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1. Introduction

Several methods (e.g. see Forsythe and Wasow, 1960), both
implicit as well as explicit, are in use for the first boundary
value problem for the heat equation. Among the implicit
methods the ones that are widely used are Crank-Nicholson
(1947) method and, for results of higher accuracy, the method
of Douglas (1956).

Some of these methods are extendable to the mixed boundary
value problem for the heat equation. For example, Isaacson
(1961) and Batten (1963) have described difference methods for
a general parabolic equation with mixed boundary conditions.
These methods are then applicable to the special case of heat
equation. However, the difficulties in the use of these methods
lie in the fact that in Isaacson’s method one has to assume the
smoothness of the solution  is a region slightly larger than the
region of the problem, while the matrix involved in the use of
Batten’s method is neither symmetric nor tridiagonal.

In this paper two difference schemes for the heat equation
with derivative boundary conditions are described. Both
methods are stable and implicit. The matrices in the systems of
difference equations are symmetric and tridiagonal. Error
analysis is carried out, and it is shown that the errors in the
two methods are O(h* + k*) and O(h*® + k?) where h and k
respectively denote the length of space and time steps.

2. The differential equation
Here we consider the heat equation

u=u, 0<x<l1, t>0, 1
with the third boundary conditions

u 0,1) — cou(0,2) =0

ux(l9 t) + clu(l’ t) = 0 s (2)
and the initial condition
ux,00=f(x), 0<x<l1 3)

¢, and ¢, are non-negative constants. f(x) and the solution u
shall be supposed to have as many continuous derivatives as
are needed in the following sections.

3. The difference schemes

We discretise the region 0 < x < 1, 0 < ¢t < T by placing on
it a mesh of spatial length 4 and time-step k.
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The two difference schemes that we study here are (e.g. se
Keast and Mitchell, 1966).

Scheme 1:
(A=4r6)Ut = (1+4r8H)UE, j=1,2,...,
together with
[A+1/3)coh)+r(1+coh)] UG —rU =
[(1+(1/3)coh)—r(1 +coh)] Uj +1U'

N-1

dno-olwapese/;:sdpytuoly papeojumoq

LUOO

and a similar analogue of the right-end boundary condmon§

Scheme 2:

[(1+(1/12)62)—3ré2] U‘Jr1 = [(1+(1/12)62)+1rd2] UJ‘: ,
j=1,2,..,N
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together with

[(L+(1/5)coh) +(6/5)r(1 +coh)] ﬁi,“+1_T6r 173“ =

(1+6r)

[(1 +(1/5)coh) — (6/5)r(1 + coh)] Ul +

Ct

together with a similar formula for the other boundar
condition.

Here r = k/h?, &% is the usual central difference operato
and U}, U i correspond to u(jh, ik).

Usmg Taylor s series it can be seen that the local truncatlorg

errors E}, E i in the two schemes are respectively O(h* + K2R
and O(h3 + k2) In the next section we show that the discreti-
sation errors are also of the same order in'a suitable norm.

Using matrix notations the preceding two systems of differ-
ence equations can be written as

udyBL u

1 . 1 1 .
(1K+Z§A>U'“=<—K—PA>U‘ i=012...4

k k

and

2 12 ) 1L 2 12 ~.

( B + th U (%B th)U =0,1,2,...(9
with

; U=0°=F,
where Ui, U, F are (N + 1)-vectors whose jth components

respectively are U}, Z'/},f(xj). K is a diagonal matrix and 4 and
B are symmetrical tridiagonal matrices defined by



1 + coh 0
3
2
2
K = -
2
1 + ¢h
! o 3
1 +coh —1 0 - 0
-1 2 -1 0 -
A= 0 -1 2 -1 0
0 - -1 2 -1
0 - 0 -1 1+ch
54¢h 1 0 -0
1 101 0 -
B = - - - -
0 -1 10 1
0 -0 1 54c¢h

4. Convergence and stability
We now establish the stability and convergence of the two
difference schemes described above.

