Alternating direction methods for parabolic equations
in three space dimensions with mixed derivatives
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An alternating direction implicit (ADI) method which requires the solution of three tridiagonal
sets of equations at each time step is suggested for solving the general parabolic equation with vari-
able coefficients in three space dimensions. A sufficient condition for stability is proved in the
pure initial value case. Other existing finite difference schemes are mentioned and numerical results

are presented.
(Received February 1970)

1. Introduction

In the region of (x, t) space given by R x (0 < ¢
R={0<x;<1,
equation

< T) where
i =1,2,3} consider the linear parabolic

—_ = Lu (1'])

where
52

L= 5 Sayn) o,

u]x,=o =u; (x,1), “|x.~=1 = u; (x, t), i=1273;
u(x’ O) = uO(x) , X = (x19 x2, x3) .

The matrix of the coefficients (a;;);«3 is positive definite,
that is there exists ad>0 such that

2 Z‘JUCSJ>OZC C=(CI5C29C3)

i=1j=
is any real vector, { # 0.

A consequence of this definition is that a;; > 0, a,, > 0,
and a;; > 0. We assume that the matrix of coefficients is
symmetnc a;=a;

It is assumed that u € C* and a;; € C*. Existence and unique-
ness of the solution of the partlal differential equation (1.1)
with the appropriate initial and boundary conditions has been
studied by Dressel (1940), Protter and Weinberger (1967) and
other authors.

The region is covered by a rectilinear grid with h; = h the
grid spacing in the x-direction (i = 1,2, 3) and k the grid
spacing in the r-direction. The point (x, ¢) is a grid point if
x = (0h, oxh, o3h) (0 < o; K M), t = nk (0 < n < L) where
Mh=1and Lk =T

It is the purpose of this paper to present an alternating
direction finite difference scheme for the numerical solution of
(1.1) despite the presence of mixed derivatives; and which
requires the solution of only three tridiagonal sets of equations
at each time step. We shall define notation consisting of U,
the solution of the difference equation at the grid point
x = (ayh, ayh, ash), t = nk, r the mesh ratio k/h? and

82U, = U(x+he, )=2U(x, )+ U(x—he;, 1) (i = 1,2,3),
Hx;Hx;Un = U(x+ he;+ he;, )— U(x + he;— he;, 1)
—U(x—he;+he;, )+ U(x—he;—he;, 1) (i,j = 1,2,3,i# j),

02, U, = U(x+hej, 1) —U(x— he;+ he;, ) — U(x, 1)
+U(x_hei, t) (l’.l = 1, 2’ 3, i # ]) ’
0% ;Un = U(x+he;, )= U(x, 1)— U(x + he;— he, 1)

'—U(x—hej, t) (l,j= 1,233’1.96.[)’
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where e, e,, e; are the unit vectors in the directions of the
X1-, X5-, X3- co-ordinate axes respectively.

2. Existing two level difference schemes for solving (1.1)

Several difference schemes have been proposed for the solution
of (1.1) subject to appropriate initial and boundary conditions.

Seidman (1963) constructed various types of schemes for the =
solution of (1.1). They consisted of explicit, completely §
implicit and sweep explicit schemes. The last named depended &
on splitting the difference operators which replaced the
derivatives 0%u/dx;0x;, i, j=1,2,3 (i #j) in such a way
that in some problems Judlclous use of the boundary conditions 5
enabled the overall difference formulae to be solved explicitly.

Russian authors have suggested several difference formulae
for the solution of (1.1). These include the schemes

( alléxl) Uni1/6 = <1+ galeMsz) Uy
r r

(1 5 25x2> Uns2/6 = <1+ 2 a21Hx1Hx2> Un+1/6
r r

(1 '2 5"1) n+3/6 = <1+ :1 a13Hx1Hx3> Un+2/6 (2-1)
r r

<1 5 335X3> Uiiae = (1+ Zaonles) Uniae
r r

<1 iazzéxz) Un+sie = <1+ 2 az3Hx2Hx3> Un+ass

r
( ‘1335)‘3) Ups1 = <1+ Zasszst2> Un+sis

of Yanenko (1961) (for constant coefficients only),
(1- raii(sxiz) Un+isa

i-1
= [1 +ry aij(ajztix_,-+a:,-xj)}Un+(i— 1/3)
j=1

0
(i=123 3% =0 (2.2)
j=1
of Samarskii (1964)
3
I1(t— raiifsx'z) Up+1
i=1
|:1+r2 a;;0x? +7rZ 2 a;;Hx; Hx:|U (2.3)
i=1j>i
of D’Yakonov (1964) where
a; = aii+5il s
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and finally

