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The use of high-order integration formulae in general-purpose library routines is widely discouraged
in the literature. The reasons advanced for the recommended preference for the trapezoidal, mid-
point and Simpson’s rules are here analysed, and found to be either irrelevant to modern com-
putation, or highly inconclusive. Attainable error bounds are presented which help to make high-order
formulae equally attractive in problems for which they were formerly regarded as inefficient.
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1. Introduction
When evaluating a definite integral of the form

I= fbf(x) dx (1)

in which f(x) is defined and calculable over [a, b], we can in
theoretical evaluations utilise special properties of the inte-
grand, while in numerical calculations we can often use these
to select an optimum formula. Nevertheless, the usual require-
ment is for a general-purpose ‘library’ procedure or program,
universal in application, which will ‘fail-safe’, giving an
appropriate report, in circumstances that become beyond its
scope; such failures will be detected by an examination of
calculated error estimates. Multiple access systems offer some
potential for the computer user to select a suitable formula in
conversation with the system, but since this has yet to be
realised we shall be concerned here with quadrature formulae
used blindly, without regard to any special characteristics of
the integrand.

Now, for any given formula or algorithm a pathological
problem can always be devised for which an arbitrarily small
accuracy cannot be attained; we can therefore never argue the
universality of any particular method, and we do not attempt
this. Instead we examine the converse—an apparently wide-
spread assumption, which has not been fully analysed, that all
high order formulae are by their nature inferior, as a basis for
‘universal’ routines, to the best low-order formulae; this has
been given—with various reasons—as a basis for recommending
that they never be used.

We are, incidentally, here taking the order of a quadrature
formula to be the maximum integer m such that the formula
integrates exactly all polynomials of degree at most m. This
definition is adequate for all the methods under consideration
here, and could readily be extended to include non-unit weight
functions if required, although formulae involving them
might well be regarded as special-purpose rather than general-
purpose ones.

The disadvantages which have, at various times, been associ-
ated with some or all high-order formulae are as follows:

1. Their possible non-convergence for continuous integrands.

2. The occurrence of negative weights.

3. The difficulty of estimating errors directly using expressions
involving high-order derivatives.

4. The (supposed) inevitability of a large discretisation error
when some low-order derivative of the integrand is non-
existent or discontinuous in [a, b] or attains a very large
magnitude.
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5. The computatlonal effort required to achieve a glvené
accuracy in comparison with low-order formulae. o

We shall argue that the first three of these objectlons are%
no longer relevant to current algorlthms while the remalnln&
two have not been fully substantiated in the literature. Indeed,3
by extending the error bounds developed by Stroud and=
Secrest, we show that on this basis of comparison there is»
little to choose between formulae of high and low order. Thus»
we shall conclude that there seems no valid case for excludmg
absolutely either high- or low-order formulae from such
algorlthms Finally, having hitherto implicitly assumed that®
the various formulae considered are applied uniformly overs
[a, b], we end by considering adaptxve integration methods3
Although many of those currently in use employ only lowi’
order formulae, we shall argue that this again does not warran@
the exclusion of high-order formulae from a general-purpose=
quadrature algorithm, and indeed the optimum order shoulcg,
be selected by the algorithm itself. &

Note that we are not advocating the exclusive use of eltherE
high-order or low-order formulae; rather we are drawm%
attention to the lack of any substantial theoretical or empirical®
evidence for preferring either, in the hope of stimulating further
research into this question.

6 Ad 6.0

2. Possible non-convergence
o

One apparently major defect of the high order Newton-Cotesp
rules which has been widely quoted is the possible non- con-o
vergence of the estimates as the order increases, even when f(x).
is continuous throughout [a, b] (see, for more recent examples,ﬁ
Bauer, Rutishauser and Stiefel, 1963; Davis and Rabinowitz2.

1967, p. 31). Although this may certamly occur for functionsy
which are analytic on [a, b], as Kusmin (1931) and Pélya (1933)=
showed, Davis (1955) proved convergence for analytic inte-
grands which are regular in an ellipse centred at 3(a + b), with
semimajor axis on the x-axis and of length §(b — a), and
semiminor axis of length (b — a).

