man year is a good estimate). We will, however,
provide a set of (documented FORTRAN IV) subroutines to
any interested requester. There is one feature of the present
algorithm which we feel more than compensates for its com-
plexity: it is completely reliable in the sense that rank deficien-
cies will not cause a system to fail. Also, the use of orthonormal
transformations minimises the propogation of data errors in
the computation. This program can, therefore, be a welcome
component of many automatic control systems.

Description of the algorithm

The problem of estimating x(k) is equivalent to minimising

k
J(k) =.=Zl{”v(i)||2 + [[w@®]i*} + %D = ZO)3-10y B)

with respect to the random sequences v(i) and w(i), (i = 1, 2,
..., k), subject to the constraints of equations (1) and (2). In
equation (3), x(1) denotes the a priori mean of x(1), while
A(1) denotes the a priori covariance of x(1).

Let Jopi(k) denote the minimum return functiont for this
problem expressed in terms of x(k). Then

Topt(K) = [|x(k) = X(K)||*4- 109 +7(K) )
Here x(k) is the conditional mean of x(k), A(k) is the con-
ditional covariance, and r2?(k) denotes the sum of the squares
of the residuals.
The Dyer-McReynolds algorithm computes R(k) and d(k)
where,
R(k) = A™¥(k)
d(k) = A™*(k) x(k)
In terms of R(k) and d(k), the return Jopt(k) is given by
Jopt(k) = [|R(k) x(k) — d(k)|I* + r*(k) O]
Clearly, if R(k) is non-singular, X(k) and (k) are given by,
X(k) = R™'(k) d(k)

&)

and

™
A(k) = R™' (k) R™'(k)T

The details of the algorithm will be developed in two steps.
First, the measurements at the kth stage will be incorporated
with the a priori information. Secondly, the information will

be transformed from the kth to the k + 1st stage, corrupted by -

the effects of process noise.
The best estimate of x(k) employing measurements z(1), . . .,
z(k — 1) is obtained by minimising,

k-1 k

J(k) = i=21 [|v(i)[|2+ :=21 {Iw(i)[i2+[|x(1)—>?(1)|],2,_,(1) ®)

subject to the constraints imposed by equations (1) and (2).
Note that,
J(k) = J(k) + llv(k)I> .
Step 1: Measurements
Now assume that J (k) is given by
J(k) = |R(k) x(k) — d(®)|*> + F(k — 1) ®

(This will normally be the case. At the initial time R(1) and
d(1) are formed from the a priori covariance and mean.) The

*This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.

tSee Cox (1964) for the formulation of sequential estimation in terms of dynamic programming.
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inclusion of measurements implies the minimisation of,
J(k) = |R(k) x(k) — d()I> + [ok)|*> + F(k)  (10)
Substituting* for v(k) from equation (2) gives,
J(k) = |R(k) x(k) — d(k)|I> + Q™" (k) H(k) x(k) —
07 1(k) z(k)|* + F2(k)  (11)
which may be written,

2

L2l
J(k) = x(k)— |+
ILQ™ (k) H(k) Q7(k) z(k) ]|

Now an orthogonal (n + m) x (n + m) matrix, P, is con-
structed such that,

(k) (12)

n n
— e e —~—N—
R(k) in R(k)]}n
T
Q 'k H(k)]}m [0 |}m
Here R(k) is an upper iriangular matrix. Let d(k) and d’(k) be
defined by,
d(k) In d(k) 1in
’ ] _ [ ] (10
Q7 'z(k) [ym  Ld'(k)]}m

.The matrix P is a product of Householder transformations,
ie.

P=P:P,_...P;
where

P;=L+uul/B, (i=1,...n), (I=m+n) .

Each P; is orthonormal and symmetric. It should be noted,
however, that none of the full (n + m) x (n + m) matrices P,
have to be formed explicitly. It is only necessary to store the
l-vector u; and the scalar B;. Further details regarding the
construction of these parameters are given in Appendix B,
Algorithm 1.