3
[T(1—4ra;6x?) (Ups 1 —Uy)
i=1

=r |: Z auax + Z Z au(ax. Xj :’1 x;) :I Un (24)

i=1 j>i

of Andreev (1967) where A is a parameter.

3. ADI schemes

The authors (1970) have already proposed the finite difference
scheme

11 5 11 2
[l+ (}.—57“111) 5x1] [1+ (},—Eran) 5x2:| Upi1
11
= {[1 + <§, %"‘111) 5x{| [1 + <}+ 5"%2) 5"%]

+%ra12Hlex2} u, 3.1

for the parabolic equation in two space dimensions

2 u : ’
—a—t = all(x’ t) a 2 +2a12(x, t) +a22(x t)

u
x10%2 X3
subject to
a,1a5,—a3,>0, a;;>0, a,,>0,

Wlth Ay = Ay, X = (xle).
The obvious extension of this scheme to three space dimen-
sions is

ilj]ll:l+ <§—%ra,~i) éxiz] Uit
11 ,
= il=_[1 [1+ (f+ 2rau) 0x; :| U,

2
+3rY X a;;Hx;Hx;U,

i=1 j>i

(3.2)

where f'is an arbitrary real parameter.

Straightforward Taylor expansions of the operators in (3.2)
shows that the latter is a finite difference approximation to
(1.1) with local accuracy of order O(h* + k).

The Douglas Rachford type splitting of (3.2) is

11 .

[1+ (?—Era11> 5xf:| Uk, ,

A (i)
-TI |:1+ (——1 6 :|U
I 7 2ra,,) x? (U,

+ |:1+ (—;—r—%ra“> 5x1:| U,

2
+3iryY Y a;;Hx;Hx;U,

i=1j>i
11
|:1+ (?_Emn) 5x§] UXE,
1 1
Urti+ (“—émss) ox3U,

11
|:1+ (?—ira”) 6x§:| Upsy = 7

Special cases of (3.2) are already in existence when a;; =
a,, = a3; = 1, and the mixed derivative terms are zero. These
are the three space dimensional analogue of the Peaceman-

-

(3.3)

11
U:+1 + (?_zrazz) 5X§U
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Rachford formula (see Gourlay and Mitchell, 1967) when
f = oo and the high accuracy extended Mitchell-Fairweather
scheme (EMF) (see Fairweather et al., 1966) when f = 12.

4. Stability

We shall first establish the following lemmas.

Lemma 1:

The positive definiteness of the matrix of coefficients implies
that the following inequalities hold:

I1: a,,sin%0, +a,,sin?0,+as,sin’0;+2a,, sinb, sinf,
+2a,;sinf, sinf; +2a,3 sinf, sinf; >0,

12: a,,sin%0, +a,,sin%0,+ as, sin?0; +2a, , sinb, sin0,
—2a,;sind, sinf; —2a,3 sinf, sinf; >0 .

Proof of 11:
Positive definiteness of (a,.j)3 « 3 implies that

Z Za,,CC i>0,

i=1j=1
for all real vectors, { # 0, that is
ay {3 +azts+assli+2a,,0,0,+2a,30,03+2a230,03>0 (4‘1)§
D
But since this is true for all {;, {,, {5 it is true in particular forQ
{; = sinf(i = 1, 2, 3). This gives the required result.
Proof of 12:
Since (4.1) holds for all real {,, {,, {5 it is true in particular for
{, = sinfy, {, = sinb,, {3 = —sind;.
The inequality

a,,sin0, + a,, sin?0, + a,, sin’0; + 2a,, sinb, sinb,

—2a,,sinf, sinf; —2a,4 sinf, sinf; > 0

jumoQ

Stny woyy

NO"oIWBPEoR//:S

is obtained and the second part of the lemma is proved.

