A dynamic disc allocation algorithm designed to reduce
fragmentation during file reloading

B. J. Austin

Information Sciences Laboratory, Corporate Research and Development Center, General Elec-

tric Company, Schenectady, NY, USA

This paper describes an algorithm for allocating file storage on a disc. An attempt is made to
allocate space for a file in contiguous disc addresses. Failure to find such contiguous storage results
in formation of a ‘page table’, so that non-contiguous physical addresses appear contiguous in the
logical address space presented to the programmer. Since an extra disc operation may be necessary
to access a file with a page table, it is desirable to minimise the number of files with page tables,
and maximise the chance of finding contiguous storage. This paper describes an attempt to achieve
these ends and gives some measurements of its performance. The method uses daily dumping and
reloading of the file storage. The allocation procedure has been tuned to optimum performance during
reloading, but it continues to function satisfactorily during the remainder of the day.

(Received October 1970)

1. Introduction

This paper describes an algorithm for disc allocation used in
an operating system written at the Research and Development
Center. Since the operating system has been described else-
where (Kerr, Bernstein, Detlefsen, and Johnston, 1969),
(Bernstein and Hamm, 1969) and (Bernstein, Detlefsen, and
Kerr, 1969) no details will be given here. Suffice it to say that
the system allows the multiprogramming of a number of pro-
cesses on a modified General Electric 600 computer, and has at
the time of writing 16M words of non-removable file storage
on a DSUIOF Disc Storage Unit. For the purposes of alloc-
ation this space is divided into 32K ‘pages’ currently of 512
words. For the remainder of the paper it will be more con-
venient to speak in terms of pages and these units will be
adhered to as far as possible.

A file presents to the programmer a logical addressing space
consisting of consecutively numbered disc records, starting at
0. Wherever possible the system allocates this space to con-
tiguous physical addresses, but should this be impossible a
‘page table’ is constructed. A page table is simply an array of
page addresses giving the mapping between the logical file
addresses and physical disc addresses.

This situation is undesirable in two ways. Firstly, page tables
are held on the disc, and therefore an extra disc access may
be required for a file with non-contiguous allocation. The word
‘may’ is used since active page tables are held in a set of core
buffers. However, when the number of currently active files
having page tables is large, the page table traffic is high and
system performance drops. Secondly, the non-contiguity of
disc allocation implies that a single request in the procgrammer’s
address space may have to be serviced as a number of separate
disc operations.

Clearly, any technique which reduces fragmentation of the
disc space and minimises the number of page tables is desirable.
This paper attempts to set forth such a technique, which speci-
fically is aimed at reducing the amount of non-contiguous
allocation and making best use of the disc hardware. To put this
technique in perspective, a description of the previously-used
algorithm and its performance will be given.

Prior to the work described in this paper, the disc allocation
was managed by a method due to J. L. Smith. Disc allocation
was administered by means of a map held in core, with one bit
per disc page. The method to be described in this paper
retains all of Smith’s procedures, except that the technique for
searching the map has been improved. An allocation request
was satisfied, if possible, by finding a suitable number of
adjacent pages. Allocation was dynamic in the sense that space
was given to a file only as needed, not being reserved in advance.

378

The system also maintained a list of ‘holes’ in the disc map. This
list was added to whenever a search for allocation found a
string of adjacent free pages whose length was less than required
for the request in hand. The list was regarded as secondary to
the bit map, however, and recourse was made to the map to
check the existence of an alleged area of free space. Although it
represents a worthwhile economy, the table of available
strings of pages will be ignored in this paper.

If a file expanded, additional space was sought first in pages
contiguous to the existing allocation. When this was impos-
sible, a page table was necessary. Note that no attempt was
made to relocate the existing part of the file in an attempt to
obtain a larger free area.