Unfortunately it seems that the results of Kusmin and Pélya
may have wrongly contributed to a mistrust of other high-
order formulae, such as Gauss-Legendre, Clenshaw-Curtis and
the more efficient of the polynomial extrapolation methods,
even though all these are known to converge as the order
increases for bounded integrands which are continuous on
[a, b], and even under such weaker conditions as Riemann
integrability. A more important point, however, and one which
is not universally appreciated, is that the question of con-
vergence in the limit is irrelevant in practice since we simply
wish to achieve a specified, non-infinitesimal precision together
with an estimated error which is sufficiently small.
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3. Negative weights

A more practical objection which has been levelled against the
high-order Newton-Cotes formulae is the possible magnifica-
tion, resulting from negative weights, of any rounding errors
in the integrand values. In fact the order must be high for this
magnification to be potentially serious, and Grant (1964, Ch. 3)
has given a simple modification of the Newton-Cotes formulae,
involving two additional integrand values, which approxi-
mately doubles the minimum order of formula for which
negative weights occur. Most of the other possible general-
purpose formulae do not have negative weights at all, while
one class which does, namely the polynomial extrapolation
methods favoured by Bulirsch and Stoer, does not suffer from
serious magnification (Bauer et al., 1963; Bulirsch, 1964;
Bulirsch and Stoer, 1964; Oliver, 1971a). As with convergence,
therefore, a former possible disadvantage of high-order
formulae arising with one particular class of methods is
largely irrelevant.

4. Estimation of derivatives

The classical error expressions for the 2m + 1 and 2m + 2 point
Newton-Cotes formulae, valid when f(x) is 2m + 2 times
continuously differentiable over [a, b], are of the form

2m .
o m) i(b—a)| _
I-(b-a) T Af f{a+ — }_
Com(b—a)>™*3 fEm2 (&) (a<f<b) (2a)
2m+1 .
—(b- aminy ¢, HO—D]
I-(b-a) T 4 f{a+2m+l}_

Comss(b—a)’™*? fO™*2 (&) (a<f<b) (2b)

where the A; are appropriate weights and the C; are constants
independent of f(x) (Krylov, 1962). While a numerical analyst
may sometimes be able to establish a strict error bound by
utilising these expressions and bounding the derivative, this
course is rarely followed by the general user.

One possible alternative, for which algorithms have been
devised (Legras, 1967), is to estimate numerically the approxi-
mate derivative at the equally-spaced pivotal points by differ-
entiating an interpolating polynomial, but Ralston (1960, p.
244) has remarked that, ‘From a practical point of view higher
derivatives are generally very difficult to estimate so that the
use of high order Newton-Cotes formulas is not recommended.’
He also levelled the same objection (Ralston, 1960, p. 246)
against the Gauss-Legendre N-point formula, for which the
remainder term is (Krylov, 1962, p. 109),

~Hb-e) T WY f{3at b+ 3 (b-a))

= __(N!)4 (b—a)”* 1f(2N) () (a < :’<b)

ON+DEN)? Slaze=b),
and repeated it more recently (Ralston, 1965, p. 114): ‘Since
rapid growth of derivatives may start for quite low derivatives
and because of the difficulty in estimating high derivatives,
high-order [Gaussian] quadrature formulas are seldom used.’
The fact that one possible method of error estimation is
unsatisfactory is, however, surely no reason for condemning
the quadrature formula; rather it means that alternative
techniques should if possible be devised, and since this has
indeed been done (see, for example, the algorithm for Gaussian
quadrature of Tompa, 1967, or that for extrapolation of
Bulirsch and Stoer, 1967), Ralston’s argument is no longer
valid.

A3)

5. Error expressions involving derivatives

Note that in the above quotation, Ralston mentions a second
explanation for the supposed infrequent use of high-order
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Gaussian formulae, and since it would appear to be widely
held and to apply also to other high-order formulae, it merits
close study. Essentially the reasoning is that because high-order
derivatives may assume large magnitudes in [a, b], which is
particularly likely to occur when f(z) is singular at a point near
the real interval [a, b], the error term (3) may be much larger
than would be the case for the commonly-used low-order
formulae with the same number of abscissae. Although
Ralston’s later summary (1965, p. 128) of the disadvantages of
using high-order formulae for continuous integrands indicates
that he attaches more importance to the practical difficulty
of establishing a realistic error estimate, O’Hara and Smith
(1969) reiterate this other implication of high-order deriva-
tives appearing in error expressions.

