Integration of batch and timesharing services

G. Houston* and R. Gillespiet

An attempt to add timesharing services to those already provided through a multiprogrammed
batch operating system on the CDC 6600 computer provided lessons in both technical and
strategic aspects of computing innovation. The technical problems associated with merging the
conflicting functions are discussed in some detail. The problem of determining a strategy for properly
introducing the new tool while not hindering the use of the existing ones is revealed through the choice

of objectives for the project.
(Received September 1970)

1. Introduction and objectives
This paper provides a case study for:

1. An attempt to integrate batch and timesharing services on
a single computer in an engineering environment.

2. An approach to the problem of building and attracting use
of a new tool in a non-experimental environment.

Our belief in the utility of timesharing services was tempered
by the difficulties we faced in building a reliable service and then
interesting engineers in changing the reliable batch methods—
which had an advantage of predictability—for what promised
to be flow time improvements. However, the task facing us was
not the design of yet another timesharing service; it was rather
to usefully put an existing system into play in a production
environment.

Thus our choice of technical goals for the system was heavily
guided by such considerations as:

1. Could we avoid acquiring large amounts of equipment
before the system was in production ?

2. How could we avoid affecting the existing production
service while undertaking the experimental development?

3. How could we provide the new services and yet take advan-
tage of the massive investments in existing programs and
procedures ?

4. Which elements of timesharing services were most import-
ant to the problem space we were trying to span?

5. Which problems would benefit most from the new services ?

The work described here was carried out at the Boeing
Company, Commercial Airplane Division, Renton,
Washington, where there was interest in finding economical
ways to reduce the flow time for engineering problem analysis.
Investigations showed that computer turnaround time was a
major contributor to the overall time required to complete a
single iteration of a major engineering design, typically a
month or more for a process such as a wing analysis. Research
experimentation with graphics and character-only displays
had shown the flow time advantages of on-line operation, but
the systems we had developed were not economically feasible
for multiple terminal use.

In the latter half of 1967 the experiments were convincing
enough to warrant the initiation of a development project with
the overall objective of providing a timesharing service on the
Control Data 6600 (the computer we were using for engineering
analysis problems). The intent was to allow the service to
support an economically viable collection of terminals (ranging
from teletypes to high data rate alphanumeric and graphic
displays). A timesharing system (SHARER) had been de-
veloped at the New York University Courant Institute by M.
Harrison and J. Schwartz for an early version of the CDC 6600
operating system. While we considered other alternatives,
including the development of a new operating system, the

advantages of extending an existing system appeared to out-
weigh the time and costs of a new approach.

In order to meet the initial problems, an important goal was
chosen: the service should support a mixture of batch and
timesharing facilities that would provide reasonable trans-
parency for the user, that is, convenient interchange between o
one class of service and the other. It was important to provide £
powerful facilities that would allow large and complex appli- &
cations programs to run on-line without major change, since &
many of those programs represented 10 to 20 man-year -
investments.
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2. Classes of timesharing services

Our developmental experience showed that some elusive points
need to be made about timesharing services. The phrase ‘time-
sharing’ has become associated with two often-confuse
primary meanings:

1. A class of computing services available at a terminal.

2. A technical (or technological) mechanism of providing

computing services.

The terminal user does not really care what mechanism is3.
employed, as long as it provides the service he desires. The
basic terminal services, regardless of mechanism, that we con-
sidered necessary to meet our objectives were:

(a) file editing;

(b) remote job entry, batch execution, and output retrieval ;

(¢) interactive execution of user programs.

Of these three, the last type of activity uses system resources in &
quite a different way than the first two. File editing and remote &
job entry activities typically require interactions characterised &
by short residency times, small memory space requirements, S
short CPU bursts, and minimal file activity, occurring at fre- &
quent intervals. Interactive execution is frequently the exact S
antithesis. In the design of a system providing the service, @
significant resource savings may be gained by providing a 2
number of distinct mechanisms, each designed to handle a %
different class of terminal service. The original SHARER g
design did not really take advantage of this separation.
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3. System development

In this Section we discuss the technical organisation of the
timesharing subsystem and the most significant aspects of
development.

