Graphical modelling using contextually implied
functions

C. J. Evangelisti and S. P. Morse*

International Business Machines Corporation, Research Division, Yorktown Heights, New York, USA

Many physical problems can be represented by block diagrams or, more generally, by topological
graphs. The nodes or blocks correspond to objects with specified attributes. The edges or lines
between nodes represent relations between the objects and may also have attributes.

A modelling (drawing) system is described that allows for block diagrams to be entered into a
computer via a graphical console such as the IBM 2250. The techniques involved do not require a
user to explicitly tell the machine which drawing function he wants executed; the operands he
chooses determine the function. Thus, the system eliminates the need for function keys or light
keys while the model is being created and permits the user to operate solely with a light pen. Keys
are used only for functions that are secondary to the creation of the model, such as the filing
function for example.

A set of functions useful for creating block diagrams is presented. These functions provide the
ability to copy blocks, draw lines between blocks, and erase lines or blocks. Functions pertaining
to the attributes provide the ability to specify attributes, change attributes, and associate attributes
with lines or blocks. Finally, a file structure is described and filing and retrieval functions are

presented.
(Received May 1970)

Many problems encountered by engineers and scientists are
solved by representing physical systems by abstract models
made up of interconnected symbolic elements called blocks.
The relative positions of the blocks convey no information.
Some examples of such models are electrical networks, pro-
gram flowcharts, and simulation block diagrams.

Such models are usually processed to determine the behaviour
of the physical system represented. If the processing is to be
done on a digital computer, a description of the model must be
given to the computer. A graphical terminal consisting of a
lightpen and display screen provides a user with a pencil and
paper substitute for creating a model and, at the same time,
directly conveys the model to the machine.

Modelling on a graphical terminal usually involves making
copies of blocks from some initial set of blocks and drawing
lines between the copies. Hence, the terminal must provide the
user with the ability to perform functions such as copying
blocks and drawing lines. An explicit command is usually
given each time such a function is performed. Thus, the user
must specify both the function and any operands of the
function. For example, when making a copy of a block, he
must specify that he wants the copy function (usually by pres-
sing a function key or pointing to a light key) and indicate
which block is to be copied and where the copy is to appear.
Many examples of such graphical systems can be found in the
literature (Sutherland, 1963, 1966, Hornbuckle, 1967, Ellis and
Sibley, 1967). This paper describes a method of graphical
modelling in which the user is not required to explicitly specify
which function is to be executed when he creates his model (he
must give explicit commands only for functions that are
secondary to the creation of the model, such as the filing
function). Instead he selects his operands; the choice of the
operands uniquely determines a function. Specifying functions
in this manner eliminates the need of function keys or light keys
to give explicit commands.

Modelling

Preliminary remarks
Modelling, as used in this paper, shall refer to the process of
representing a physical system by a model composed of inter-

eM:sdpy wouy pepeojumoq

connected blocks (Baskin and Morse, 1968). The screen on
graphical terminal used for modelling is separated into twog
spaces. One space contains an initial set of blocks and is called?
the reference space. The other space is called the modelling—
space and contains copies of the blocks in the reference space;
and lines drawn between the copies. In the method of modellmgo
presented here, the two spaces are separated by a horlzontaB
line on the display. The reference space is the reglon below the3
horizontal line and the modelling space is the region above thf:__—s3
horizontal line. D)

Several guidelines were followed in designing the set of model-i
ling functions presented in this paper. The functions were to be\
both easy to learn and easy to use. Ease of learning requ1resb
that the rules for executing the various functions be snmple,Oo
natural, and consistent with each other. Ease of use requires:
that the user be able to perform his desired task in relativelys
few steps, be able to stop in time before taking a wrong step,3
and be able to undo the effects of any wrong steps. In order to=
satisfy these two principles, it was decided that two separate2
actions should be required to execute any function. The two&
actions correspond to selecting two operands which in turng
determine the function. Each operand selection requires ag
confirmation by the user and the selection can be changed prior2
to g1v1ng the confirmation. Feedback in the form of visual out-—
put is given to the user before the user gives the conﬁrmatlonO
thereby letting the user know in advance what the result wouldh
be if he were to confirm his selection.