Certainly Stern (1967) develops this argument explicitly;
after giving the remainders based on (2) and (3) for the com-
posite trapezoidal and Simpson’s rules and for Gaussian
quadrature over [0, 1], he states: ‘From these error bounds
we see that the trapezoid rule is going to be better than the
others if f"(x) is bounded in [0, 1], but f“(x) and higher
derivatives are not. Similarly we expect Simpson’s rule to be &
better if £*)(x) is bounded and higher derivatives are not. In3
any case if the ‘size’ of the 2mth derivative increases too rapidly 8
with m, we should use Simpson’s rule rather than Gaussian
quadrature The same philosophy is, to a much lesser extent, 5
implicit in the definition of ‘best’ quadrature formulae adopted
by Fraser and Wilson (1966) and Sard (1949).

However, this conclusion is clearly a non-sequitur, since the &
fact that the appropriate derivative is of large or unbounded
magnitude over part of the range [a, b] does not necessarxly
imply that the same is true at the particular point x = é
occurring in an error expression such as (2) or (3), although
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certainly the result would follow from the existence of a largeg
lower bound on the magnitude of the derivative over [a, b]. In3

the absence of such a lower bound, one can simply say thats
such a classical error expression yields a large upper bound on
the error, but with no indication of the sharpness of this bound.

6. Bounds based on low-order derivatives

Such an unsatisfactory conclusion indicates that perhapsw

alternative error expressions or bounds should be sought in
order to compare the effectiveness of various formulae for such =
integrands, and this is even more true, as we shall see below, if &
a singularity in a derivative of some order renders the usual
error expression 1nvolv1ng that derivative invalid. One such
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approach, for example, is that of Davis and Rabinowitz (1954),@

while another, primarily motivated by the desire to apply §
polynomial extrapolation when the mtegrand or its derivatives o
of low order are singular at some point, is that of Fox (1967),
Fox and Hayes (1970), and Miller (1968). We shall concentrate »
here, however, on certain error bounds developed by Stroud =
and Secrest which involve only low-order derivatives, even for 3
high-order interpolatory quadrature formulae, since these =
bounds facilitate the comparison of formulae of different
orders when the integrand is such that the usual error expres-
sions discussed above are unhelpful.

These classical error expressions (2) and (3) for the Newton-
Cotes and Gaussian formulae, and the corresponding expres-
sion (Bulirsch, 1964) for polynomial extrapolation of the
trapezoidal rule are derived on the assumption that f(x) is
sufficiently many times continuously differentiable over [a, b].
Thus, as Rabinowitz (1968) remarked in connection with the
Gauss rule, ‘this seems to indicate that such a rule is not
efficient for integrating functions of low order continuity, i.e.
functions which have only a few derivatives in the entire
interval of integration.” Similarly, when considering the merits
of interval bisection in the Gauss and Clenshaw-Curtis
methods, Wright (1966) suggested that for non-analytic
functions, such as functions with discontinuities in some
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low-order derivative, a simpler formula is usually beneficial.

However, Rabinowitz (1968) continued with the reminder that
Stroud and Secrest (1966) have shown that Gaussian integ-
ration is efficient even in these circumstances, and it is the
implications of this work which we now explore.

These authors, and also Stroud (1965, 1966), recalled that
the Taylor expansion for functions f(x) which are kK — 1 times
continuously differentiable on [a, b] and possess a piecewise
continuous derivative of order k > 1 satisfying

[fPx) | <M, (@<x<b) 4

can be used to show (Peano’s theorem) that the remainder R(f)
in any N-point quadrature formula,

be(X) dx = j(b—a) gll A; f{3(a+b)+ix(b—a)} +R(f), (5)

which is exact for polynomials of degree up to m > k — 1
satisfies

R(f) = ¥(b—a) J_ Fy(®) %f{%(a +b)+3t(b—a)} dt (6)

for a known function F,(¢) depending only on 4; and x;. This
leads to the attainable upper bound,

o\ k+1
|R(f)| < (b—z—‘—z) Me, , @)

ekEJI |Fk(t)‘dt’ 3

and the minimum possible values of e; and e, are (Krylov,
1962, Ch. 8):

e, =1/N, e =1/{2N-D+J3}2. )
e, and e, are known explicitly (Krylov, 1962; Stroud, 1965,

1966; Stroud and Secrest, 1966) for the composite trapezoidal
rule,

ey =1(N-1), e =23N~-1>; (10
the composite mid-point rule,
e, =1/N, e, = 1/3N?%; (11

and the composite Simpson’s rule,
e, = 109N - 1) , e, = 32/81(N — 1)?; (12)

while Stroud (1965) and Stroud and Secrest (1966) have
calculated e, for representative values of k and N for the Gauss
and Romberg formulae. In particular, they found that for the
Gauss N-point formula, the ratio of e, to the ‘best’ value (9)
appears to approach a limit <15 as N increases and the ratio
for e, a limit <2-0, with similar, though in some cases weaker,
bounds for Romberg. Alternative error bounds for Gaussian
quadrature have since been computed by Rabinowitz (1968),
but although sharper in some cases they are not quite so well-
suited to our present purpose.