3.1. Basic operation

Some technical aspects of the design of our system have already
been discussed in Harrison and Schwartz (1967) and Harrison
(1968). SHARER is a suboperating system which extends the
batch multiprogramming capabilities of the manufacturer’s
standard 6600 SCOPE operating system to provide the addi-
tional functions required for timesharing. These functions
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include a command and communication facility for the various
terminals; scheduling algorithms which allocate both central
memory and central processor use for timesharing programs;
and a considerable extension of the file management facilities
available in the standard operating system. The system uses
one SCOPE control point (a control point is similar to a par-
tition or region in IBM terminology) for all timesharing
activities. This one control point is multiprogrammed and time-
sliced amongst all on-line users. In most respects, SHARER
appears to the operating system to be an ordinary batch job.
Since there is no paging or segmentation hardware on the CDC
6600, programs are swapped in their entirety, using standard
batch disk I/O functions. A single pair of base relocation and
memory bound registers provides memory protection, but no
ability to share programs or data.

Our basic machine configuration consisted of 131,000 (deci-
mal) 60-bit words of central memory (roughly equivalent to 1
million eight-bit bytes), three fast disks of 70 million characters
capacity each, up to 12 teletype lines, one central and 10 peri-
pheral processors, and the usual batch I/O devices, including
several remote printers and card readers.

3.2. Conflicts and problems

Our initial implementation of SHARER in mid-1968 provided
a service to users which was characterised by three major
problem areas:

1. Response times generally became inadequate when more
than three to four users were logged in. Response was
certainly judged to be inadequate if simple text-editing
requests took more than five seconds; or if the compilation
of a small FORTRAN program took two to three minutes.

2. The cost of using the terminal was very high: for example,
$50 to $75 per terminal hour were typical, compared with
$15 to $20 for competitive commercial services for doing
the same job. This cost was inflated by two prime factors.
Firstly, since response time constraints severely limited the
number of active terminals, each terminal had to absorb a
considerable fraction of the system overhead -costs.
Secondly, the timesharing subsystem dedicated for the
complete period of its operation nearly half (51,000 words)
of the central memory space (110,000 words) available for
batch processing jobs.

3. Various user facilities were lacking in varying degrees.
In particular, the response time problem led us to impose a
limit of 500 lines (cards) on the size of a text-file that could
be edited. The initial design required one copy of the editor
for each user—each copy containing a text-buffer holding
the entire file; and a particular user’s copy was swapped for
each editing transaction. Restricting editor file size served
to limit the editor’s impact on the system. A user’s object
program was additionally restricted to about 20,000 words.

It should be emphasised that in large part these problems
were a consequence of our application of SHARER to our
engineering workload in the environment of a heavily modified
operating system. The problems do not necessarily reflect on
the system’s original design objectives at New York University,
nor on the early version of the manufacturer’s standard oper-
ating system we were using.

A diagnosis showed that the basic problems could be classified
into four areas:

1. Central memory management.

2. Disk channel utilisation.

3. Peripheral processor contention; and

4. The editor and its interface to the system.

The original SHARER design had not adequately integrated
the first three of these areas with the existing batch system:
we shall outline briefly the redesign steps taken in each of these
areas, and include a short description of some of the measure-
ments taken to verify the validity of our corrective surgery.
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SHARER'’S utilisation of central memory was dramatically
improved by allowing completely dynamic interchange of main
storage (central memory) between timesharing activities and
batch processing. Timesharing has absolute priority for
memory space, and SHARER determines how much space is
required to meet the on-line demand. If necessary, batch jobs
(at other control points) are automatically swapped to and
from disk. Improvements were also gradually introduced to the
memory scheduling algorithm with the objective of giving
fastest service to those on-line programs which use only a
small amount of resources at each interaction, in particular for
most activities supporting the file editing and remote job entry
service classes. The major gains of our changes were to greatly
reduce memory requirements to do a given task on-line, and
also to improve response times for simple interactions.