The return J(k) may now be written,
J(k) = | Rk) x(k) — d(k)I|*> + r*(k) s
where r?(k) = #*(k) + [|d’(k)||%. The vectors d(k) and d’(k)

are defined in equation (14).
The best estimate of x(k) and its covariance are given by,

%(k) = R™(k) d(k)

(16)
A(k) = R™'(k) R™ (k)T

Details of the computation of x(k) and A(k) are given in
Algorithms 3, 4, and 5 of Appendix B, and the sequential
processing of new data is outlined in Algorithm 2.

Step 2: Mapping and Process Noise
Mapping forwards introduces process noise, and the return
J(k + 1) is given by,

Jk + 1) = [w®)|* + |R(K) x(k) — d(®)|* + r*(k) (17)
From equation (1),
x(k) = F~(k) (x(k + 1) — G(k) w(k))
Hence writing equation (17) in terms of x(k + 1),

Jk + 1) = [wk)|* + | R(k) F~ (k) x(k + 1) —

) R(k) F~ (k) G(k) w(k) — d(k)|* (18)
This equation must now be minimised with respect to w(k) and
w(k) eliminated. Equation (18) may be written,

*If the measurements are genuinely noisy then Q(k) is nonsingular.

I
Jk +1) =

. 0
[R(k)F Y(k) G(k) R(k) F~ 1(k)J

w(k) 0
' L(k + 1)] B [d(k)]

The matrix I, appearing in equation (19) is the n x n identity
matrix.

The coefficient matrices R(k) F~1(k) G(k) and R(k) F (k) in
equation (19) are computed in the following way.

A product of n — 1 Householder orthonormal transform-
ations

S = Sn—l s Sl’ Si = (In + uiuiT/ﬁi)’ (l = ls e — l),

is found such that

+ r2(k) (19)

Fk)=S,...S,_,T (20)

where T is upper triangular.
Since F(k) is nonsingular,

o
FYk)=T"'S,_,...S, (21)5
Then premultiplying by R(k) and postmultiplying by G(k)m

a

gives, %
R(k) F~Y(k) G(k) = R(k) (T~Y(S,_, ... S;G(k) (22)3
while, g
RK)F™' k) = RO) (... (T7'S,oy) ... S)) (23)§

In Algorithm 6 it will be shown that the formation of the3
matrix products on the left hand side of equations (22) and (23)3 o
require oniy » additional storage locations.

A (2n) x (2n) orthonormal matrix, again a product of 2n — 18
Householder transformations:

X = in..l . 'Xl X,' = 12,,+u,~uiT/ﬁi, (i = l,...,2n—‘1),

is now chosen such that,

o'dn

1, 0 A B
| [0 o)
R(k) F~'(k) G(k), R(k) F~'(k) 0 Rk+1)

In Algorithm 7 we will show that the right member of equatlonb
(24) can be generated in such a way that only 2-5n + S
3:5n + 1 memory locations are needed at each step of the<
calculation. Exactly 2-5xn2 of these cells are the working arraysc
which initially held the matrices F(k), G(k), and R(k). i
We further remark here that the matrix A4 in the right member3
of equation (24) is nonsingular. This follows from the obser-©
vation that A4 is upper triangular and the modulus of eachv
diagonal term has the value one at least.

With,
0 d'(k + D]}n
S L SO
akyl  ladk + nln
the value of J(k + 1) is,

Jk+1D) =Rk + Dxtk + 1) —dk + D|* +

| Aw(k) + Bx(k + 1) — d'(k + 1)||?
If R(k + 1) is nonsingular the best estimate of x(k + 1), given
measurements through the kth stage, is given by,

0Z¥/S82/</¥ | /9191e/|ulod/w

¥20c 4

Fk+1) =R+ Ddk +1) (26)
The smoothed value of w(k) is given by,
w(k) = A-[d'(k + 1) — Bx(k + 1)] %)

The covariance associated with %(k + 1) is given by,
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Ak + 1) =[R Yk + DI[R 'k + )T (28)

The hypothesis that R(k + 1) be nonsingular is not critical.
We can replace the indicated inverse in equation (25) by a
pseudoinverse (Lawson and Hanson, 1968) which always exists.
In this case the covariance matrix of equation (28) no longer
exists; one can, however agree to solve for certain of the vari-
ables and set the remaining ones to zero. This amounts to
obtaining a pseudoinverse solution (in a limiting sense) with a
weighted euclidean metric. In the latter case one can obtain a
covariance matrix for the variables which were solved for.
The details of this are given in Algorithm 5 of Appendix B.