The bit map was divided into two equal sections and each 3
section had a pointer showing where the next map search would &
begin. Essentially the first map section was used for satisfying 5
small allocation requests (1 page) and the second section for &
larger requests. When any allocation was made, the assoc1ated
pointer was incremented by a small number of pages (2 in
section 1, 7 in section 2) to allow for later expansion of the file.
This space was not reserved for the file, but the intention was alo
that growth of the file could be accommodated in it. The & B
algorithm performed quite well when the disc had a large & o
amount of available space, (say 50 % of the total) but, unfor- &
tunately, when the disc became full, the map pointers would £
sweep over their respective sections many times, so that the S <
map became very badly fragmented with large numbers of & &
small holes. Furthermore, second and subsequent sweeps of the S
pointers would cause the areas reserved for file growth to be <
used, thereby blocking any expansion of previously allocated &
space.

As standard operational practice, we have been in the habit of 2
performing a logical dump onto magnetic tape of the entire file
structure once per day. The dump program is a normal (slave)
user process, and can be run concurrently with normal system
use. The dump is intended as a backup procedure, since our
disc storage is non-removable. We have also usually reloaded
these dump tapes once per day, and again the load program
runs as a normal slave process. Generally, we reload the file
storage by multiprogramming several copies of the load
program. The reloading is intended to achieve two objectives.
Firstly, a system crash could cause loss of some disc space, i.e.
that allocated to non-catalogued files at the time of the failure.
We have now overcome this problem by means of a salvage
program which checks the directory structure, the page tables,
and the disc allocation map for consistency and correctness,
reconstructing the map to show only space allocated to cata-
logued files. Secondly, the reloading was intended to compact

/Wwo9°dno-oIWepe.//:sd)y Wol) papeojumoq

E/vIvL I8P

Z |IJ

The Computer Journal

Table 1 Distribution of file sizes

FILE SIZE NUMBER CUMULATIVE

(PAGES) OF FILES ALLOCATION
1 2,460 2,460
2to3 1,388 5,750
4to7 779 9,729
8to15 489 14,871
16 to 31 217 19,406
32to 63 61 22,006
64 to 127 36 24,912
128 to 255 9 26,538
256 to 511 0 26,538
512 to 1023 4 29,080

Total number of files = 5,443

Percentage of available space used = 88-7
Percentage of space used by files of less than 16 pages = 45-4

the storage, so that the system would at least start the day with
a small number of page tables. Unfortunately, this second
objective was not achieved, and while the fragmentation did
get worse as the day progressed, it was already very bad
immediately after the file load. Reference to Tables 1 and 2
will show that out of about 5,400 files existing at the time of the
measurement, 540 required a page table during a fresh loading
of the disc. At times when the disc was more fully occupied the
fraction of files with page tables approached 20Y%;.

It was also observed that when the disc space was very fully
used (say 96 to 98 %) a perceptible drop in system performance
occurred due to time spent by the executive in abortive scans of
the disc map. A worse case scan, in which the whole map con-
sisted of alternate ones and zeros, could take some hundreds of
milliseconds. This is clearly intolerable, and the searching
algorithm should attempt to reduce fragmentation for this
reason alone, quite apart from page table considerations.

2. The new algorithm

The method just described suffers from the following

weaknesses :

1. Allocation is made on the basis of the current request,

rather than on the expected file size.

2. Space is not allocated at an equal rate within the two map
sections. This results in section 2 becoming full first, and
considerable processor time is used in abortive scans of

large fractions of the map.

3. The concept of allowing space for possible file growth does
not work when the disc approaches full utilisation, and
merely results in the fragmentation of available storage into
many small (and not very useful) pieces.

