Faults in functions, in ALGOL and FORTRAN

I. D. Hill

Medical Research Council, 242 Pentonville Road, London N1 9LB

When a fault is found during the evaluation of a function, usually because of an invalid argument,
what action should be taken? The advantages and disadvantages of various possibilities are discussed.

(Received August 1969, Revised November 1970)

Suppose we wish to write a procedure to evaluate a function,
A, with argument », and only certain values of n are permitted.
For the sake of argument, let us say that » must be zero or
positive. It will usually be desirable to include, in the procedure,
a test for n > 0. The question is, if this test fails what action
should be taken?

There are several possibilities, each with its advantages and
disadvantages. In examining these I shall pay particular
attention to ALGOL 60 and ANSI FORTRAN. The users of
other languages may like to consider whether the same argu-
ments apply or not.

The first point to be considered is whether the language, and
the compiler, concerned permit functions to have side effects.

Side effects prohibited

If side effects are not allowed there would seem to be only two
possible actions:

(a) to give the function an impossible result. For example,
if the function is necessarily positive, a result of —1 might be
used to indicate incorrect usage. This has the disadvantage
that the user must be aware of the possibility and always test
for it. This may be easy to remember the first time one uses the
function, and when one has just read its documentation but it
is very easily forgotten on later occasions.

I have known a case where this method was used, in calling
from magnetic tape the heights of a number of men, —1 being
returned if the information was not available. Forgetting to
test the results led to two men with heights of —1 being used
in the ensuing analysis.

Testing for the impossible result is simple enough, if remem-
bered, provided that the function is called in a simple context,
such as

x := A(n)
but the advantage of a function over a subroutine call is that it
can be used within an expression, and if the expression is at all
complicated, the impossible result may be very difficult to test
for.

Furthermore, this method is not always possible. For some
functions, any numerical value whatever can be a valid result,
and no impossible value is available for a fault indication;

(b) to abandon the functional approach altogether and use a
subroutine call instead i.e. instead of

real procedure A(n) or FUNCTION A(N)

to resort to

procedure A(n, result) or SUBROUTINE A(N, RESULT)
This has the advantage that all compilers (I sincerely hope) will
allow side effects in this context, thus permitting the use of any
of the methods (c)-(h) listed below, but the disadvantage that
calling 4 must now always be a self-contained ‘statement’. Not
being able to include the call in an expression is certainly a
handicap in program writing.

Side effects permitted
If side effects are allowed, a number of actions become possible,

Volume 14 Number3

as follows:

(¢) to print a message and terminate the job. This is the
method usually adopted for standard functions available
without user declaration, ‘sqrt(n)’ for example will generally
produce this result if n < 0. It is a bit drastic to reccommend as
a normal device for user-defined functions, where recovery
from the fault would often be possible if the job were not
terminated. In ALGOL 60 there is also the difficulty tha
there is no method of terminating, such as the ‘STOP’ statem
ment of FORTRAN; 3

(d) to give the procedure an extra parameter, of Booleary’
(or LOGICAL) type, which, as a side-effect, is set to true if theg
call was successful, or to false otherwise. This has the disz
advantage of method (a) that the user has to remember to maké
the test, but the advantages that the existence of the parametef}
reminds him that the test is necessary, and that even if th&
function is used in a complicated expression, the Booleart
parameter is still there to be tested after the calculation of thg
expression has been completed. However the work of com?
pleting the calculation after a fault has occurred, will usuall§
be wasted, and may even cause some other fault;

(e) to have an extra parameter as in (d) above, but of 1ntege§
type. This has the advantage that if more than one type of faul§
is possible, different integer results can be given to indicate;
which one occurred. Otherwise the advantages and disadvan®
tages are as for (d). This method is recommended as editoriag
policy for algorithms published in Applied Statistics (Workmgg
Party on Statistical Computing, 1968);

(f) to have a Boolean procedure (or LOGICAL FUNCTION)'\’
giving the result of the validity test as the main output, whlléﬂ
setting the required function value as a side effect. This rathetr
backhand method does at least force the user to make the faulb
test. It has the disadvantages that it looks perverse to the humarg
user, and that the requlred result is no longer in functional form>
and cannot be included in an expression;

(g) in ALGOL, to give the function a label parameter, ané:
jump to that label if faulty usage occurs. This has the advan=.
tages that the useris forced to set a label to go to, and forced t%
think about the action he is going to take if he arrives there>
Furthermore, although the function can still be used as part of
an expression, useless calculations in evaluating the expression
will be abandoned as soon as the fault is found.