Modelling functions
A set of functions for modelling at a graphical terminal must,
at a minimum, provide the user with the ability to copy blocks
from the reference space into the modelling space, draw lines
between (copies of) blocks in the modelling space, and erase
items (lines or blocks) from the modelling space. In addition,
since each function is implicitly called for by selecting two
operands, a function that does nothing would be useful in the
event that an incorrect first operand is chosen. Such a set of
modelling functions is summarised in Table 1 (the last function
in this table will be discussed later).

The components of a topological drawing are blocks, lines
and points. Hence the possible operands that can be selected in

*Presently with the Dept. of Electrical Engineering and Computer Sciences, University of California, Berkley.

382

The Computer Journal

Table 1 Set of modelling functions

D—Draw a line between two points in the modelling space

C—Copy an item from the reference space into the modelling
space

E—FErase an item in the modelling space

N—Do-nothing

S—Select an item as a first operand for the the next function

order to specify a function consist of blocks, lines and points in
either the reference or modelling space. The points are either
attacher points of blocks, endpoints of lines, or new points
selected by placing the lightpen on a blank part of the screen.
The lines are lines drawn between the points but are not the
lines making up the pictorial representation of a block. Since
the reference space is to serve basically as a reservoir of model-
ling blocks, it doesn’t seem fruitful at this stage to speak of
lines and hence endpoints of lines in the reference space.
Hence lines and endpoints of lines in the reference space have
been ruled out as possible operands. As a further simplification,
lines in the modelling space can also be dropped from the set
of possible operands since, in most graphical systems, lines in
the model are selected by choosing a point (other than the
endpoint) of the line. Thus, topologically, the original line
could be considered as two lines having this chosen point as a
common endpoint. The remaining possible operands, together
with their definitions and mnemonics, are listed in Table 2.
The operands can be partitioned into two sets called the
reference set and the modelling set. The mnemonic for each
operand in the reference set begins with an R and the mnemonic
for each operand in the modelling set begins with an M.

The previous discussions on ease of learning and ease of use
give justification for a method of specifying functions using
two operands with confirmation and feedback. The following
is a sequence of events, consistent with that discussion, which
must occur before a function is executed. Initially, the user
places the lightpen* on the screen thereby starting the selection
process for the first operand. Any item now detected by the
lightpen becomes the intended first operand and starts flashing.
When the user removes the lightpen from the screen, the last
detected item becomes the first operand and remains flashing.
The user again places the lightpen on the screen thereby starting

Table 2 Possible operands

Rb—A block in the set of blocks in the reference space selected
by placing the lightpen on a line of the block

Ra—An attacher point on a block in the set of blocks in the
reference space selected by placing the lightpen on the
attacher point

Rn—A new point in the reference space selected by placing the
lightpen on a blank part of the reference space (a raster
scan takes place)

Mb—A copy of a block in the modelling space selected by
placing the lightpen on a line of the block

Ma—An attacher point on a copy of a block in the modelling
space selected by placing the lightpen on the attacher
point

Me—An endpoint of a line in the modelling space providing
the endpoint does not lie on an Ma (if several lines have a
common endpoint not lying on an Ma, only one Me
exists at that point)

Mn—A new point in the modelling space selected by placing
the lightpen on a blank part of the modelling space (a
raster scan takes place)

