CMSR—A personnel information system

J. W. Bridle and R. J. Gregersen

Statistics Division, Civil Service Department

This paper describes a personnel information retrieval system which became operational in the
Civil Service Department in June 1970. The system is known as the Central Management Staff
Record (CMSR). Information about senior civil servants in all Departments of the Civil Service is
stored on a computer. The information is used by central management to assist in vacancy filling,
manpower planning and for statistical purposes. The system operates from a remote terminal and uses
an information retrieval language in a conversational mode, has the ability to store, retrieve and
amend questions ‘on line’, and is able to edit terminal output.

(Received June 1971)

One recommendation of the enquiry, headed by Lord Fulton,
into the Civil Service was that selection of people for senior
posts should be made from across the Civil Service, irrespective
of individuals’ origins or disciplines. The recommendation was
accepted, creating a need for a central bank of records. Data
existed already in the Civil Service Department on some of the
senior people concerned but it was decided to create a new
system to be known as the Central Management Staff Record
(CMSR) based on a computer. Costs of a computer system
were reckoned to be comparable with setting up manual
systems capable of providing a similar service.

The task

The objective set in the autumn of 1968 was to create, in as
short a time as possible, a file of about 6,500 senior civil
servants together with an information retrieval system which
would be easy to use and could provide information quickly
to personnel managers in Whitehall to assist them in vacancy
filling, manpower planning and statistical work. Whatever the
system chosen, whether manual or computer, the method of
producing results would have been similar, namely the matching
of characteristics of posts to be filled against characteristics
and job experience of the people on file. By clerical methods,
matching can be laborious and error prone; by computer,
using a retrieval program, the process of selection becomes
more reliable. In this particular project, time and resources
were in short supply and it was clear that an existing retrieval
program would have to be found. After some investigation,
SPECOL (Smith, 1968 and 1970a and b) was selected as being,
for this application, the best and most advanced available
software. Use of an existing program influenced to some extent
the approach to the scheme and solutions to some of the
problems encountered, for example, the type of record
structure. Choice of SPECOL meant also that either an IBM
360 or ICL System 4 computer would have to be chosen and it
also soon became apparent that the need for quick response
meant remote access and in this case use of a teletype. It was
decided that results from the teletype would have to be pre-
sented in such a way that they could be immediately understood
by people who were not familiar with computers. This meant
that all output would have to be de-coded and explanatory
text words provided. In addition, because the main purpose
was to provide information about people to assist in vacancy
filling, ways of codifying job experience and qualifications
would have to be found. Registering experience in turn meant
that the people themselves would have to be involved in data
capture, as only the individual himself can adequately describe
his job experience.

System requirements

It was eventually decided that the principal requirements of the
system should be:

338

1. Updating must be simple and error correction straight-
forward.

2. It must be capable of providing information quickly.

3. The retrieval language must be capable of use by non-
programmers.

4. The method of communication with the computer during
retrieval of data must be direct and uncomplicated.

These main requirements were met, first by adopting a record
amendment system in which the layout of each amendment
form corresponds with the equivalent record entry and the
whole or part of an entry may be amended as required;
secondly, by a teletype to link the Civil Service Department in
Whitehall with the computer; thirdly, the availability of
SPECOL and, finally, by expending not a little effort to devise
a simple, conversational remote access method of com-
municating with SPECOL which would produce output in a
comprehensible form.

Data capture

To set up the main file a questionnaire booklet was completed
for each person. Information of a general nature was entered by
personnel officers but details of jobs and qualifications were
filled in by the individuals concerned. The information in the
booklets was punched into cards, checked and transferred to
the computer. After processing, check prints were sent both to
each individual and his personnel officer, giving them the
opportunity to correct or amend the new record. Whenever a
record is amended a fresh check print is sent to the personnel
officer and annually a complete print is sent to each of the civil
servants on the file. These prints are a vital feature of CMSR.
They help to keep the file accurate because the individual has
the opportunity to point to errors or omissions and, at the
same time, he is able to see the extent of the data recorded
about him. Also, errors may be put right by entering the correct
data on amendment forms together with the reference number,
shown on the latest print, of each item to be corrected.