Various proposals were examined with a view to improving
this situation. Firstly, the possibility of static allocation was

Table 2 File loading experiment

PREVIOUS NEW
ALLOCATION ALLOCATION
ALGORITHM ALGORITHM

Time for load (minutes) 64 48

Files of 1 to 63 pages with PT 493 41

Files of 64 to 127 pages with PT 35 29

Files of 128 to 255 pages with PT 8 6

Files of 256 or more pages with PT 4 4

Total page tables 540 80

Volume 14 Number 4

explored. This would imply the reservation of a contiguous
area sufficient to cover all of a file’s expected growth. When a
file is first opened, the system requires, among other para-
meters, a statement of the maximum length to which the file
will be allowed to grow. This maximum length could therefore
be used to set up a static allocation. Unfortunately, most files
are opened on the user’s behalf by some subsystem, e.g. TSS,
the Time Sharing System, and the subsystem can only supply
an approximate upper bound on the file length. Furthermore,
it would be unreasonable to expect the user to supply any
meaningful limit. This proposal was therefore abandoned.

A second and more fruitful idea was to concentrate on loading
the file structure well, and let the rest of the day take care of
itself. The file loading program could explicitly give the disc
allocation routine the length of the incoming file, rather than
merely implying its iength by writing a series of buffers to the
disc. As has been mentioned above, the file loading program is
a normal user process and it is treated exactly as any other
process for the purposes of disc allocation. There is a special
privilege granted to the file loader in the directory handler, and
in principle a primitive could have been added to the system tQ;
allow privileged access to the disc allocation. Such a primitive
might even have been made generally available, and wouhg?
have allowed virtually perfect compaction of the disc after &
reloading operation. However, a substantial amount of effort;
would be required to add such a primitive to the system, and 1§
was decided to make a minimum modification to the system;y
and to alter the (more tractable) file loading program to co®
operate with the disc allocation routines to give a well coms
pacted disc. The modified algorithm which was finally arrived
at applies both to the file loading program and to normag
system use, and is as follows.

The DSUIOF Disc Storage Unit has a maximum allowablg
transfer size of 16 pages (i.e. 8K words). Thus, without regard
to map fragmentation, but merely from an efficiency standpoint?
it was decided that files should be written to the disc in units o
up to 16 pages. Also, reference to Table 1 will show that about
half of the disc space occupied by permanent files belongs té_{
files of less than 16 pages. Therefore, the disc map is divided
into two equal sections, which are essentially managed by:
different strategies—section 1 has a strategy for files up to 1§
pages, while section 2 has a strategy for larger files. The ﬁle;
loading program reads records from tape until either the whole3
file is in core or a buffer of 8K words is filled. The informatiori”
is then written to the disc. The disc allocation therefore has”
either the exact file length (for small files) or the knowledg&
thatitis a large file (i.e. 16 or more pages).

A small file is written as a single unit and therefore all 1ts’i
space is allocated at one time. The allocation is attempted ﬁrsB
in section 1, but will be made in section 2 if that fails. When ano
allocation is made in the first section the map search pomteg
is incremented by 16 pages. This is not an allowance for ﬁl({‘,’
growth, but a means whereby the first pass over the sectlom
leaves a populatlon of holes suitable for satisfying subsequent
requests in that map section.

Large files are written to the disc in a series of operations,
of which the first is 16 pages long. Allocation is sought for the
first operation in section 2, and thereafter contiguously. The
map pointer is incremented to allow a maximum contiguous
file size of 64 pages. Thus, it is approximately true that files
up to 64 pages should not have a page table, whereas files over
64 pages definitely will. The approximation is due to two
causes, Vviz:

1. On the first pass through the map, an area of more than 64
contiguous pages may be allocated.
2. On subsequent passes, the maximum sized hole is 64—16

pages.
The increment 64 has not been chosen to produce a minimum

319

number of page tables. Indeed, some simulation experiments
showed that the number of page tables could be reduced
almost to zero with larger increments (up to 1,024). However, it
was felt that the reduction expected with an increment of 64
would be adequate and other factors such as optimum place-
ment of files with respect to physical barriers of the DSU10F
disc and fragmentation due to file activity during the day’s
operations would be made worse by increasing the increment.