Appendix A

The flow diagram of Appendix A is intended to indicate the
overall structure of the filter and how it makes use of the

|
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Fig. 1. Flow sequence for the filter with process noise
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various component algorithms of Appendix B. These algorithm
of Appendix B can be used for solving any least square
problem, of course.

Appendix B

Many of the algorithms presented below have appeared in
slightly different form in Lawson and Hanson (1968). Algorithm}!
3 is essentially due to Businger and Golub (1965) using a special;
case of Algorithm 1. &

0zv/58z/c/vT/eBnE I

&

Algorithm 1:
The basic Householder transformation; its construction an

application.

20z 1Ay uo 3se

PURPOSE
Suppose that y = [y, . . ., »,,]" is an arbitrary vector of length
m. Given three non-negative integers /, #, and m, with
|+t <m, we wish to construct an orthonormal trans-
formation Q = I,, + uu”/B such that for Qy:

(@) Components 1 through / are to be left unchanged

(b) Components / + 1 is permitted to change

(c) Components / + 2 through / + ¢+ 1 are to be left
unchanged

(d) Components / + ¢ + 2 through m are to be zero.

METHOD
(See Lawson and Hanson (1968) for details.)

The input to this algorithm will consist of the three previously
mentioned integers /, ¢, and m, the m-vector y and a single free
cell to hold a scalar u, upon output.

For later reference we will designate the output of this
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algorithm H1(/, t, m, u,, y). The vector u will occupy just those
positions of y which were implicitly zeroed plus the one extra
location labelled u,.

Assume now that ¢ = [cy, .. ., ¢,]7 is an m-vector, and that
we wish to compute the matrix product Qc and place it into
the storage previously occupied by c.

From the equality c"Q = (Qc)T (Q is symmetric) we see that
only matrix products of the form Qc need be discussed here.

The matrix product Qc is given by,

Qc = c + [(u"c)/Blu (AL.D)

and so the matrix Q need not be explicitly formed. The
replacement of the vector ¢ in storage by the right side of
(Al.1) will be designated by the symbol H2(/, t, m, u, Up, c).

Note that only those components numbered p = / + 1, and
q,....,m,(g =1+t + 2), are changed by premultiplication of
¢ by Q. Further, if these components of ¢ are known to be zero
(or, more generally u”c = 0) then Qc = ¢ and no explicit
computation is required.

Algorithm 2:

PURPOSE
Sequential acceptance of equations to achieve upper triangular
form as a preliminary step.

METHOD

Suppose we have a large linear least squares problem of the
form,

Ax = b (A2.1)
The matrix 4 and the vector b are written in partitioned form,
_ |42 _ | b
A=1"71.b=1" (A2.2)
A b

q q

where each matrix 4, is m; x n and each b; is a vector of length
m;. The integers m; can be as small as one.

Let m = m; + ... + m,. We construct orthonormal mat-
rices O, . . ., Q,, each of which are a direct sum of an identity
matrix and products of at most » Householder transformations
and permutation matrices P,, . . ., P, such that

n 1
FE, d|}in

Q... 0,P,0,[4,0] = |0, r|}1 (A2.3)
0, O|}m—n—1

Here R is upper triangular, d is an n-vector and |r| is the
residual vector length if R is nonsingular; no zeros are stored.
The computational details for this algorithm are found in
Lawson and Hanson (1968).

Algorithm 3:

PURPOSE
Forward triangularisation of square matrices with column
scaling, column interchanges and rank determination.