:
gl
I

@oraw a Lwe | g |- THX s

BETWEEN
TWO POINTS
“ 7 N/ N/ N/
(b) DRAW A D/\ N 'l] I ’| }J "{ }J
SEQUENCE
OF LINES
0-\ o—\ ’-\D"‘ '-_{:}_\‘/
{c) COPY A BLOCK - i
AT A POINT N 7. N 7 N
/ N\ /7 \ /7 \ [:l
\/ \/ \ / \/ \/
(d) COPY A A oD 07 —O0eORD [-0eTrebje
SEQUENCE -
OF BLOCKS O eDde{J—= eD—ojid)—o —D—ojo{J—e -_o.‘.:._c)—- ——
\ 1" \ \ 7/
~} \.{ F |~ }4»' LS AR Pl BN -~
(e) ERASE A A — y-d
BLOCK —
b e e o e o e T - g
(1 ERASE A a /N /\ 2
LINE _ S
Q
3
(g) MOVE A BLOCK —{ }- —1 F. ._[:}. =
BY "GRABBING" ’G/ A S
ITS ATTACHER MOVE MOVE MOVE MOVE MOVE |Z
POINT A /\ /N %?
w
D’LD D-/ZD >
8
(h) MOVE A POINT = — — a
MOVE MOVE MOVE MOVE move (S
N\ / \ / \ 5
W] \ 7 N o
C
O HF HF HaoTeofs
(i) LITE A TEXT — 3
LITE LITE L uTE LTE ute |3
o)
o
Lk o R I 1 -} &
() UNLITE S=HELLO| — S=HEWLQ[— “~HELLQ HELLQ HELLO %
A HOOK -~ =
LITE LITE LITE LITE LITE [o
o
(k) ADD CONTENTS| I
OF A BLOCK N/ \ PR 8
—O—+ ADD —O— ADD' *=—O—e ADD —O—e ‘w —O— ADD Q
/\ /7 \ / %
a
Fig. 1. Various steps in execution of functions &
o

1. Screen appearance before function is performed (the horizontal ling
separates modelling and reference spaces). c

2. Operand is being selected (arrow represents lightpen and diagonal
lines represent flashing). o

3. Selection of operand has been confirmed (function is performed in®
B and D since these cases started with an implicit operand selectedo
by the previous function).

4. Operand is being selected.

5. Selection of operand is confirmed and function is performed.

¥¢0z ludy

the selection process for the second operand. Any item now
detected by the lightpen becomes the intended second operand.
The result of the function implied by the first and (intended)
second operand is temporarily displayed on the screen. When
the user removes the lightpen from the screen for the second
time, the flashing of the first operand ceases, the last detected
item becomes the second operand, and the function implied
by these two operands is executed.

The following is a detailed description of the functions as
described so far (Table 1) and rules for determining which
function is implied by a given pair of operands. The rules of
association between functions and operand pairs were chosen
so that the resulting functions would be the most obvious
functions that a user would expect from a given operand pair

*The ideas presented in this paper are indeed input media independznt. However, for ease of description, a lightpen input will be assumed.

Volume 14 Number 4

383

and, conversely, the particular operand pair would be the most
obvious one that the user would want to select in order to
perform a particular function.

1. If both operands are the same item, a DO-NOTHING (N)
is executed. Thus, a first operand selected by mistake can
be easily cancelled.

2. If both operands are in the reference set, a DO-NOTHING
(V) is executed.

3. If both operands are in the modelling set and are not the
same item, a DRAW (D) is executed (see Fig. 1a). A line
is drawn between the selected point (Ma, Me, or Mn) of the
first operand (if a block (Mb) is the operand, the last
attacher point of that block is used by default) to the
selected point (Ma, Me, or Mn) of the second operand (if a
block (Mb) is the operand, the first attacher point of that
block is used by default).

4. If one of the operands is in the reference set and is not a
new point (Rn) and the other operand is in the modelling
set, a COPY (C) is executed (see Fig. 1c). A copy of the
reference block (Rb) appears in the modelling space. (If
an attacher point (Ra) was the operand in the reference set,
a copy of the reference block containing Ra appears in the
modelling space.) If both operands were points (Ra, Ma,
Me, or Mn), the copy is made such that these points are
joined. If a reference block (Rb) is one of the operands, its
first attacher pointt (Ra) is used by default; if a model
block (Mb) is one of the operands, its last attacher point
(Ma) is used by default.