A crucial addition to the allocation algorithm has not yet
been mentioned. In section 1 (2), after the map pointer is
incremented by 16(64) it is rounded down to a multiple of
16(64). In other words, the pointer is advanced after allocation
to the next multiple of 16(64). This device has a marked effect
on reducing fragmentation on second and subsequent passes
through the map section. It ensures that when the next search
is begun, the first free page found will be on the edge of a free
hole and not in the middle. It does imply that a few bits will be
scanned fruitlessly, but the effect on fragmentation is quite
dramatic.

To conclude this section, a summary of the effects of the allo-
cation procedure will be given. Firstly, files less than 16 pages
(8K words) have a very high probability of obtaining con-
tiguous allocation. Furthermore, such files should never cross
the barrier which exists at every multiple of 8K words (a
property peculiar to the DSU10F), and therefore a very large
fraction of our permanent files should be accessible in one disc
operation. Files between 16 and 63 pages should also get con-
tiguous allocation, but with much less certainty. Files of 64
or more pages are very likely to have a page table.

In more general terms, the design sequence uses the available
degrees of freedom as follows:

1. The transfer size for the loading program is chosen from
a consideration of the physical properties of the DSU10F
disc. Let this be denoted by S.

2. § defines the boundary between ‘small’ and ‘large’ files.
The map is divided into two sections to be used for small
and large files respectively.

3. The parameters of the strategy for handling small files
are also dependent on S. A small file is of up to S-1 pages.
A search for free space always begins at a multiple of S,
and therefore the first pass through this map section leaves
a population of holes from 1 page to S-1 pages.

4. The parameters of the strategy for handling large files are
chosen by experiment. A search for free space starts at a
multiple of some constant T, and therefore one can generally
expect a page table for a file of over T pages. By increasing
T sufficiently, the number of page tables in the file structure
after a complete load can be made very small. There is,
however, a diminishing returns situation—the system can
tolerate a few page tables—and T is set at a value which
requires about 1 to 29 of the files to have non-contiguous
allocation.

3. Simulations and measurements

As an aid to an understanding of the allocation process and in
the devising of an algorithm to reduce fragmentation, a model
of the file loading procedure was constructed. Since a dump of
the complete file structure occupies many tapes, it is customary
to run several copies of the loading program concurrently. It
can be seen that competition among these processes for disc
allocation could lead to fragmentation. A crude model of the
concurrent running of four loading programs was constructed.
It was assumed that they would all fit in core and would be I/O
limited. Thus a detailed model of the swapping and timeslicing
aspects of the system scheduler was unnecessary. Furthermore,
fixed times were assumed for disc and drum (i.e. directory)
operations. The model was furnished with the file lengths from
a set of actual dump tapes (the same files which gave Table 1).

With the allocation algorithm described above, the model
predicted 55 files requiring page tables. Note, from Table 1,
that there are 49 files of 64 or more pages.

Experiments were performed with the operating system using
the same dump tapes. As Table 2 shows, the number of page
tables required was 80. It should be mentioned that in our
system a programmer may produce a file in which the logical
addressing space is non-contiguous. Such a file will always have
a page table. It is thought that most of the difference between
the results of the model and actual experiment is due to such
files. Table 2 also shows that the time for the loading process
has been considerably reduced. This is due to two causes, viz:

1. The number of disc operations is reduced.
2. The time spent searching the map is reduced.

The dumping and reloading of the file storage takes a little
less than two hours of machine time—the load takes about three
quarters of an hour and the dump, which involves verification
of the tapes produced, takes about an hour. The cost of the
compaction produced by the allocation algorithm of this paper
should be counted as only the time to load the files since the 5
daily dump is performed for security. It should also be noted 2
that the dump/load procedure is performed overnight, i.e.
not during prime time.

Since the algorithm has been adjusted for the file loading =
process, but also applies during normal operation, it is worth °
discussing its behaviour in everyday use. The number of page = :
tables at the beginning of the day has been consistently less than 1_3_
100, and during a day’s activities the disc becomes fragmented 5
to the extent that about 100 more page tables are formed. These §>
remarks apply to a period during which the disc was between & 3
88 and 98 9 full. With the previous algorithm in similar cir- &
cumstances the number of page tables immediately after a E
file load was 500 to 1,000, and during the day an additional 100
to 200 would be formed. It should be emphasised that these 3. 3
numbers have much lower dependability than the results shown 8
in Table 2, since they are the product of normal day-to-day
system use rather than of a controlled reproducible experiment.