It is assumed, though they have not been calculated, that the
values of e; and e, for the polynomial extrapolation methods,
recommended by Bulirsch and Stoer will lie between those foE
Gauss and Romberg, though in any case these methods produce
estimates of low order as well, commencing with the trapezoida‘}s.
values; this may well be one of their principal advantages:
provided that in a practical algorithm every estimate is regarded
as constituting a potential approximation to 7,
those of high order.

For the Clenshaw-Curtis N-point formula (Clenshaw an
Curtis, 1960), for which the abscissae and weights in (5) are

(=12..,N), (13

o
=
[oN
=
[]
-

—
=]

sdpéues
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x;=cos(i — Dn/(V — 1)

24,(i =1, N) _ 2 =D
A;(i=2,.. .,N—l)} T TN-1 Eo —1) T(xy, (1

we have computed values of e, and e, using the ‘exact’ metho
of Stroud and Secrest (1966, p. 65) applied to

Table 1 e, for various N-point formulae

20z 1udy 61 U 1s8nB Aq 62502k/10€/d/t | /a10lkie/ul@eo/weEdno

N-1 TRAPEZOIDAL SIMPSON BEST GAUSS c—cC C — C:BEST
4 2-500 x 107! 2778 x 107! 2-:000 x 107! 2:252 x 1071 3:099 x 107! 1-550
6 1-667 x 1071 1852 x 107! 1429 x 107! 1-648 x 1071 2-065 x 1071 1-445
8 1:250 x 1071 1-389 x 107! 1-111 x 107! 1300 x 107! 1-547 x 1071 1-392
12 8:333 x 1072 9-259 x 1072 7692 x 10™2 9-142 x 1072 1-030 x 1071 1-339
16 6250 x 1072 6944 x 1072 5-882 x 1072 7-051 x 1072 7-718 x 1072 1-312
32 3-125 x 1072 3-472 x 1072 3-030 x 1072 3-683 x 1072 3-856 x 1072 1-:273
64 1562 x 10~2 1-736 x 1072 1-538 x 1072 1913 x 1072 1928 x 10~2 1-:253
(N = 64)
128 7-812 x 1073 8-681 x 1073 7-752 x 1073 9-601 x 1073 9-638 x 1073 1-243
(N = 128)
Table 2 e, for various N-point formulae
N-1 TRAPEZOIDAL SIMPSON BEST GAUSS c—C C — C:BEST
4 4167 x 1072 2:469 x 1072 1-056 x 1072 1-439 x 1072 2-847 x 1072 2:696
6 1-852 x 1072 1-097 x 10~2 5-303 x 1073 7-625 x 1073 1-214 x 10~2 2-288
8 1:042 x 10~2 6173 x 1073 3-180 x 1073 4723 x 1073 6724 x 1073 2-114
12 4630 x 1073 2-743 x 1073 1-510 x 1073 2:327 x 1073 2956 x 1073 1-958
16 2604 x 1073 1:543 x 1073 8-788 x 10~4 1-382 x 1073 1-657 x 1073 1-885
32 6-510 x 10~* 3-858 x 1074 2:314 x 1074 3764 x 104 4127 x 10~4 1-783
64 1628 x 1074 9-645 x 1073 5942 x 1073 1-015 x 10™# 1-031 x 1074 1:735
(N = 64)
128 4069 x 10~3 2:411 x 1073 1-505 x 10~3 2:556 x 1073 2:576 x 1073 1-711
(N = 128)
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N
kKIF(t) = A=~k T Ai(x;=0"" (- St<x) . (19)
j=i

As Tables 1 and 2 show, the resulting bounds are weaker than
for Gauss, but not much weaker than the corresponding ones
for the composite trapezoidal and Simpson’s rules, and the
factors by which they differ are insignificant in terms of error
bounds. It is interesting to note that unlike Gauss, the ratios
of the Clenshaw-Curtis values to the best values of e, and e,
appear to decrease as N increases, at least for the values of N
in the tables.