Economic constraints forced us to use moving head disks for
program swapping: Denning (1970) gives a good demonstra-
tion that such disks are virtually inadequate for swapping. We
experimented with the allocation of files amongst the three
independent disks available. By reserving one disk entirely for
timesharing, we often recorded utilisation (disk channeb
activity) of around 709, (of elapsed wall clock time), clearlyé
indicating much channel contention, much wasted memory<
occupancy time, and consequently slow response times. We%
finally settled on allocating timesharing and batch files amongsL
all available disks, and thereby reduced activity on each disk3
channel to 25 to 35%. Response times were considerably=
improved, despite some batch competition for the disks. ?

To counter the impact of the long disk transfer times re-m
quired to interchange two large (45,000 word) programs (2%&
seconds in our operatmg system), the period such program53
were allowed to remain in memory was increased from three to?
four seconds to around 30. This significantly reduced dlslgu
channel usage and total memory- occupancy times requ1redo
for the interactive execution class of service. \

Peripheral processor contention is a problem unique to th63
CDC 6600 architecture, and in our case was caused by both\
poor systems programming and a failure to effectively manage:
processors dedicated to particular I/O functions. Tedious cor-m
rective efforts in these two areas effectively removed the frequent.u
system lockups and poor response times encountered in the\
early stages. SHARER itself seriously aggravated the prob]emoo
by using one entire processor for teletype communication: a.\,
situation we were forced to accept. o

Our last major problem was that of editor interface. OurC>
editor redesign goal was to allow editing of text files of up to<
10,000 lines, whilst minimising system impact. We cons1deredC
in some detail the merits of a re-entrant, serially reusable, org*
multi-user editor, and dismissed the practicality of imple-~
menting them because of the system complexity involved andg
manpower required. We thus remained committed to swappings
about 9,000 words of editor for each user. Editing is carriedg
out by software-simulated paging of a virtual text-buffer.p
Additionally, an input stacking method was developed which
eliminated about half of previous editor swapping; an efficient
terminal output buffering scheme added; and a range of
additional editor capabilities were implemented, including
some powerful context editing functions. In short, we took
some pains to provide special mechanisms to handle the class
of service typified by editing.

3.3. High data rate devices

Many timesharing systems are able to support a large number
of terminals by virtue of the very slow input/output speed of
teletypes and similar devices—a maximum rate of 600 to 900
characters per minute. As noted earlier, we were particularly
interested in also supporting some alphanumeric displays and a
large graphics display. Some measurements showed that the
alphanumeric displays produce mean data rates of about 3,000
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characters per minute, with peak data rates of up to 20,000
characters per minute; i.e., in terms of total characters trans-
ferred, each display is equivalent to between five and 30 tele-
types. An example of the application problems which lead to
these requirements is that of airline route allocation which
requires the examination of a relatively large amount of output
on each of several iterations in order to determine optimum
routing. We anticipated the same rates for the large graphics
display, and preliminary work (described in Gillespie, 1970)
confirmed this, but economic conditions prevented us carrying
the study through to production use.

We initially found some difficulty in integrating these devices
into a system designed for teletypes. The application programs
driving these displays used a considerable fraction of available
resources, and substantially impacted response times for tele-
type users. A striking improvement was made by taking the
obvious course of considerably reducing the display application
program size since the programs require considerably more
activity to support the displays than teletypes.

3.4. Measurement and performance analyses

It has been amply demonstrated (for example, Campbell et al.
1968) that measuring techniques should be considered at an
early stage of system development. In our initial implement-
ation, SHARER was not equipped with any measuring tools.
We added various simple software measuring devices on a
piecemeal basis. Some simple counters verified the value of the
corrective actions described earlier—for example, the ratio of
swapping I/O to user I/O activity gradually moved from about
(11:1 to 1:4, presumably indicating more efficient usage of the

isks.

A persistent management requirement was for an adequate
measurement of system response time, to determine whether
the system was overloaded or had capacity to spare. To this
end, we developed a statistic, Equivalent Response Time
(ERT). ERT is the mean execution time of a series of 10 test
programs normalised to the number of logged in users at the
time the tests are run. The tests cover a range of activities, from
the (trivial) rewinding of a disk file to the (rather non-trivial)
manipulation of several hundred records. Thus they attempt to
recognise that response time is a function of the particular
operation. ERT must be interpreted with care, since it is
highly empirical, and can vary, for example, from six to 40
from one day to the next without any other observable change
in timesharing activity. We can attribute this to the extent that
varying batch workloads affect timesharing performance.
Evidently, we failed to effectively decouple the interaction of
one class of service on the other.