Record content

Each record on CMSR contains personal information of a kind
found in similar systems within and outside Government.
For example, name, date of birth, salary and qualifications are
among the 35 or so items recorded. In addition, a system of job
classification was devised based on five elements:

1. Occupation code (or field of work), e.g. financial accounting.
2. Function type (or role in the organisation), e.g. project

manager.

3. Organisation type, e.g. nationalised for jobs
industry outside

4. Organisation activity, e.g. transport Government.

5. Salary level.
Jobs which are, or have been, held by senior civil servants both

The Computer Journal

20 udy 61 U0 188n6 AQ | ¥0GZE/BEE ¥/t L /B1014E/|UfLOD/W0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

within and outside Government are coded using the first four
of the above elements. There is also a limited area for entering a
plain language description of the post. The fifth element—
Salary level—defines each individual according to salary band.
People, irrespective of grade or job, within a specified salary
range can be identified using the appropriate salary level code.

Record structure

Records were structured with SPECOL in mind. Each record
consists of a variable number of entries. Each entry, up to 150
bytes in length, contains a number of related items; for example,
an entry may consist of pieces of information about a specific
job or position held. A record may contain from 3 to 43
entries depending on the length of service of the person con-
cerned. Every record starts with a G entry which contains the
record key. All data are held in character form.

Layout of a CMSR record:

[G entry | General information—
surname, date of birth

[Hentry) ete.

[Jentry 01 | Current job details

[Jentry 02 Previous job details
(up to 20 previous jobs)

[Qentry 0l |
Qualifications data

[Qentry 02 |

In SPECOL terms the G and H entries are ‘headers’ and can be
considered as the fixed length part of the record; the J and Q
entries are ‘trailers’. There may also be S and T trailers in a
record. References to look-up tables appear on each record
next to the data.

System outline

CMSR has time on a System 4/70 computer at the Road
Research Laboratory (Department of the Environment) used
mainly for scientific work. It has 256,000 bytes of core, six
magnetic tape units, six disc drives, two printers, two card
readers and one communication control unit. The remote
terminal is linked to the computer by public telephone line
using the Post Office’s Datel 200 data transmission facilities
working in half duplex mode. CMSR uses about 1} hours per
week updating and about 5 hours per week interrogating the
file.

The organisation of programs falls naturally into two parts; a
main file suite and an interrogation suite. In addition to these,
and equally important to both, is a tables suite. The main file
suite vets incoming data, creates and updates records, and
produces check prints. The interrogation suite controls the
tele-processing logic and arranges for the SPECOL compiler
to be called when a question is assembled ready to run. The
tables suite creates and amends look-up tables which are used
both to de-code output and also for vetting new data. The latter
use enables extensions of permissible code ranges without
program changes.

The relationships between the three suites is represented in
simplified form at Fig. 1.

With the exception of the SPECOL compiler, which existed
already as a package, all programs were written by the Applied
Programming Department of International Computers Ltd
(ICL) under a contract from the Civil Service Department.

Volume 14 Number 4

Il Tables Suite
>

B/F
///// Tables

Data

| Main File Suite |

-

Data

Vet Vet

Update lUpdatef

SPECOL

)
The ll!!!!!lll

Interrogation

>
Stored
Ques-

tions

Results

—
Questions

Program

0

lResuIls

I1] Interrogation Suite

Fig. 1

J,JJ/|U[LUOO/LUOO'an'O!LuepEOE//ZSdnL] wiol] pepeojumoq

‘In-house’ programmers were not therefore needed during the%
early days but they were required later to receive the completed
programs and to maintain them. Programs were written mainlys
in COBOL but assembly language was used in some areas, i
particular the interrogation program. R

q 1¥05¢

The interrogation program

This program is divided into six segments; one of these, thé
interface segment, calls in the SPECOL compiler as requireds
Fig. 2 is a simplified diagram of the interrogation prograng
showing its relationship with SPECOL and the nature of the;
part played by each of the six segments. >