METHOD
Supose we wish to solve an n x n system (which may have a
singular coefficient matrix) in the least squares sense:

Ax=b (A3.1)

Here A4 is an n x n real matrix of rank r < n and b is a real
n-vector. We construct a nonsingular diagonal matrix D, a
permutation matrix P and an orthonormal matrix Q = Q,_,
e 04,(Qi =1, + uul/B), (i =1,...,n — 1), such that

A= Q"TP"™D™! (A3.2)
288

so that if A is nonsingular,
A~' = DPT'Q

Here, in general, T is upper triangular with its first r diagonal
terms nonzero and with its last n — r rows identically zero.

We remark here that the matrix in the right member of
equation (A3.2) may actually be a replacement for 4 in the
following sense:

The data which constitutes the matrix A in the machine is
usually only a representative member of a class of matrices.«/
which is determined by the original uncertainty in the data and
the uncertainty caused by subsequent computer arithmetic
operations on this data. Thus, it may be apparent during the
calculation that there is a matrix 4 € & such that rank
(A) = min rank (4) it is such a matrix A4 which replaces 4 in

Aeﬂ
equations (A3.1) and (A3.2).

See Lawson and Hanson (1968) and Businger and Golub

(1965).

Algorithm 4:

PURPOSE
Computing the solution of minimum length for rank deficient
problems.

METHOD
The method described in Algorithm 3 allows us to assume, with
no loss of generality, that for a given system as in (A3.1), we
may write:

A= QTTPTD™! . (A4.1)

Here QT is a product of n — 1 Householder transformations,
T is upper triangular with its first r diagonal terms nonzero and
its last » — r rows identically zero, PT is a permutation matrix,
and D! is a diagonal matrix.

We will first find r Householder transformations K, . .

such that
S 0
0 0

where S is r x r upper triangular and nonsingular.

The solution of minimum length or the pseudoinverse solution
(Lawson and Hanson, 1959) (with the norm ||x||> = xTD~2x)
is given by

. Kl

TK, ... K, = (A4.2)

Yy=(Qn-1...0:b) (A4.3)
¢ = Ist r components of y, (Ad4.4)
d=S"1c (A4.5)
d]}r
e=K,...K, [O]in—r (A4.6)
and
x = D(Pe) (A4.7)
See Lawson and Hanson (1968) for more details.
Algorithm 5:
PURPOSE
Computation of the covariance matrix.
METHOD
Let us suppose, as in Algorithm 4, that we have
A= Q"TP"™D™! . (AS.1)
Let
r n—r
_ [T Tio])r
= [0 0 |n—r (A5.2)

The Computer Journal
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where T, is r X r, upper triangular and nonsingular. In case
either r = rank (4) = rank (T) = n, or the solution is
obtained by setting the last n — r components of PTD™ 'y
to zero, the (unscaled) covariance matrix of those variables
which were solved for can be defined by

T (T)T 0
C(A) = DP[ P™D (A5.3)
0 0
If r = rank (4) = n, then
C(A) = (AT4a)™! (A5.4)

as can easily be verified. (See Businger and Golub, 1965)

We will now describe the algorithm for computing the right
side of equation (A5.3). The matrix T will be in the first r rows
of the upper triangular part of the working array W.

Type: Integer r, i, j,n, k, 1, p;
Real w;

Double Precision s;

Procedure: Covariance matrix computation

Step Number  Description
1 W(]]’]J)= I/W(].]’JJ)’(]= 1,...,").
2 If r =1 go to step 11. Else
3 Setj:= 2.
4 Setk:=r+2—j
5 Seti:= 2.
6 Setp:=k+1—-1i,s5:=0,
7 Set s :=s + W(p:p, l:) W(l:l, k:k),
I=p+1,...,k).
8 Set W(p:p, k:k) := —s-W(p:p, p:p).
9 Ifi <k,seti:=i+ 1and go to step 6. Else
10 Ifj<r,setj:=j+ 1and go to step 4. Else
11 Set /.=
REMARK

The matrix 7] has now replaced the matrix 7y, in the
storage array W.