If the integrand does not even possess a piecewise continuous
first-order derivative, then it may not be possible to derive
error expressions or bounds of the above type, even for the
trapezoidal or mid-point rules, although Baker (1968) has
shown that a weaker Lipschitz condition may suffice. In the
absence of any theoretical basis for selection in this special
case, the simplicity of the trapezoidal or mid-point rules may
well be the only significant criterion, as Stroud (1965) suggests.

For integrands which do have continuous low-order deriv-
atives, however, the error is thus subject to very similar
attainable bounds in terms of these derivatives for both high-
order and low-order methods of the above types, irrespective
of whether high-order derivatives of the integrand are dis-
continuous, attain large magnitudes over [a, b], or are un-
bounded. We have shown, therefore, that the presence in the
classical remainder term for some quadrature formulae of a
high-order derivative or, in the case of the Clenshaw-Curtis
formula, the fact that it is exact for high-degree polynomial
integrands, does not necessarily mean that the error will be
relatively large for such badly-behaved integrands, and so this
particular argument against the use of high-order quadrature
formulae is again invalid.

There is, however, the related question of whether the non-
existence of a high-order derivative or its attainment of a large
magnitude will affect the error estimation procedure. If the
procedure is based on an error expression involving this
derivative then certainly it may be unsatisfactory, but as
mentioned earlier, this points to the need for a more reliable
error estimation process, rather than to any inherent dis-
advantage of high-order quadrature methods.

7. Relative efficiency

Although the quoted objections to high-order formulae on the
grounds of their inefficiency were primarily concerned with
integrands which are ‘badly-behaved’ in the sense considered
above, their relative computational efficiency for more general
integrands also merits careful study.

The fact that certain quadrature formulae are better suited
than others to specific classes of problem has little relevance to
this discussion in the present state of the art, since in practice
the general user is often unable or unwilling to classify his
problem. This is of course unfortunate, since some knowledge
of relevant characteristics of the problem, such as the existence
and nature of singularities in the integrand or its low-order
derivatives, might suggest one of the specially designed
approaches of Bulirsch (1964), Davis and Rabinowitz (1965),
Eisner (1967), Fox (1967), Fox and Hayes (1970), Hunter
(1967), Miller (1968), or Smith and Lyness (1969), while it
would be possible to avoid the ineffective exercise of extra-
polating the trapezoidal values in the case of an integrand
whose derivatives were known to be periodic over [a, b]
(Davis, 1959; Bauer et al., 1963; Thacher, 1964).

Were general-purpose routines to be developed in which the
optimum method is selected on the basis of interrogation of the
user, or of an analytical or numerical investigation of relevant
properties of the integrand, then a comparison of special-
purpose methods would certainly be relevant, but as Lyness
(1969) agrees, this is not yet the case. Consequently we desire

304

a single method which minimises the total computation over
all the problems to which it will be applied. Difficult though
this is to study, some pertinent observations can be made.

The principal measure of computational effort is either the
number of distinct integrand evaluations required to achieve
the specified accuracy, usually in those cases where the appro-
priate formula for doing this is somehow known beforehand,
or, and more probably, the number required to yield an error
estimate of sufficiently small magnitude. Note incidentally
that, since the accuracy required may occasionally be low, it is
desirable that a general-purpose method should be capable
of producing low accuracy with a small number of integrand
evaluations when appropriate, as well as offering high accuracy
when required. The usual algorithms based on the Clenshaw-
Curtis and Gauss-Legendre formulae offer this facility, since
the order of the formula is progressively increased; though
with the latter the fact that formulae of different order have
no abscissae in common must be remembered when assessing
the number of integrand evaluations. Extrapolation algorithms
based on low-order formulae such as the trapezoidal rule are
also very satisfactory from this standpoint.

Some empirical comparisons of relative efficiency have been
made on the above basis with selected and inevitably unrepre-
sentative problems, and although no definite consensus has
yet emerged, there is certainly no evidence that low-order
methods are essentially superior (Bauer et al., 1963; Bulirsch
and Stoer, 1967; Oliver, 1971a; Rabinowitz, 1966; Stroud,
1965; Tompa, 1967). Indeed the experience with extrapolation
methods, in which approximations of both high and low order
are obtained from the same integrand values, tends to indicate
the reverse if anything. The number of distinct evaluations is
not, however, the sole factor in assessing computational effort;
in the Gauss formulae the abscissae and weights must be
provided explicitly, while the Clenshaw-Curtis formulae
require their provision or calculation. The extrapolation
methods do not of course suffer this disadvantage.