A more detailed description of the main functions of each of
the segments is as follows: 8

1. Controlling teleprinter conversational logic.
Accepting SPECOL questions from the teletype.
Retrieving SPECOL questions from store.
Accepting amendments to SPECOL questions from the
teletype.
Reporting error conditions to the teletype.
Controlling entries and exits to other routines.

2. Converting the variable format lines into 80 byte card
images suitable for SPECOL.
Removing and processing special characters from the
SPECOL question.
Vetting input for errors.
Obtaining a specific line from a question for amendment.
Processing amendments.
Vetting and preparing a question for running.
Reporting errors.

¥20

2

Question Main
Vetting File
4
1. 3.
Control SPECOL
Interface . SPECOL

i i

< L

HHHIHH Line Edit
5.

Results
Output -

6.
Stored Question
Ques- Store
tions Update

Remaining output

Questions
>/ Teletype

First 39 lines output

Fig. 2. The interrogation program and SPECOL

3. Providing an interface between the SPECOL compiler and
the card image input from the terminal.
Providing an interface between the compiled SPECOL
program and the line image output.
Arranging output of the first 39 lines of results.
Keeping counts to enable further teletype output time to be
calculated with reasonable accuracy.

4. Searching output lines for coded items.
Decoding of coded items by referencing look-up tables.
Informing the control of any line overflow.

5. Passing decoded lines of output to the teletype.
Arranging the various options regarding repeating lines of
output.
Determining when the end of the results file has been
reached.

6. Arranging the storage of questions on disc if specified by
the teletype.
Amending index of stored questions.

Terminal operations

From the terminal operator’s view-point an important feature
of the interrogation program is that at each stage in the dia-
logue he is presented with the possible commands open to him.
For example, at the beginning of a session, after the unique
identifier has been typed in, the program responds:

SEND MODE GET OR FINISH

The operator is obliged to select one of the three commands
MODE, GET or FINISH in order to continue. This disciplined
dialogue has two advantages. It has simplified the logic of the
program which is therefore less likely to contain errors and
also the operator’s response time is short because his choice of
commands is limited to those appropriate to each phase in the
dialogue. The following are examples of output messages and
their responses:

340

Program message
SEND IDENTITY

SEND MODE GET OR
FINISH

SEND GIVE GO AMEND
OR ABANDON

SEND REPEAT TYPE
PRINT OR CANCEL

*kk

SEND SAVE OR LOSE
QUESTION

Permissible response commands

Requests the operator to send his
personal identity number as a
security check.

MODE means that a SPECOL
question (which must start with
the word ‘MODE), is to be read
directly from the teleprinter
either by hand typing or using
the automatic send facility. In
most cases the question is
prepunched on paper tape and
then fed through the teleprinter.
GET nn means that SPECOL
question nn is to be retrieved
from a permanent question file.
FINISH means that the session
is to end.

GIVE requests the program to
provide a specified line of the
retrieved SPECOL question.
GO informs the program that the
question is ready to be compiled
and run.

AMEND is followed by an
amendment to one or more
lines of the question.
ABANDON, this question is no
longer required for running.

REPEAT causes a repeat of the
results just output.

TYPE continue with the results
on teleprinter. Options are given
every 39 lines to continue or halt
output of results. Results are
automatically held on disc for
off-line printing if the TYPE
option is taken.

PRINT stops production of any
further results on teleprinter but
retains the results on disc for off-
line printing.

CANCEL deletes the results
from disc and continues with
session. This would happen if the
complete results had been re-
ceived on the teletype and no
line printer output was required.
This message appears after 39
lines have been output in answer
to the REPEAT or TYPE
options if they have been given
in reply to the previous message.
Hieroglyphics are used as a
reply to this message, so as not
to interfere with the typed
results.