12 Seti:= 1

13 Set s := 0.

14 Sets:=s+ W(:1,j:j)»W(@a:i,j:j),

G=1i...,r).

15 Set W(l:l,i:i) :=s.

16 Ifi<r,i:=i+ 1and go tostep 13. Else

17 Ifl <r,setl:=1+ 1and go to step 12. Else
REMARK

The upper triangular part of the symmetric matrix 77} (T71)T

has now replaced T']} in storage.
18 Zero the last n — r columns of the upper tri-
angular part of W.
19 Compute W := PWPT.
20 Compute W := DWD.
21 The upper triangular part of the symmetric

matrix C(A4) of equation (AS5.3) is now in the
upper triangular part of the array W.

REMARK
In steps 19 and 20 only the upper triangular part of W need be
referenced. We will not comment on these details.

Algorithm 6:

PURPOSE
Computation of the matrix products associated with forward
mapping of process noise.

METHOD
In equations (22) and (23) we see that matrix products of the
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forms RF~'G and RF ™! must be formed where R is upper
triangular, F is nonsingular and G is arbitrary. All of these
matrices are n X n.

Analogous with equation (22) set

F7'=T7'Q,-y...0y,

Q;, = IL,+uul/p,, i=1,..,n—1) . (A6.1)
Then
RF™'G=R(T'0,_,...0,G) (A6.2)
and
RF'=RT 'Q,_,...0) (A6.3)

For the purpose of describing the formation of these matrix
products, suppose that R is located in the upper triangular part
of a working array W and that F and G are in partitioned form
in an n x 2n working array Y. We will let W (i :i,, ji:j2)
denote the subarray of W consisting of rows #, through i, and
columns j, through j,. Analogous comments held for the array
Y.

Type: Integer i, j;
Real u(l:n), t(1:n), Y
Step Number Description
1 Setj:=1
2 If j<n, compute HI(j—1, 0, n, u(j),
Y(1:n,j:j)) and next compute H2(j — 1, 0, n,
Y(1:n,j:j), u(j), Y(1:n,ii),(i=j+1,..
n); then set j := j + 1 and go to step 2. Els
REMARK

The matrix T is in the upper triangular part of the left half of
Y; G is in the right half of Y.
3 Compute F~!G by solving the n systems of n
equations FX = G for X; the matrix X can
replace G in storage in the right half of Y.

12¥02¥/S82/</ | /9191€/|uliod/woo dno-olwepeoe/: sdnu woJj papeojumoq

4 Set 1(j): = Y(jiijii) G=1,....n).

5 Compute the matrix 7~ *; this matrix can
replace T in storage in the upper trlangular
part of the first n columns of Y. (See Algorithm
5, Steps 1-10.)

REMARK
The matrix F~1G is now in the right half of Y.
6 Setj:=n—1.
If j > O first set (i) := Y (i:i,j:j) and then
Y@, j:j):=0, i=j+1,...,n). Nextc
compute H2(]— 1,0, n, t(1:n), u(]) Y(@i: z@
1:n),i=1,...,n),j=j—. Else

REMARK

In step 6 the last n — j + 1 columns of the left half of Y are all
that is affected by multiplication from the right by Q;.

7 The workmg array Y contains the augmented (]
matrix [F~!, F~'G]. Note that the order of ®
these matrlces is reversed from that required in
Algorithm 7.

Z Iudy g1 uo 1se

8 Compute the product R[F - 1G] This
matrix can replace [F~! 1G] in the Y
array.

Algorithm 7:

PURPOSE
Forward triangularisation when mapping forwards with
process noise.

METHOD

As indicated in equation (30), we wish to find an orthonormal
matrix X such that for given n x n matrices C;, (i = 1, 2), and
a given n-vector d,
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I, , 0, 0 A, B, é

XS=X =
C,,C,,d 0, R, é
where both matrices 4 and R are upper triangular. The vector

d, is of length n as are the vectors é,, (i = 1, 2). The matrix B
will, in general, have no special structure. The definition of the

matrix S is self-explanatory.