5. If one of the operands is a new point in the reference set
(Rn) and the other operand is in the modelling set, an
ERASE (E) of the operand in the modelling set is executed
(see Fig. 1e). An erase of an attacher point (Ma) is defined
as an erase of all blocks and lines incident on the attacher
point. Similarly, an erase of an endpoint is defined as an
erase of all lines incident on the endpoint. Note that ERASE
is treated as the opposite of COPY. Whereas in a COPY the
reference space acts as a ‘source’ of new items for the
modelling space, in an ERASE it acts as a ‘sink’ for un-
wanted items.

6. If a line in the modelling set is pointed at by the lightpen,
that line is decomposed into two lines at the point where the
lightpen hits the line and this point (Me) becomes the
intended operand (see Fig. 1f). It is this rule that allows for
the simplification previously mentioned whereby lines are
not considered as operands.

A common criticism to such a system is that certain functions
would be cumbersome to use if one always had to specify two
operands. For example, consider drawing a sequence of con-
secutive conected lines. It would be desirable to draw such a
sequence of lines merely by specifying each successive endpoint.
Similarly, consider making successive copies of blocks so that
they are connected end to end. It would be desirable to make
such copies by merely pointing to the successive reference
blocks. These examples would require that one operand of the
draw function or the copy function be specified by the pre-
viously executed function. Thus, it would be desirable to have a
function whose only end product is the selection of a first
operand for the succeeding function. This function is the select
function (S) listed in Table 1. The following two rules relate
to the behaviour of this function.

7. All draws (D) that terminate on a new point (Mn) are

followed by SELECTING (S) that point (which has now
become an Me) as the first operand for the next function

(see Fig. 1b).

REFERENCE MODEL
SECOND - -
OPERAND S §
E8 £33
FIRST g = ,g N g _g
OPERAND = ﬁ o ;_c: 'S A
g8z 0 .5
L s LEgo
m<Z Mm<mZ
g?py (C)
elect (S
Block (Rb) Do Nothing |- ——__ _(_)_ -
REFERENCE Attacher Point (Ra) (N) Copy (C)
New Point (Rn) ____pz,____
Erase (F)
Block (Mb) celoQ a6
MODEL Attacher Point (Ma) 9;‘: ! S ! %D D ';’:’
Endpoint (Me) 25 | é‘. | 2 raw (): &8
New Point (Mn) (O : O : %) :Q A

Table 3 Relation between operands and functions

Note: If both operands are the same item, a DO-NOTHING (N) is

executed.

8. All copies (C) for which a reference block (Rb) is one of the
operands are followed by SELECTING (S) the last
attacher point of the block copied into the modelling space
(Mb) as the first operand for the next function (see Fig. 1d).

The above rules are summarised in Table 3 and in Fig. 2.
Incorporating attributes into the model

Attributes, represented by alphanumeric text, are usually

eoe//:sdny WoJj peapeojumog

Q.
[}
2

o

/lulwoo/wo9'dno™o

=

associated with lines or blocks in a model. For example, values £

of resistance are associated with each resistor in an electrical

network, program statements are associated with blocks in a

program flowchart, and transitional probabilities are associated
with the lines connecting the states of a Markov Chain. Thus,

=

/8l

-

N
=
=
=

w
[0
N

functions are needed that provide the ability to create and &

modify text, and relate the text with blocks or lines in the model.

o
ey

An alphanumeric keyboard can be used to enter text. A string &

DO-NOTHING (N) DRAW (D) T

COPY (C)*

20z Idy 61 uo isenb Aq

Fig. 2. Graph representation of relation between operands and

functions

*If the operand in the reference set is a new point (Rn), an erase (E) is

executed instead of a copy (C).

tIf the two operands are the same, a do-nothing (N) is executed instead

of a draw (D).

#1t is assumed that all attacher points of a block have been classified as inputs or outputs and that the attacher points have been ordered so
that the inputs precede the outputs. Hence a draw or copy function having two blocks as operands will connect an output of one to an input

of the other. This is a natural default option.

The Computer Journal

of characters from the alphanumeric keyboard can be con-
sidered as an operand for the modelling functions. While the
string is being generated, the string is an intended operand and
may be edited as it is being typed; when a special terminal
character appears in the string, the intended operand becomes
the operand. If a special cancellation character appears in the
string, the intended operand is cancelled.