))) cease producing results

(((continue with the next 39
lines

& & & continue to the end of the
results—no further options

//] repeat the last 39 lines

SAVE, the question is to be held
in the specified slot on the per-
manent question file.

LOSE, do not save question.

O
o

202 udy 61 U0 188n6 AQ | F0GZE/BEE/ ¥/ L /B10IE/UMLOO/WOY"dNO"OILISPEDE//:SARY WO PAPEO|UM

The Computer Journal

TIME 39:58:34
SEND IDENTITY
[S]

SEND MODE GET OR FINISH
(MODE 3 ACCOUNTANCY QUALS
TYPA GN17 (1010 TO 1013) AND GN1® ¢ > 18)
TYPB QN2 (2) AND QAQ2 ($P430)

PNTA GA@4 GAQS GXO@7 GN@7 // Gx@1 GAd1

PNTB @/ JX14 JUN14 /7 JX17 JUNL1T // JX02 JA@B2
AND QAd3 7/ QXx@7 GNA7 // QX11 QAl1l

END]

SEND GIVE GO AMEND OR ABANDON -—

DATE 28:01:71

'Oucstion title
} Search parameters

SPECOL

question } Print parameters

(GOl

AN+ OTHER BORN: Q10121 DEPTMT: AGRIC FiSH AND FOOD

J JOB STRT:1268 JOB END: GRADE: PRINCIPAL EXEC OFFICER Result
J JOB STRT:3959 JOB END:1268 GRADE: SEN CHIEF EXEC OFFICER of
J JOB STRT:0855 JOB END:@959 GRADE: CHIEF EXECUTIVE OFFICER search
Q MEMBER PROF INST QUAL YR: 1938 PROF.QUAL:ACWA

NO OF LINES SEAéCHED: 44462

OUTPUT TOTALS

1 RECORDS
S DATA LINES
6 PRINT LINES

#*%END OF RUN#**x%
CMSR RUN ACCOUNTANCY QUALS
@01 MINS TYPE TIME
SEND REPEAT TYPE PRINT OR CANCEL
(CANCEL)

fg:eESg\zlf OR LOSE QUESTION The above question is stored on
SEND Mooe GeT OR FINTo disc with serial number 32
(GET 32) —=—

32 ACCOUNTANCY QUALS Retrisve question 32

SEND GIVE GO AMEND OR ABANDON
[AMEND

82. TYPA GN17 (9113))
SEND GIVE GO AMEND OR ABANDON
(GO}

Amend line 2 of question 32

Result of second search. No record

NO OF LINES SEARCHED: meets changed criteria.

44462}

} Therefore no output totals

OUTPUT TOTALS

" RECORDS
DATA LINES
PRINT LINES

**%%END OF RUN#*#
CMSR RUN ACCOUNTANCY QUALS
A1 MINS TYPE TIME
SEND REPEAT TYPE PRINT OR CANCEL
[(CANCEL)
SEND SAVE OR LOSE QUESTION
(LOSE) —=—
SEND MODE GET OR FINISH
(MODE 3 QUALIFICATION TYPE
TYPB @QN@2 (1 OR 2)
OVCNT QA@3 (SND1) (SN@2) (SN12) (SN23) }
END)
SEND GIVE GO AMEND OR ABANDON
(GOo)

Amended version of 32 not
d on disc

Next question

Q)esgion - to count numbers of
certain types of qualificatiop.