(A7.1)

If the » x 2n matrix [C,, C,] occupies part of an
(n + 1) x (2n + 1) working array Y, and if an n x n working
array W is available, then the right hand side of equation (A7.1)
can be computed and stored in the working array Y together
with the upper triangular part of the array W. In total this
requires 2.5n% + 3.5n + 1 computer words; this is in marked
contrast to the 4n® + 2n cells of memory which might at
first seem to be required to calculate the right side of equa-
tion (A7.1).

Let [cy, . . ., ¢,,] denote the 2n column vectors of the n x 2n
matrix [C,, C,]. The first column of the matrix which is the
right factor of the middle term of equation (A7.1) is the 2n
vector

n
——
w, =[1,0,...,0,cT]" (A7.2)
After constructing the Householder transformation
X, = L, +uuilp,
such that
2n
/_/‘
Xywy = £[1 + |e,I’1* [1,0,...,0]" (A7.3)

The details of Algorithm 1 show that:
1. After the matrix products
X [e,,cT]T G,=2,...,n),

X,[O, T, G=n+1,..2n),
and X,[0, dT]7 are computed, only the first component or
the last » components are possibly changed. The vectors e;
are the unit coordinate n-vectors.

2. Thus only one row of the matrices A and B and one com-
ponent of the vector e, will be calculated at each step in the
construction of a matrix X = X, ... X, such that

A B ¢
XS =
0 R ¢,
The matrix R of equation (A7.4) is n x n but is not neces-
sarily upper triangular; &, is an n vector.

(A7.4)
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3. As the rows of 4 and B and the components of é; are
calculated they can be placed into parts of the working
arrays Y and W where space has come available.

We now present a step-by-step procedure which effects these

space-and labour saving remarks.

Type: Integer i,j,n;
Real LY, W

Step Number  Description

1 Move the 2n + 1 components of the n + 1st
row of S (now in the 1st row of Y, say) to the
n + lst row of the working array Y.

2 Setj:= 1.

3 Set Y(1:1,i:j):=0,(i=j,...,2n+ 1) and
Y(1:1,j:j):= 1.

4 If j < n, compute
H1(0,0,n + 1,1, Y(1:n + 1,j:))),
and next compute
H20,0,n + 1, Y(1:n + 1,j:j),t, Y(1:n + 1,
i), i=j+1,...,2n+ 1),
Y(1:1,j:j):= Y(1:1,2n + 1:2n + 1), Y(2:4, §
ji)i=Y(:L, i), i=n+1,...2n), 2
W(jj,i:i):= Y(1:1,i:0),(i=j+1,...,n), §_
u(j):= Y(1:1, j:j); then set j:=j+ 1 and 2
go to step 3. Else 3

REMARK :

At this point BT occuples Y(2:n + 1, 1:n); note that each13
column of BT moves in to occupy the storage implicitly zeroed & Q\)
with the successive Householder transformations; the strictly g 8
lower triangular part of the matrix AT is in the strlctly lower & 2
part of the array W; diagonal terms of AT are now in u(1: n) O

5 Triangularise the matrix R now in Y(2:n + 1 %
n + 1:2n) with Algorithm 3. ]

6 Place the strictly lower part of A7 into the 3
lower part of Y(2:n + 1, n + 1: 2n). g

REMARK El
Step 6 completes the forward mapping procedure; a solutlon?_’:;

and its covariance may be obtained by means of Algorithms g
3-5.
The smoothed value of the process noise is then tr1v1ally\
computed by means of equations (27). Recall that BT is in & &
Y(2:n + 1, 1:n), the strictly lower part of A” is in the strictly 5 S
lower part of Y(2:n + 1,n + 1:2n), the diagonal entries of A” &
are in u(1:n), and the vector d'(k + 1) of equation (27) is in
Y(1:1, 1:n).
To restart the basic cycle the upper triangular matrix R
together with the vector é, of equation (A7.1) are now in theg—
upper part of Y(2:n + 1, n + 1:2n + 1) and must be copied =
to the upper triangular part of W(l:n,1:n + 1).

(4%
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