Even taking these factors into account, no substantial pub-
lished evidence of an empirical nature is known to support
the belief that quadrature methods in which the order is
restricted to be small consistently require less computational
effort for a given accuracy; again, therefore, one of the possible
disadvantages of high-order methods has no apparent found-
ation in the literature.

8. Adaptive integration

We have hitherto implicitly assumed that the problem involves
the selection of a particular integration formula to be applied
uniformly over the fixed interval [a, b]. This includes algor-
ithms in which satisfaction of the error criterion is sought by
using a class of related formulae of progressively higher order,
or by using a composite rule of a specific order and progres-
sively more abscissae. The composite trapezoidal and Simpson’s
rules fall into the latter category, while the formulae of Gauss-
Legendre and Clenshaw-Curtis can be used in either way, and
extrapolation processes encompass both approaches in a single
algorithm.

Some problems are ‘badly-behaved’ with respect to such a
quadrature method only over a small part of [a, b], in the
sense that the contribution to the discretisation error from that
part of the interval is very much larger, proportional to the
sub-interval length, than from the remainder of [a, b]. If this
characteristic were known beforehand, the error criterion
might well be satisfied with fewer integrand evaluations by
suitably subdividing the interval, and using different formulae
in each with pro rata maximum errors. Since the optimum
combination of interval subdivisions and integration formulae
are rarely known in advance, however, the decision to apply
integration formulae non-uniformly over [a, b] means that
the algorithm itself should determine both the partitioning and
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the formula for each sub-interval.

No such algorithms are yet known; instead the current
adaptive algorithms adopt the less ambitious target of deter-
mining the optimum interval subdivision for a specified
integration rule, perhaps the trapezoidal or Simpson’s rule
(Kuncir, 1962; Lyness, 1970; McKeeman, 1962, 1963;
McKeeman and Tesler, 1963 ; Schweikert, 1970) or a Clenshaw-
Curtis formula (O’Hara and Smith, 1969). In order to mini-
mise the loss of integrand values when a sub-interval is found
to be unacceptable in terms of its proportional error contri-
bution, all such algorithms use quadrature formulae with a
small number of abscissae, often equally spaced to allow re-use
if the interval is subdivided equally, and these formulae are
thus necessarily of low order.

While such algorithms may be more efficient than the uniform
application of a high-order formula for the special class of
integrands described above, there is no evidence to indicate
that this will be true for other classes of problem, and indeed
it will clearly not be the case if the integrand behaves uniformly
over [a, b]—consider, for example, a polynomial integrand of

for each sub-interval on the evidence only of computed
information concerning the integrand. Such a general-purpose
algorithm, which might perhaps be based on an examination
of the computed coefficients in a Chebyshev series approxi-
mation to the integrand in each sub-interval (Oliver, 1971b),
would of course make it unnecessary to base a universal
adaptive algorithm on one, or a small number as with O’Hara
and Smith (1969), of formulae of particular, pre-chosen orders.
In the interim, however, formulae of high order should cer-
tainly not be excluded from consideration, and might, perhaps,
be best combined with low-order approximations as in a
non-adaptive extrapolation method.

9. Conclusions

We have discussed the various possible arguments against the
use of high-order quadrature formulae, and shown that they
are either irrelevant to the modern usage of such formulae, or
are unsupported by published evidence. Consequently there is
no reason why a universal general-purpose algorithm of the
non-adaptive type should not be based on high-order formulae,

slightly higher degree than the order of the adaptive formula.
The existence of such adaptive methods is therefore irrelevant
to our discussion of high-order formulae in the sense that they
are special-purpose rather than general-purpose methods,
though this is not entirely true since an adaptive method

combined with low-order formulae if this should be thoughto
desirable, as in an extrapolation method. The ultimate requlre-a
ment is, however, for more ambitious adaptive algorithms2
which can utilise available analytical or numerical information®
to optimise the type and order of the integration formula asg

might be considered for a universal algorithm on the grounds  well as the partitioning of the range of integration. i
that, though inefficient for ‘well-behaved’ integrands, it will =1
cope successfully with certain difficult problems. Acknowledgements i

Much more useful, however, would be a more flexible
algorithm which not only subdivides the interval of integration
selectively, but also chooses the most efficient order of formula
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