The algorithm has made a significant improvement in the file
loading time, but this is relatively unimportant compared to the
effect on normal computer operation. The fraction of the disc
traffic concerned with page table transfers has dropped from
about 109, to about 1 9. The system no longer spends a large
amount of time searching the allocation map when the disc is
practically full, but unfortunately no quantitative evaluation
of this effect is available.

It can be said, however, that the algorithm of this paper seems
satisfactory for both file loading and normal operation. This
must mean that the amount of file activity which causes file
growth is fairly low. Unfortunately, while we have a monitoring
of accesses to every file, we have no means at present of tellmg S
what percentage of our files is changed each day. However, of a
sample of the files which made up Table 1 only 109/ had been
accessed in the last day. Presumably then a much smaller
fraction of the files are modified in such a way as to require a
larger number of pages.

An unexpected benefit of the new scheme has beenan apparent
increase in the file system reliability. In the past, the code
concerned with handling page tables has been found to contain
many subtle errors, whereas the code which deals with contig-
uous files has proved relatively troublefree. There may well be a
number of errors still in the page table code but the probability
of achieving the proper circumstances to trigger them has been
reduced drastically.

A failing that has been observed is that temporary files which
exist during the day, and which were not taken into account
when ‘tuning’ the algorithm, can upset the balance of storage
between the two map sections. In other words, unequal map
sections should have been set up, so that the allocation scheme

papeoju

\/ 61 U0 1senb Aq LGLGZE/8.E/b/v L /1o |ulwoo

¥20¢ I

The Computer Journal

would work for the combination of permanent plus temporary
files. Some of these temporary files also have the unfortunate
property of expanding to quite large size by single page
increments. Thus the fact that the size of the current request
rather than the expected file length determines the map section
shows up as a fundamental weakness. It is intended to improve
the system so that some use is made of the expected file length,
while not requiring that a user or subsystem supply an exact
estimate.

4. Discussion

It will be clear that the allocation method described in this
paper has been very carefully adjusted to both the character-
istics of the DSU10F disc and the particular operating environ-
ment which exists currently in our system. This section will
attempt to bring out some points of more general applicability.

Firstly, it may be remembered that the real test of an allo-
cation algorithm does not come until the disc space is nearly
full, and that almost any algorithm will handle the situation
when space is plentiful. Indeed, in one operating system
known to the author, it appears that additional disc units are
purchased as necessary to keep the allocation scheme working.
The allocation pointer moves monotonically through the
available space, leaving some wasted pages so that files may
expand. If the pointer reaches the end of the last disc unit, a
compaction is required. The number of disc units is adjusted
so that compaction need not be unreasonably frequent (e.g.
more than once per week).

A second point is that it is very difficult to set up an efficient
algorithm at the time of system design. The parameters of any
algorithm cannot be set for optimum performance until the
system has been in use for some time so that a large amount of
disc space is in use, and the equilibrium between user practice
and the administrative purging policy has been established.
Furthermore, it may be necessary to retune the algorithm for
every installation and even at one installation if more disc
storage is acquired. It would appear that an allocation pro-
cedure which automatically adapts to the equilibrium file

References

AusTiN, B. J., HOLDEN, T. S., and HupsoN, R. H. (1967). DAD, the C.S.I.R.O. operating system. Communications of the ACM, Vol. 10

Number 9, September 1967, pp. 575-583.

BERNSTEIN, A. J., DETLEFSEN, G. D., and KERR, R. H. (1969). Process Control and Communication. Proc. Second ACM Symposium on
Operating System Principles, Princeton, October 1969, pp. 60-66.

The Design and Implementation of a Directory Hierarchy for a General Purpose Operating

BERNSTEIN, A. J., and HamM, J. B. (1969).
System. General Electric Report Number 69-C-356.