NO OF LINES SEARCHED: 44462
COUNT TOTALS

5460
9946

TYPA LINES
TYPB LINES

559
560
393
1159

QA03 DOCTORATE
" POST GRADUATE DEGREE
OXCAM MA - 1ST Results of count.
FIRST DEGREE - 1ST CLASS
*+%END OF RUN#**x
CMSR QUALIFICATION TYPE
@01 MINS TYPE TIME
SEND REPEAT TYPE PRINT OR CANCEL
C(CANCEL)
SEND SAVE OR LOSE QUESTION
(LOSE)
SEND MODE GET OR FINISH
(FINISH) -
FINISH TIME 10:19:26

Fig. 3. Example of teletype output

End of session

Fig. 3 is an example of teletype output illustrating some of
the messages and resulting responses. Operator commands
(responses) are enclosed in square brackets [].

Output

Printing from the teletype is relatively slow at 10 characters per
second so that allowance has been made within the interrog-
ation program for different amounts of output. The first 39
lines of results are invariably output on the teletype. During this
time (39 lines takes about 4 minutes) the file continues to be
read and results output to disc. The program keeps a count of
the number of lines output and presents the terminal operator
with two options. If total output will be less than 450 lines a
message indicates how long it will take to print (the first 39
lines have already been printed) and gives the choice of con-
tinuing to output on the teletype (‘TYPE’) or on the line

Volume 14 Number4

printer (‘PRINT"). Alternatively if total output will be greater
than 450 but less than 10,000 lines the program gives the oper-
ator the choice of outputting to line printer, or of cancelling the
question (‘CANCEL’). If the calculated total output will
exceed 10,000 lines the program automatically abandons the
question on the basis that it has not been formed correctly.
Experience may show that the limits of 450 and 10,000 lines
are either too low or too high and they may have to be adjusted.

Question storage and retrieval

One way of making efficient use of a terminal for information
retrieval is by ensuring that questions are not only phrased
correctly but also that the logic and search parameters of the
question are correct. Lack of care in preparing questions
wastes computer time. It is equally important that teletype
output which is to be sent direct to users is presented in the best
possible way. The CMSR system goes some way in solving
these problems in that up to 70 questions which have previously
been run may be stored and retrieved by the command GET
nn, where nn is the serial number of the required question. The
question may then be run immediately with the command G@.
Alternatively, and more commonly, a stored question may be
amended by inserting, deleting or amending lines of the origin%l
question. The question, as amended, may then be run leaving
the original untouched in store for future retrieval. If desir

the amended version may be stored by the command SA

after it has been run, either in place of or in addition to tlg
original question.

|Luepeoe//

SPECOL

As mentioned earlier it was decided to build the mformath;l
retrieval system around an existing, proved, enquiry program
and we were fortunate that SPECOL had been operating su
cessfully for some time on IBM 360 and could be adapted tzo
System 4.

In SPECOL a series of comparisons are made between valué
specified in the search parameters of a question, and the values
of data on records being interrogated. If a comparison m
successful it means that the record satisfies the conditions la@
down in the question. Even the most complex conditions can b
expressed in terms of the three principal operators used i
logic—AND, OR and NOT.

In questions, these operators are used to link the ‘names whlo§
are allocated to the fields of a record. These ‘names’ are listed
in the SPECOL program with their locations in terms of byg
positions.

Each SPECOL question is written in two parts; the ﬁréi
contains search parameters to identify records which satisfy
the characteristics specified in the question and the second pa
stipulates what is to be printed out from each record. Informe
ation can be output in any form or position required. The
SPECOL compller is called in by the interrogation progran{g
The question is compiled into the SPECOL program and, if
valid, control is handed to this program which proceeds to
search the file.

In the CMSR version of SPECOL each coded field can be
referred to by using up to three ‘names’. For example GNO1,
GAO1 and GXO1 each refers, for a different purpose, to the
field ‘Department’. GNO1 (123) could appear as a search
parameter of a SPECOL question and in effect means ‘look for
any record containing a Department with value 123’. GAO1, on
the other hand, would be used in the print part of a question
to output, in plain English, the Department contained in a ‘hit’
record. And finally, if GX01 were used in the print part of a
question it would cause the actual word ‘DEPARTMENT’: to
appear as an explanatory text.