The creation of text involves specifying the desired location
of the text and the text itself. Hence, if the first operand is a
point in the modelling space and the second operand is a string
of characters, text will be created starting at that point. The
created text can then be used as an operand for other functions.
The created text may be modified by selecting the text as a
first operand. The second operand is the modification and is
entered from the alphanumeric keyboard. A proposed set of
text editing features useful in both the creation and modification
functions is found in the Appendix.

A function is required that relates text to a block or a set of
connected lines. (Note that a set of connected lines is topologi-
cally equivalent to a node.) The text is one operand of this
function. The other operand is either a block or an endpoint of
a line(s) in the model. (Recall that if a line is pointed at, an
endpoint on the line is created and becomes the operand.)
The relation can be visually represented by a line with an arrow-
head on both ends. Such a line is called a hook.

Thus, the consideration of text leads to three additional
functions and three additional operands. The functions provide
the ability to create text, modify text, and relate text to items
in the model. The operands are text in the modelling space, text
in the reference space, and alphanumeric character strings.
These functions and operands together with their mnemonics
are listed in Table 4. The modelling set of operands is par-
titioned into two subsets called the textual modelling subset
consisting of text and the graphical modelling subset consisting
of all other items that can appear in the modelling space.

The above discussion of functions necessary for the inclusion
of text results in the following additions and modifications to
the detailed function descriptions given previously.

Table 4 Functions and operands involved with text

FUNCTIONS

C—Create text

M—Modify text

R—Relate text to a block or a set of connected lines in the
modelling space

OPERANDS

An—String of alphanumeric characters

Mt—Text in the modelling space

Rt—Text in the reference space

3. If both operands are in the graphical modelling subset and
are not the same item, a DRAW (D) is executed. (This rule
was previously stated to include the entire modelling set).

3a If both operands are in the textual modelling subset, a
DO-NOTHING (N) is executed.

3b If one operand is in the graphical modelling subset and the
other operand is in the textual modelling subset, a
RELATE (R) is executed. This function relates the text
(Mt) corresponding to the operand in the textual model-
ling subset to the block (Mb) or lines corresponding to the
operand in the graphical modelling subset (if the operand
in the graphical modelling subset is an attacher point (Ma)

on a block, that block is taken as the operand; if it is an
endpoint (Me), the set of connected lines containing those
lines incident on the endpoint is taken as the operand; if
the operand is an attacher point (Ma) common to several
blocks, the text is related to each of these blocks). Note
that text can be related only to blocks or sets of connected
lines. One text can be related to several blocks and/or sets
of connected lines and a block or set of-connected lines
can be related to several texts.

4. If one operand is in the reference set and is not a new point
(Rn) and the other operand is in the modelling set, a COPY
(C) is executed. A copy of the reference block or reference
text appears in the modelling space. If a reference text (R¢)
is one of the operands, the location one space to the left of
its first character is used as the point which lines up with a
point in the modelling space. If a modelling text (M¢) is one
of the operands, the location one space to the right of its
last character is used as the point at which a point of the
item in the reference space lines upi. If a reference block
(Rb) with related text (Rt) is one of the operands, the text
and the hook are also copied.

5. If one of the operands is a new point in the reference set:
(Rn) and the other operand is in the modellmg set, anm
ERASE (E) of the operand in the modelling set is executed.2 g
An erase of a block (Mb) or a text (Mt) implies an erase of*‘
all hooks incident on these items.

9. All copies (C) of texts are followed by SELECTING (S)’o
the text copied into the modelling space (Mt) as the ﬁrst\
operand for the next function.

The above rules are summarised in Table 5 and Fig. 3.