DENNING, P. J. (1967). Effects of scheduling on file memory operations. Proc. Spring Joint Computer Conference, 1967, pp. 9-21.
KERR, R. H., BERNSTEIN, A. J., DETLEFSEN, G. D., and JOHNSTON, J. B. (1969). Overview of the R and DC Operating System. General

Electric Report Number 69-C-355.

distribution is desirable, but no such scheme is known to the
author.

Other operating systems have employed various techniques
for holding the record of available space and for representing
the space allocated to a file. The DAD system (Austin, Holden,
and Hudson (1967)) uses a bit map for available space and
employs what Denning (1967) rightly describes as ‘the common
and questionable practice’ of chaining pages together within
themselves. This approach makes allocation easy, since all
allocation requests are exactly one page long, but makes very
small use of contiguity in performing transfers efficiently.
(There are also other difficulties, such as weakness in random
file operations.)

The General Electric Comprehensive Operating System
(GECOS) holds in core the 64 longest strings of available
‘links’ and represents space allocated to a file as a series of
number pairs in the file catalogue showing disc address and
length. This approach makes use of contiguity in performing
transfers and is economical in searching for allocation. Free
space can be lost (temporarily), however, and this system does
not seem to make maximum use of contiguity. S

It is clear that retention in core of the entire bit map isS
impractical for a very large disc store, so that the allocationd
method described in this paper requires some modification. A§
possible improvement would be to hold only sections of the=-
total map in core at any time. This would, of course, introduce3
some difficulties but it is felt that the bit map approach hasZ
some merit especially in an environment where many users are”
concurrently accessing the file structure.)

a

5. Acknowledgements

The algorithm presented in this paper owes a great deal to the2
work of J. L. Smith. In fact, the only change from his version, >
apart from alterations to parameters, has been the addition of3
rounding the map search pointer to a multiple of 16 or 64 afterS
every allocation. =

The author would like to acknowledge helpful discussions with%
W. E. Davidsen, R. H. Kerr, G. D. Pearsall, and J. N. Roberts. 2

olWwapeoe

q 1SLGZE/BLEVITLIR!

Book review

Approaches to Non-Numerical Problem Solving, by R. B. Banerji and
M. D. Mesarovic (editors), 1970; 466 pages. (Springer-Verlag,
$6-60)

This book is a collection of 18 papers on Artificial Intelligence from
a symposium held at Case Western Reserve University in November,
1968. Most of the authors have done widely recognised work in the
subject and the book forms a very useful addition to the literature.
Although there is little in the way of original research which is not
available in the journals, the authors present a synoptic view of a
number of topics with references up to 1969. Such overviews include
J. A. Robinson on Mechanical Theorem Proving, G. W. Ernst on
GPS, R. F. Simmons on Natural Language Question Answering
Systems, J. R. Slagle on Heuristic Search Programs, and R. L.
London on Proving Correctness of Computer Programs. These
papers should be of interest both to the non-specialist who would
like to know what has been done in these areas, and to the research
worker who would like to stand back and take stock of progress and

Volume 14 Number 4

20z Idy 61 uo 3senb A

trends. A. Newell contributes an illuminating, slightly pessimistic,
discussion of the relationship between artificial intelligence and
cognitive psychology, and B. Raphael explains how the development
of robots presents important research problems for the field. Three
papers discuss formalisation of problem solving systems and the
related question of representation, whilst others outline research on
specific projects such as a GO-playing program, a technique for
heuristic solution of combinatorial problems, a problem solving
programming language, and the impressive Stanford project on
computer determination of the structure of organic molecules.

The remaining papers are brief essays by authors mainly distin-
guished in other fields, including some pithy and lucid remarks by
Hao Wang on the interaction between computing and mathematics.

I hope that the rather unappetising title will not deter people
wolrking in computing from dipping into this timely and informative
volume.

R. M. BurstaLL (Edinburgh)

381