All coded fields on the CMSR are treated in this way. The
terminal operator decides whether or not he wishes to use all

ZE/

3

)
J« CAp1 l)- descriptive
g "names"
l GX@1 l | GNg1 g within SPECOL
g U 6 § B |[n n n | - data on record
Fig. 4

three facilities in every question.

Fig. 4 shows how the item ‘Department’, a three digit code in
character form, is held on a CMSR record. Following Fig. 4
is a simple question to illustrate the use of the three names.
Simple question
Identify all people in either Fisheries Department or Factories
Department (codes 123, 456) and print surname, date of birth
and Department.

Question written in SPECOL

MODE 1

TYPA GN@1 (123 OR 456)
PNTA GAQ5 GN@7

AND GX01 GAQ1

END

(GAOS is surname, GNQ7 is date of birth)

Specimen result
JACKSON

search parameters

data to be output from ‘hit’
records

12 02 20 ~ In these results the sur-
name and date of birth
are data as held on the
record.

‘DEPARTMENT’: is a

DEPARTMENT: FISHERIES

SMITH 19 12 25 text word (from GXO1);
‘FISHERIES’ and
DEPARTMENT: FACTORIES | ‘FACTORIES’ are de-

coded versions of codes
< 123 and 456 (GAQ1)

In the above example the text ‘DEPARTMENT?’ is probably
unnecessary as it is clear that ‘FISHERIES’ and ‘FACTORIES’
are Department names. In the case of other items, for example
dates, text words are extremely useful. The other words in the
question, namely ‘MODE 1’, ‘TYPA’, ‘PNTA’ are SPECOL
commands:

‘MODE I’ indicates to the SPECOL compiler that output
is required from ‘header’ fields only. Modes 2, 3
and 4 signify that output is required from com-
binations of trailer and header fields.

‘TYPA’ indicates to SPECOL compiler that the data on
which search is to be made are in header part of
record. (TYPB used for trailer fields.)

‘PNTA specifies that fields to be printed out from hit

AND’ records are in header part of record.

Batch SPECOL

While the ability to interrogate file and obtain immediate
answers over a terminal link is the main feature of the CMSR
system there is, in addition, a standard batch method of inter-
rogation again using SPECOL. This method is used in three
situations; first, when the output is expected to be large and the
teletype would clearly be too slow, secondly when the inform-
ation is not required immediately, and thirdly, when results
must be sorted.

Operations
When the system became operational in June 1970 the operating

342

system would not permit simultaneous working of the Com-
munications Control Program with that part of the operating
system concerned with storing output on disc for subsequent
printing. In practice this restriction has meant that CMSR can
run only under an older version of the operating system and
therefore only a limited number of other jobs can run simul-
taneously. For this reason CMSR terminal sessions take place
at a fixed time daily to minimise the disruption caused by
switching operating systems. This problem will be overcome
with the next version of the operating system and the pattern
may well be two or more shorter sessions during the day, as
questions arise.

The file occupies about half a tape and interrogation takes
place within tape passing speed. At the start of a session the
current main file is mounted and control is passed to the tele-
type operator. Each session is usually about 1 hour in length
during which time the file is read and re-wound several times.
Rewind time cannot at present be used for submitting the next
question and consequently each question takes, on average, 5
minutes to answer. Actual times depend on whether all or part
of the file was searched.

Experience of CMSR

The system has been operational for about 8 months. As
expected, the updating, being dependent on people remem-
bering to notify the centre when changes occur, is the least 3
reliable part of the system, justifying the extensive use of check §
prints to encourage individuals and personnel officers to keep @
the records up to date. Nevertheless a reasonable standard &
of accuracy was attained when the file was created and we &
expect this to be maintained and improved upon.