Lemma 2:
Necessary and sufficient conditions for the matrix of coefficients

(@;j)3x 3 to be positive definite are:

[Woo/woo"

2 2
l.a,a,,—a;,>0, a;,a,,a33—a,,az;3
2 2
—a,,a13— 03307, +2a,,d,3d,3>0
2 2
2.ay,a33—ai3>0, a,a;5,a33—a,a33
2 2
—a,,a73—a33a71,+2a,,a,3a,3>0

2 2
a33>0, a,,a,,a33—a,,033
—azzafs—

3.a,,a35—
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These results are well known and follow from completion of2
squares. The proof is given in Fraser, Duncan, and Collar$
(1963). ]
To establish the stability of (3.2) for the case of variableg
coefficients, reference is made to an important paper by
Widlund (1965). For convenience, it is assumed that the-'
coefficients are independent of ¢. The extension to the generalO
case presents no new difficulties.

Theorem 1:
A sufficient condition for the stability of (3.2) is
2
- <f<0
r max{ max a;(x)} f
i 0sx<1
Proof:

In Widlund’s notation (3.2) is re-written in the form

Un+1 = Un+Q—lUn+1+QOUn

3 1 2
Q0_, = l—lq [1+ (f+2ra,,> 6xi]
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3 11 2 2
Qo =11 [1+ (}+§raﬁ) 6x,] —1+4ry Y a;;Hx;Hx; .
i=1

i=1j>i
The principal parts of these are

0% = 1- 11 [1+ G—éraii) (hD.4 (1) (hD_,(h))],

and
3

o = 1‘[[1 + <—}+%ra,-,-) (hD. (h)) (hD_.-(h»]

i=1

—142rS S ay(hDoi(h)) (hDo(h))

i=1j>i
where
hD,(h) U(x) = +(U(xxhe)—U(x)),
hDy(h) U(x) = U(x+ he;))—U(x—he;) .

If hD, i(h) is replaced by

0; 0,
2 — lsm—e+‘/_ 3

3 , hDo(h) by ~/—1 sin;

the functions of period 2n

R 1 1 ., 0
oY)l = 1—‘.];[1 l:l —4<}_—2—ra,.i> sin? —2] ,

2
-2ry, Y a; sing, sinb;

i=1j>i

are obtained and so

( Q(l)) (I+Q(1))

[]f[l l:l 4(f %ra,,) sin? %]:l
X {'131 [1 —4(;+ ;ra ) sinz—%]

—2r2 Z.!a,l “sin®; sm0 }

i=1j>i

Since (I - gU)™'(I+ §f") is scalar, Widlund requires for
stability in the L, norm that

{il;ll ,:1 —4(;1——;rai,-> sin? %]}
x {‘]31 [1 4(;+2ra”) sin? %]

2
—2ry. Y a;jsinb; sin@,} <1, 4.2

i=1 j>i

allowing equality only when sinf; = 0 (i = 1, 2, 3). The result
(4.2) leads to

0 0 0
4a,, sin® 31 +4a,, sin? 32 +4a,; sin® 53
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16 L, 0,0
— — (a;,+ay,) sin? 2 sin? =2

f 2 2
1 ,0, . ,0
f (a,+as;) sin? Esm 23

16 ,0, . ,0
— 7 (ay;+as;) sin? E sin? 23

a a a 1
+64[f‘;,_1 + fzj + ;23 + r a11a22a33:|
sm 03

2

+2a,, sinf, sinf,+2a, 5 sinf, sinf;

., 04 .
X sin? — sin? =2
2

+2a,; sinf, sinf; >0,

4 0 , 0, , 0
1— (= sin2 2 2 )
" (f sin 2 +sin? > +sin? 2)

201 -29%
2

(4.3

+16 1+1
fr4

sin® — sin

2
r-a;,a,, 5

—ray, sin0, sinf,—ra,; sinfd, sinf,

0/Woo"dnoolwepese//:sdiy Woll papeojumod

—ra,; sind, sinf; >0, 4.4)

together with é
3 1 1 , 0; . g

l.]=_[1 1—4 } 2 sin? 3 >0 . (4.5)§

&

w

Using the result that sin®0; < 4sin?(0,/2) and with the aid 3
of inequality Il of lemma 1, it can be seen that a suﬁicient%
condition for (4.3) to hold is that f < 0. This condition ensures ™
that (4.5) holds.