In the hope of developing more concrete concepts than ERT,
we surveyed some of the literature. In our experience, the major
shortcoming of almost all studies, e.g. Stimler (1969), is that
they assume that system overhead problems are so small that
they can be ignored. Our early experience was that system
performance was almost completely limited by the disk I/O
swapping overhead, and that even after our development
efforts, this factor is still sufficiently large to invalidate most of
the analyses available. We conducted both practical and
theoretical experiments with an extended (bulk) core storage
device, and showed that timesharing capacity could be increased
by 100 to 2009, depending on the sophistication of utilisation
of the device. Baskett et al. (1970) contains an interesting
analysis of a similar situation.

3.5. Results

These various problems were diagnosed and corrected by
mid-1970. As a result, satisfactory timesharing performance has
been increased from two or three to the limit of the 12 ter-
minals. Editor requests are handled within two or three seconds
in about 90 to 95 % of occurrences, and small programs can be
compiled and executed in 20 to 30 seconds. The maximum
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timesharing program size was raised to 45,000 words, and the
performance figures just quoted are maintained with several
users running programs up to the maximum size. Hourly
terminal costs were reduced to a more competitive $20 to $30
per hour, while user facilities are for the most part more
powerful than available competition.

4. Application restructuring

As noted, a major objective of our development was to capi-
talise on the massive investment (e.g., several thousand man-
years) of development of existing batch applications. We thus
paid some attention to the problems of shaping existing
applications to interactive usage. Thus it turned out that all
of our significant interactive applications come from modi-
fications of batch-processing programs. The applications were
typically those where the user (not usually a computer pro-
fessional) makes several runs to converge on a solution. Each
run is provided with a set of input data; the input data is
modified in each successive run based on the results of the
previous run, based on the user’s judgement of the situation.
The applications are very much of the man-in-the-loop kind;
they are often problems for which so far adequate mathe-
matical models have not been developed, and the user must §
play with the inputs based on his skill and knowledge to @
arrive at the right results.

Given this type of background the applications require some 3
restructuring; basically it is more or less possible to leave the =
computatlonal heart of the application program very much as w
it was in batch mode, but to remodel the input-output end to N
communicate with a dlsplay or teletype instead of the carda
reader and line printer. It is necessary to develop a s1mp1e but 3
flexible means of editing the input data, and experience has o
shown that the most effective way to do this is to developc
special-purpose methods for each application; while it isS
possible to provide general-purpose editing software for images 5 3
of decks of cards, the process is slow, cumbersome, and quite 3 3
difficult, compared with editing software tailored to the=
application and user. The use of a FORTRAN interface for our =
alphanumeric displays makes it possible for the application-
programmer to provide the editing functions himself directly.
Typically, it appeared to take two or three man-months to do 3
a good job of the interactive interface for a moderately complex
application.

A particularly useful way of using a display is the ‘menu’
technique: much used with interactive graphic systems, it
appears to be equally applicable to character-on]y displays. S
For the non-computer-professional, it is a very direct way to§ &
communicate with the machine, and it is an important tech-
nique in breaking the communication barrier. Our experience ~
has shown that it it almost impossible to teach some types of
non-computer professional to use the teletype, though they canU
readily adapt to the display. N

From a system standpoint, the result of the restructuring is'®
that when the application program executes, it exhibits two
distinct types of behaviour during execution. One is where the
user is editing his input, or scanning his output: there is very
small usage of CPU; a certain amount of disk-file I/O, and
sometimes heavy demands for new displays. The other type of
activity is when the user has made all the modifications he wants
to his data: he then pushes the ‘compute’ button, and then
follows a period of considerable CPU and I/O activity; users
are usually prepared to wait several minutes for its completion.
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5. Conclusions
These observations are those we feel important.