Let us consider the system (4) first. If y is any non-zero
(N + 1)-dimensional vector, then obviously

y'Ky >0,
and

N-1
yidy = Z (i=yien)*+eohys+eihyy =0

Hence K is positive definite while A4 is positive semi-definite.
Therefore, 1/k K + 1/h* A is positive definite and its inverse
exists.

We now define a norm |y||; # |P~'y||, where the latter
norm is the ordinary Euclidean norm and P is a non-singular
matrix yet to be chosen.

1 \"1/1 1
”( K+h2A) (EK—ZEA)J’Hl
1 1\~ 1 1
= -1(_ — -1 -
= ||P (kK+h2A> P P(kK i )PP Vl

< ||{P (%K+£§A>P}_1{P(%K— ,—II-ZA> P}!l (b7

We now choose P such that PKP = I. Obviously such a non-
singular matrix P exists. Then

ot b} (- )

Then

1 1
- — — )'i
= max k h2 <1
0<i<N 1 1 - 4
k + h2 j’l

where A; is the ith non-negative eigenvalue of the positive
semi-definite matrix PAP. (Here we are using the fact that the
Euclidean norm of a symmetric matrix is equal to its spectral

radius.)
Thus,
1 1 -1 1
I (}K+,—1—2A> (I;K—,’l‘zA)”lSl ©)
Similarly
310

1 1 \!
Iz K+7m4) ¥
-1
= |[P'1<7€K+ i A) P 'PPP Yy
1 1 -1 2
S IWP{z K+ 4) P ILIPIE 1l

1 1
<| {P (k K+ A)P}‘lu Il

Hence,
1 1 4 1 ‘ll
I (zK+ A < I5P (g K+ 4)Pp |
_ 1
Todiew [T L |k (7
1:,'}"}12 i

(6) assures the stability of the system (4). Convergence also

)

follows easily as follows. g
From (4) and a similar equation satisfied by the solution u weZ
have 9
[0}

el b (b B

v =Rttt e kST S

I

! K ! A - E! 8 ]

k + h2 ’ ( )5

ped

where w' = u’ — U, u'is (N + 1)-vector whose jth componentg
is u(jh, ik) and E' is the truncation error term which, aso
already noted, is O(h* + k?).

Hence, it follows from (6), (7) and (8) that

B wil, < TM#* + k%) i=1,2,...n,

U?LUOO/LUOO'dn

where M is a constant depending on the partial derivatives o
u, and T = nk.
Therefore,

Rwil < B P| |will, < TM(H + k%) .
Scheme 2

We now consider the system (5). It is easy to see that B i
positive definite with eigenvalues I'; greater than 1 (since B — 1
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is also positive definite). Therefore the inverse of g
«Q

k 12 3

(2]

( B+ 7 A) 2

=}

exists. o
Since B is symmetric, there exists a unitary matrix Q such that>
0 'BQ =K, N

where Kis a diagonal matrix with I'; as the ith element on theb
main diagonal.

We now define a norm || ||, on the linear space of (N + 1)-
dimensional vectors y. || y|l, = |[P~*Q " 'y|, where, as before,
the latter norm is the Euclidean norm and P is a non-singular
matrix yet to be chosen.

Then
2 12 2 12
"(1‘( hz A) (EB - ’h—2A>,V||2
— e (Ta+ a) P PO

2 12
=(;€B th)QPP 0 'yl

IA

2 12
1P~ (I—c R+ 504 Q) -1p-1p
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2 5 12
(,;K—;; 0t 4 Q) Pl Iyl
2 o 12
(,;K ,;zQ‘lAQ>P}—1
2.5 12
{p (k k- 504 Q)P}u 1512

As before we choose P as a diagonal matrix such that PKP =

I, and conclude that since PQ 'AQP = PTQTAQP is
positive semi-definite,
2 12 \71/2 12
((Za+24) (RB-ja)az1. O
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Similarly

2 12\t
I (];B+h~2A> L, <k.

(9) assures stability and proceeding as before we conclude that

R lu' = U < K QI IP] uf — U,
< h¥ut = U'l,
< TN + k%),
N being a constant.
In the case of secondary boundary conditions 4* above can be
replaced by A*.
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