By means of inequality 12 of the lemma 1 re-written in the o

0.¥0

o
form E
—a,ysind, sind; —a,, sinf, sinf; > —4(a,, sin0, +a,, sin?0, &
o
+as; sin?0;)—a, , sinf, sind, , >
©
the left hand side of (4.4) is greater than P
4/ ,0 0 0 X
1- ;,(sin2 —2—1 +sin? —23 +sin? ?3) - r‘;“ sin’6, S
- i‘;iz sin%0, — %33 sin?0; —ra, , sinf, sin0,
1 1 ,0, . ,0
+16<]72 +3 2a11a22> sin? 3 sin 72
1 1 0 0
+ 16<f_2 + Zr2a11a33> sin? ?1 sin? 33
1 1 . ,0, . ,0
+ 16(;5 + Z,~2a22a33) sin? -23 sin? 73
1
—64[f_3 +r2ﬁa22+r2 4fa33+r 4f ]
0
x sin2 = sin? 2 sin? = (4.6)
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Let

and for convenience denote max{ max a@;(x)} by @, The

4
- = =2r max{ max aii(x)} -

f i 0<x<1

i 0<x<1

left hand side of (4.6) then becomes

., 0 0
1+ 2r sin® ?1 l:am,(—-a11 cos? ——;]

. ,0 0
+2r sin? ?2 [amx— a,, cos? 72]

., 0 0
+2r sin? Es-l:ama,(—-a33 cos? ?3]

., 0 ., 0 .., 0
+e <sm2 El +sin? 72 +sin? ?3)
—ra,, sinf, sinf,
(7]
+[(2ram. +€)?+4r%a,, a,,] sin? —2—1 sin? —;
0,

0
+[(2rama +¢)* +4r*a,a3;] sin® -51- sin? >

+ [(zramax + 8)2 + 4r2a22a33]

., 0 0
x sin? -El sin® ?3 + [(2ram.,+¢)?

+4r2a,,1a,5(2r e, +¢)
+4r201 1a33(2ramax+8)

0 ,0, . ,0
+4r2a,,053(2ra ,, +€)] sin® 71 sin? > sin —:25 ,

which can be re-written in the form

[\/011022 2 2

which by lemma 2 is greater than zero for all »r > 0 and

a>

0, 0, _ 0, . 0,
COS — COs —= —2rva,,a,, sin — sin —
2 2
a,,a,,—a%, cos? 291 cos? 292
11422 12 2 2

+

a;14;;

A ]
+2r sin® > Lam,,,(—a11 cos? -51

— 0:

0,
. 2
+2r sin? 7 | Gmex— 22 cos? >

0 0
+2rsin? 2| a,,,,—as3 cos? =
2 i max 33 S 2 i

. ,00 . ,0
+(2r @, +€)* sin? 31 sin? 52

. ,0, . ,0
+[(2rame+¢)* +4r?a, a35] sin® 2—1 sm2—23

. 202 .
+ [(2rame+€)* +4r’a,,a,,] sin® 32 sin? -53

+ [(2ramax + 8)3 + 47‘2(11 1a22(2ramax + 8)

+4r2a,,a35(2ra,, +¢)
.50, . ,0, . ,0
+4r2a,,a;33(2ra ., +¢)] sin? E‘ sin? > sin —23-
L .00 .0, . ,0
+e (sm2 71 +sin? 72 +sin? i) ,

sinf; # 0 (i = 1,2, 3) if ¢ > 0. But ¢ > 0 implies that
2

ra

f>-

max

Therefore a sufficient condition for stability of (3.2) is

2

T max{ max a(x)}
i 0<sx<1

<f<0. 4.7)