It has the disadvantages that (i) the ALGOL Report (Naur
et al., 1963) is not entirely clear on whether this is allowed or
not (Knuth 1967) and (i) even if the Report can be read as
allowing it, some compilers (e.g. Burroughs) do not, while
others (e.g. Atlas), while apparently allowing it, fail to cancel
temporary storage being used in evaluating the expression of
which the function is part. This can be disastrous if many such
error exits are taken within one program.

In ANSI FORTRAN, this method is not available since
labels are not allowed as dummy arguments, and an assigned
GO TO can go only to labels within the current subprogram,
and cannot execute a return to the calling program.

In some non-standard implementations of FORTRAN,

315

however, there is Iess restriction and the effect can be achieved
by, for example, the

RETURN J
statement of XDS FORTRAN, where J is a dummy argument
to which a label has been assigned;

(h) to give the function a procedure (or SUBROUTINE)
parameter. This forces the user to give an actual procedure to
be performed in case of failure, and may be allowed by com-
pilers that disallow jumping out to a label. It is sometimes
suggested that calling a procedure overcomes some of the
difficulties associated with jumping out to a label (e.g. Herriot,
1968) but if the user can now jump out of the procedure, all the
difficulties are still there, in a more pernicious form as they
are more heavily disguised.

If one does not jump out of the procedure, it means returning
to the original function, where one no longer wishes to be, and
eventually continuing with useless calculations.

Conclusion

In my opinion, by far the most satisfactory method, where
available, is that designated (g) above—to give the function a
label parameter—in that the user cannot forget to make the
test, in the absence of a fault the result is available in func-

References

DuksTRA, E. W. (1968).
HerriorT, J. G. (1968).
Kn~uTts, D. E. (1967).
NAUR, P, et al. (1963).
Working Party on Statistical Computing (1968).

tional form, yet in the event of a fault useless calculations are
discontinued.

The difficulties are not so much troubles with the method, as
troubles with languages and compilers which have not allowed
for the method. I hope that one day it will be generally agreed
that this is a normal and respectable method of dealing with
faults in functions, and that language writers and compiler
writers should be expected to write their languages and com-
pilers accordingly.

I may seem inconsistent in this choice, since in general I agree
with Dijkstra (1968) that ‘the goto statement . . . is too much an
invitation to make a mess of one’s program’ and I always try
to avoid the use of labels wherever reasonably practicable.
However, in the case being discussed, the program is already
a mess—a failure has occurred, and some exceptional step is
needed. The shock of a ‘goto’, jumping away from the scene
of action, to start picking up the pieces elsewhere, seems to me
to be just what is required, in emphasising that this is an un-
usual, and unhappy, event.

Acknowledgement

I acknowledge some enlightening discussion with Peter
Hammersley following an earlier draft of this paper.

Go To Statement Considered Harmful, CACM, Vol. 11, pp. 147-148.
Editor’s note (within Certification of Algorithm 299), CACM, Vol. 11, p. 271.
The Remaining Trouble Spots in ALGOL 60, CACM, Vol. 10, pp. 611-618.
Revised Report on the Algorithmic Language ALGOL 60, Comp. J., Vol. 5, pp. 349-365.
The Construction and Description of Algorithms. Appl. Statist., Vol. 17, pp. 175-179.

316

The Computer Journal

20z udy 61 U0 188n6 AQ 6ZG0ZH/S L E/E/Y L /B1014E/|UfLO0/W0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