Practical experience of the information retrieval side of the 5
system is encouraging. Potential users are being educated on©
ways in which they can use CMSR and people are’ beginning S
to turn to it for information previously obtained from diverse 5
and less accessible sources. During the first 6 months a con- S
siderable number of requests have been met for information
and prints of individual records. These requests have come from
personnel managers with a wide range of responsibilities—pay,
training, statistics, manpower planning, etc.—in the Civil =
Service Department indicating that already the need for inform- 3
ation held on CMSR is broadly based. It is worth stressing that &
although the computer is employed to produce lists of people £
who possess the required characteristics for vacancies, these §
computer selections are not final. This is so for two reasons;
firstly because performance and ability are not recorded on the
file and secondly because a system of this kind must permit
human intervention before final judgements are made.

Programs, hardware and telecommunication links have worked
well although the short time the latter are used is probably not a
fair test. Operator expertise both at computer and terminal have
reached an acceptable level.

0.} papeOjUMOQ

wa

/elonue/jufw

%

¥20z 1udy 61 uo1senb Aq |

Future plans

CMSR became operational in June 1970 and is working suc-
cessfully; in the immediate future the file will be extended to
include a further 2,000 people. Consideration is being given to
adapting the multi-question version of SPECOL to the system.
In the longer-term the main file may be extended beyond 8,500
records.

In parallel with CMSR, work is going ahead on a much larger
system called PRISM (Personnel Record Information System
for Management) which, when its first phase is completed in
1974-5, will provide information about the whole of the non-
industrial Civil Service. Both pay and personal data will be
sent to PRISM from computers in Departments throughout
the United Kingdom, initially by transfer of magnetic tapes
but, it is hoped, eventually by data transmission. By linking
PRISM with Departmental computer pay record systems it is

The Computer Journal

expected to maintain a higher level of accuracy than can be
achieved by other methods. CMSR will be merged with
PRISM: the combination of the two records will, first, provide

References

SMITH, B. T. (1968).

SmrtH, B. T. (1970a).

SmrtH, B. T. (1970b).
net.

THE CIvIL SERVICE.

personnel managers with detailed information about senior
people and, secondly, provide information for man-power
planning in respect of the Civil Service as a whole.

SPECOL—A computer enquiry language for the non-programmer, The Computer Journal, Vol. 11, p. 121.
Developments in SPECOL, The Computer Journal, Vol. 13, p. 10.
SPECOL—A Computer Enquiry Language for the Gzneral User. Civil Service Department. Crown Copyright 35p

Report of the Committee (Cmnd. 3638), Vol. 1, Chap. 6.

Book reviews

Integer and Nonlinear Programming, by J. Abadie (editor), 1970;
544 pages. (North Holland Publishing Co., £10-50 or $25.20)

Most workers in the field of mathematical programming will
already be familiar with the first volume ‘Nonlinear Programming’
edited by Abadie in 1967. Now in 1970 comes his second volume;
twice the size and unfortunately at twice the price, but just as
indispensable as the first. The 26 papers and three appendices cover
nearly every aspect of modern mathematical programming, from
the latest and most general theoretical results to the most practical
methods and applications. Roughly speaking the papers fall into
five groups—gzneral nonlinear programming theory and algorithms,
quadratic programming and least squares, stochastic programming,
integer programming and graph-theoretic results.

The first three groups of papers reflect the considerable progress
which has been made in the last few years in nonlinear optimisation,
both constrained and unconstrained. There is a welcome highlighting
of practical algorithms and computational results although these are
still extremely thin in comparison to linear programming. It is
invidious to single out individual contributions but particular
attention should be paid to Wolfe’s paper on ‘Convergence Theory
in Non-Linear Programming’, an important topic which has only
recently come into prominence in comparison with the long emphasis
on existence and duality theorems.

Another too long neglected topic in mathematical programming has
been the numerical stability of algorithms. This state of affairs is now
beginning to be redressed, and Golub and Saunders’s contribution
to this volume analyses a number of methods for least squares and
quadratic programming.