In an earlier paper (McKee and Mitchell, 1970) we proved
that a necessary and sufficient condition for the stability of
(3.1) is that f lies in either of the two semi-infinite ranges f < 0
or f > 4. This result is very satisfactory and it includes two
well-known stable schemes when a;, = 0 namely, the Peace-
man-Rachford scheme (1955) when f = oo, and the high
accuracy Fairweather-Mitchell scheme (1964) when f = 12.
However, in the three space dimensional case this condition
for stability does not hold in general (as counter examples
show), although in the particular case when the coefficients
of the mixed derivative terms are zero, this condition remainso

as a necessary and sufficient condition for stability (see%
Theorem 2). S
Theorem 2: %

A necessary and sufficient condition for stability of (3. 2) when=
the coefficients of the mixed derivatives of (1.1) are zero is thatg
f lies in either of the two semi-infinite ranges

f<Oor f=4.

wapeoe//:sdny

Proof-
In this particular case application of Widlund’s analysis leads
to the inequality

(s 11 L0t
{{'H [1 4<?— 2rau> sin 3]}
(8]

where equality is only allowed when sinf; =0 (i = 1, 2, 3.
This can be re-written as

<1 (482

?éZ/E/VL/ErQ'Ue/IU.rLUOO/LUOQ'an

1_3.[F(aiis Hi)l<1
i=1

11 0;
[1 —4<—+ —ra,-,-) sin? ——':|
F(a;, 0,) = fl 21 02 :
[1 4(f 2 )sm E:I

Clearly | F(a;;, 0;)| < 1 for arbitrary i is a necessary and
sufficient condition for (4.8) to hold.
Let (4/f) = 1 — ¢ in (4.9) to obtain

where

~
:h
\O

20z 1U0¥ 61 U0 1sanb Aq 07021/

, 0; 6
1—sin® = 2ra;) sin? =%
( sin? 2) +(e—2ra;) sin 2.

| F(ay, 6)) | =

b

0,
(l—sm 3> +(e+2ra;) sin % I

and it is now evident that ¢ > 0 is a necessary and sufficient
condition for the inequality

I F(ay, 0) | <1

to hold for all r > 0. Since ¢ > 0 implies f < 0 or f > 4 we
have proved the theorem.

The Computer Journal



We now give two counter examples to demonstrate that the
stability conditions for the two space dimensional problem
with a mixed derivative (i.e. f < 0 or f > 4) do not hold for
the three space dimensional problem when mixed derivatives
are present.

Counter Example 1:
By choosing the variables in the following manner:

r=1, a; = a; = az; =196
alz = (113 = 023 = 195
01 = 02 = 03 = 77:/30
and by choosing f to be negative and sufficiently small (i.e.
close to — o) it can be shown that inequality (4.4) is violated.
Counter Example 2:
By choosing the variables in the following manner:
r=0'1, a“ =azz=10, as3= 1,
a3=a,=1,a,=9,
0, =-=w2,0,=mn/2,0,=m,
and by choosing f to be sufficiently close to +4 it can be shown
that inequality (4.3) is violated.

It is important to remember that Widlund’s analysis is
applicable to pure initial value problems only and so the
above theorems are similarly restricted. However, numerical
experimentation, the results of which are shown in the next
section, leads to the belief that the stability condition (4.7)

obtained using Widlund’s analysis, applies to a large class of
initial boundary value problems.

5. Numerical results

The ADI method (3.3) is now used to solve examples involving
the equation (1.1) with constant and variable coefficients.
Example 1, constant coefficients:

Here the problem consists of (1.1) witha,; = a,, = a;3 = 01,
a,, = a;3 = —005, a,; = 005 together with the initial
condition

u(xy, x5, X3, 0) = sin(x; +x,+x3) 0<x;, X, x3<1
and the boundary conditions
u(0, x,, x5, 1) = e~ *sin(x, +x3)
u(l, x,, x5, ) = e~ “sin(1 +x,+x3)
u(xy, 0, x5, 1) = e~ %sin(x; +x3)
u(xq, 1, x5, 1) = e ¥sin(x; +1+x3)
u(xy, x5, 0, ) = e *sin(x, +x,)
u(x,, x5, 1, ) = e “sin(x,; +x,+1)

where o = Z Zau

i=1j=

The theoretical solution is

u(xy, x,, X3, ) = e~ *sin(x, +x, +x3).