1. The psychology of introduction of a new service is crucial.
If you wish to attract users to a new tool or service before
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it is clear that there will be a long-term commitment, both
inducements and illusion are needed—inducement through
‘free’ time and ability to use the system on useful work;
illusion through good user documents and manuals which
help dispel the chancy nature of any such development.
The development group must change gears at some point
in order to devote at least 509/ of its time to users in order
to understand their problems. Ways to use new tools are
often obvious to the tool builder but not the mechanic (and
later on vice versa).

2. Conflict between the objectives of maintaining production
reliability and avoidance of new equipment hindered
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The Computer Journal Ncos 0 = adxx—, + BAxk + yAye-, — 8dyx

where o = (dx)? + (Awe)?, B = (Axk_,)“‘ + (Aye-)? in all cases3
and y = D, 8 = 0 at Pk, (if this is a starting point), y = 0,8 = (B
at Py, and 'y = 0,8 = D at P+, (an end point). lncndentally, th§
radius of curvature at P is N/D.
These results for the end points of open curves differ from thosea
found by McConalogue, which may be written
Nsin 0 = o’dye—, + B'dyx
Ncos 8 = @’ Adxp- + B'Axk
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Sir,

The recent article by McConalogue (1970) describes a method for
curve drawing which appears to combine accuracy and simplicity,
especially when the tangents are already known. When they are
unknown, McConalogue employs a ‘complementary algorithm’,
which expresses the x and y co-ordinates at Px—,, Px and Pk+, as
separate Lagrange quadratics in a parameter equal to the chord
length Dr = {(dxx)? + (dyx)?}*. This produces tangents which are
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invariant under axis rotation. where _

An alternative procedure, with the same invariance, utilises the o =a+2vaf, B =-8 at Pg—y,
circular arc defined by the same three consecutive points. The o = a, B =8 ___ atPygand
co-ordinates (%) of the centre of this circle are found from o = —a, B =B+ 2vap at Pew.

It is suggested that the alternative formulation is preferable in tha%
it is exact for circular arcs, does not require the use of square roots
in finding the direction ratios, and avoids the somewhat arbltrarﬁ
selection of cord length as a parameter.

Dx = (xk—y + x) Axx— Ayx — (xk + Xk+,) Adxk Ayk— —
(Ayx— + Ayx) Ayx— Ay

Dy = (yk + yic+1) Axi— Ay — (Y- + yx) Adxi dye— +

LO

where (s + o) dves A Yours faithfully, 2z
=204 Ayx — Axx Adyx-y) M. J. ECCLESTONE=:

and D = 2dxi-y Ay Xk Ve Computer Branch §
CEGB North Eastern Region EN

Axk = xp+q — Xi, Aye = Yiry — Vi .
Thus the angle between the x-axis and the tangent at an arbitrary
point (£, 1) on the circular arc is § = tan~}{— (% — /(7 — 9)};

St. Mary’s Road
Leeds 7
1 January 1971

hence
Nsin 0 = dyp—(Axi® + Ay + Ayi(Axx—% + Ay + Reference
D — xx)  McCoNALOGUE, D. J. (1970). A quasi-intrinsic scheme for passing
Ncos 0 = Axp—(Axi? + Ayx?) + Axi(dxk—2 + Aye—?) — a smooth curve through a discrete set of points, The Computer
D(n — yr) Journal, Vol. 13, No. 4, pp. 392-396.

where N is & normalising factor.

Setting ¢ =: xx, 7 = yr, the tangent at P is found to be precisely
the same as that derived by McConalogue. This somewhat sur-
prising result shows that McConalogue’s algorithm is exact for
points which lie on circular arcs.

However, if Px—, is the first point on an open curve, the slope there
must be estimated from the above formulae with ¢ = x¢—,m = yi—1;
and if P+, is the last point, £ = xk+;,7 = yk+,. In general, the slope
at a point P is most simply calculated from
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Erratum

In the paper ‘The evaluation of eigenvalues and eigenvectors of real
symmetric matrices by simultaneous iteration’ by M. Clint and
A. Jennings (this Journal, Vol. 13, No. 1, p. 76) there was an error in
Table 1. The element of the fifth row and twelfth column should
read 997-:30 and not 977-30. We are grateful to Terry G. Seaks,
Department of Economics, Duke University, Durham, North
Carolina 27706, USA for pointing out the error.
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