Of the eight papers on integer programming three are concerned
with the recent theoretical work of Gomory on the asymptotic
integer problem and the faces of integer polyhedra (including a
survey by Gomory himself). Of more immediate practical importance
there are three papers on the implementation of branch and bound
methods in production codes with very encouraging computational
results. Another welcome contribution is Balas’s survey of his
results on mixed integer duality theory and their practical application
to mixed integer algorithms (these ideas have also been implemented
commercially).

The final section is perhaps highlighted by Dantzig’s diverting
paper on complementary spanning trees—an interesting example of
Lemke’s principle. The three appendices give valuable background
material for a number of the papers in this collection.

In summary this is a book with something for evervone and should
be on the shelves of everybody seriously interested in mathematical
programming.

J. A. TomLIN (London)

Algorithms and Recursive Functions, by A. 1. Mal’cev, 1970; 372
pages. (Wolters-Noordhoff Pub. $15.50)

This is a very readable translation of a standard Russian text
published in 1965. The first chapter defines some fundamental
concepts such as alphabets, words, functions and the basic opera-
tions of composition, substitution, primitive recursion and mini-
malization. The next three chapters cover the basic ideas and
theorems concerning primitive recursive functions, partial recursive

Volume 14 Number 4

functions, recursively enumerable sets, universal functions and
various enumerations of functions and sets up to the level of de-
fining productive and creative sets. Further chapters cover Turing
machines and their relation to recursive function theory and variants
such as normal algorithms, operator algorithms, multitapg
machines and tag systems. Applications of the theory are made ta&
the word problem for semigroups, the decision problems for fir
order logic and for arithmetic, the non recursive-enumerability
the theorems of second order logic and Diophantine equations. In‘
this last application Hilbert’s tenth problem—still an open questlon
when the book was written—has now been proved to be unsolvablé&;
the final link in the argument being provided by the Russian, J. m
Matijasevic.

The book therefore treats very standard material such as would t%
covered in a first course on the subject and could well serve as
reference book for workers in the theoretical aspects of computatios
or as a text book for a course. Finite state machines are not discussed,
nor of course are the latest ideas in the mathematical theory &f
computation. This reviewer liked the style of the book,the theoreng
are clearly stated and the proofs rigorous without being over
mathematical. At the end of all chapters are examples and exercnsg
which both illustrate the topics treated and also suggest recem‘.
research lines.

These complimentary remarks do not apply to the first chapt(%
which attempts to define basic concepts such as words and functloni
Several of these attempts seem rather unsatisfactory, for example;
the definition of a word as a sequence of cells occupied by letters, tl‘gg
definition of a class of algebras as an arbitrary system of algebras @f
the same type (what is a system?) and the difference (if any [g
intended) between a function and an operation is unclear.

The book should not be judged by its first chapter. Scattered
through the book are a few misprints which affect the sense (e.g. on
pages 31, 129, 235, 288,and 305) but these should easily be discover:

The book will be recommended reading on a course to be given 59
the reviewer. S

D. C. CooPER (Swanse@

¥0

Information Theory for Systems Engineers (Econometrics and Opera:
tions Research XVII), by L. P. Hyvirinen, 1970; 197 pageg
(Berlin: Springer-Verlag, $12.10)

The first (paper back) version of this book, which is based on lec-
tures given at the IBM European Systems Research Institute, was
reviewed in the Computer Journal in May 1969 (vol. 12 p. 182). This
new version has been improved by the addition of specific illus-
trative examples, e.g. of the semantic difficulties arising in the trans-
lation of natural languages. The change from 205 pages of quarto in
double-spaced pica typewriting to 197 pages of 23 cm x 15 cm in
letterpress allows for some increase in content, and in particular
there is an additional chapter covering the applications of noiseless
coding to data compression, information retrieval, taxonomy and
cryptography. The section on error-correcting codes has been
extended a little, but this is a large subject to try to include in a book
on information theory.

The book has a list of 56 useful references and 30 problems with
detailed solutions. It is a pity that it contains occasional blemishes
in English spelling. D. A. BELL (Hull)

343