Numerical calculations using (3.3) with f = —4 were carried
out for four values of the mesh ratio r. The absolute value of
the central node with the corresponding theoretical solution
is shown in Table 1. In this example, the sufficient condition
for stability (4.7) reduces to r < 5.
Example 2, variable coefficients:
This time the problem consists of (1.1) with a;; = a,;, = 0-5,
ayy = 1-x2%/2,a,, = —x,x,/8,a,; = a,3 = 0, together with
the initial condition

u(xy, Xy, x3,0) = x2+x3—x3—x3x3, 0<x,, x5, x3<1,

and the boundary conditions

u(O’ X2, X3, t) = (x%—xg) e_t

u(l’ X2 X35 t) = (1 —x§) e’

u(xla 0’ X3, t) = (xf_x§) e’

u(xy, 1, x5, 8) = (1—x3)e™"

u(xl’ X25 09 t) = (x%'{_x%_x%x%) e’
u(xl, X2, 1’ t) = (x%+x§_1—x%x§) €

The theoretical solution is

-t

u(xl’ X2, X3, t) = (xi+x§—x§_x%x;.) e’

The same numerical calculations were carried out and are
presented in Table 2.

Note that in this example the sufficient condition for stabxhty
given by (4.7) in Theorem 1 gives r < 4. This condition 15u
violated by three of the calculations recorded in Table 2.
However, since in this example we can omit the use of in-
equality I2 and as before by completion of the square we can g
show that a sufficient condition for stability in this case is5
f < 0. This is, of course, only true when two of the coefficients 2 g
of the mixed derlvatlve terms are zero.

It is also worth pointing out that although the errors in tth
constant coefficient case are decidedly smaller than in the S
variable coefficient case, this does not mean that (3.3) gives%-
better results in the constant coefficient case; the greaters
accuracy is purely a function of the particular problem chosen s

y WwoJ} papeojumoq

wa peae/

I
(72}
)
=
o
>
[
3
=
=
]
=
]
=
@]
)
-
=
o

kel
=
=
=
Q.

e
o
=

e}
©
[t
Ll
[e]
)
[
=
o
-
-
c
=
(¢}
&
g
]
=
[¢]
o]
-
]
=

will demonstrate.

6. Concluding remarks

The accuracy of this method is almost certainly enhanced by
means of boundary correction (see Gourlay and Mitchell,
1967). The intermediate boundary values are given by

11
U"+1 = [1+<?—§ra22> 6x§]
X +(3-1 0x3(gn+1—9n)
In+1 7 2"‘133 X3(Gn+1—9n
11
— (?— Eran) ox%g,

VZOZ Indy 61 uo ysenb Aq OLVOZV/QGZ/Q/VL/G H

Table 1 Table 2

VALUE OF TIME NUMBER OF ABSOLUTE CORRESPOND- VALUE OF TIME NUMBER OF ABSOLUTE CORRESPOND-

r TIME STEPS  VALUE OF ING r TIME STEPS  VALUE OF ING
THE ERRORAT THEORETICAL THE ERRORAT THEORETICAL
THE CENTRAL SOLUTION THE CENTRAL SOLUTION
NODE NODE
f=-4 f=-4

01 1/10 100 0(10-9) 0(1) 01 1/10 100 0(10-2) 0(-1)

05 1/10 20 0(10-%) 0(1) 05 1/10 20 0(10-3) 0(-1)

1 1/10 10 0(10-%) 0(1) 1 1/10 10 0(10-3) 0(-1)

5 1/10 2 0(10-9) 0(1) 5 1/10 2 0(10-3) 0(-1)

Volume 14 Number 3
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and
*k 11 2
Uni1 = Gut1t }-_:‘Z"'au 0x3(gn+1—9n)

as opposed to, say Uy¥, = Uy, = g,+, - Here g is written
for U when the grid point is on the boundary of the region.
The values of g are, of course, known and so the intermediate
boundary values can be calculated from the boundary data in
advance of the main calculation.

Finally, three level difference schemes have been considered
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