Supplementary modelling functions
Certain functions are not involved in creating the model; the
alter the appearance of the model without changmg thed
meaning. An example of such a function is moving a block=
while maintaining all connections to that block. These supple-3
mentary functions will be characterised by using the names of=
the functions as one of the operands. Thus, the names of such:
functions will appear as light keys in a corner of the screen. %
Moving items around without breaking any lines changes theb
appearance of the model but not its meaning. This is desuablea
for reformatting a cluttered portion of the model. A function
that accomphshes this is called the move function. The move,\,
function is defined by selecting a light key labelled MOVE asA
one of the operands. For the purpose of the move function, theU1
model is considered as being made up of rigid bodies (blocks<
and texts), rubber bands with zero coefficients of elast|c1ty(l>
(lines and hooks), and pins (attacher points and endpomts) =
The actual details of the move were chosen so as to make the3
moving as simple as (and analogous to) the process of dr1vmgLo
an automobile. Hence the move function will provide for pure%>
translation, pure rotation, and any combination of the two. Am

description of the use of the move function follows. §

1. MOVE + Mb—as long as the block remains the intended
second operand, all pins corresponding to attacher points
on the block are removed and the block translates (without
rotating) by following the lightpen. Hence, all lines (rubber
bands) connected to the attacher points of the block stretch.
If any other attacher points are joined to attacher points
on the block, a rubber band (line) is connected between these
two attacher points. Any text related to the block moves
with the block.

2. Move + Ma—all pins corresponding to attacher points of
the block containing the selected attacher point are
removed and a ball bearing is placed at the centroid§ of

moQ

Yy wo.

o olwapeoe]

1This somewhat arbitrary choice of alignment was chosen so that two texts can be concatenated.
§Centroid can be defined when a symbol for a block is created (during a separate phase). Otherwise the centroid can be taken to be the centre
of the area of the symbol for the block if the symbol is a closed figure; if the symbol is not a closed figure, the centroid can be taken to be

the centre of mass of the attacher points of the block.

Volume 14 Number 4

Table 5

Relation between operands and functions with text considered

REFERENCE MODEL
= <
SECOND SA E =

- - ~

OPERAND 1S E gg s

S e ~82%g |5

SR 5§ SS5ES 5

K~ o [¥ ~ < 9 A Q

FIRST jj-gggg :‘<§38‘5 —%

< s pord

OPERAND ﬁ%éi CEZEZ v

Copy (C) <

Select (S) ot

Text (Rt) B e £

REFERENCE Block (Rb) 8\?) Nothing Copy (C) K

Attacher Point (Ra) M e e - 4

New Point (Rn) Erase (E) 8
BN (M) g
Text (Mt) ~— o~ A P g
Block (Mb) ARSI A P T 5
MODEL Attacher Point (Ma) 23 AI’ 218y Q9 o S =3
Endpoint (Me) Qg T o ! 8|2 |Draw(D) 1238 |52 8
New Point (Mn) PO M3 EEIEE S
ew Poin n ! ! K : 53|58 g
g
Do-Nothing Modify Text <
Note: If both operands are the same item, a DO-NOTHING (N) is executed. g
2

the block. Thus, the block will translate if the lightpen is
moved radially with respect to the centroid and will rotate
if the lightpen is moved tangentially with respect to the
centroid (see Fig. 1g). A general trajectory of the lightpen
will be decomposed into its radial and tangential compo-
nents resulting in simultaneous translation and rotation. Any
text related to the block will move with the block but will
not rotate.

3. MOVE + Me—as long as the endpoint remains the
intended second operand, the pin corresponding to the
endpoint is removed and the endpoint follows the lightpen.
All lines connected to the endpoint act as rubber bands
(see Fig. 1h).

4. MOVE + Mt—as long as the text remains the intended
second operand, it follows the lightpen. Hence, all hooks
(rubber bands) connected to the text stretch.

5. MOVE + anything else—results in a DO-NOTHING (N).
6. Anything + MOVE—results in a DO-NOTHING (¥).

The entire reference (modelling) space can be considered as a
large virtual space with only a small portion of it displayed on
the screen at any one time. Hence there must be some provisions
for translating the virtual space thereby causing different
portions of the space to be displayed on the screen. The
translation is accomplished by selecting any item in the space
to be translated (reference or modelling) as the first operand
and a ‘velocity box’ as the second operand. The velocity box
is a square containing a 16 x 16 grid. A velocity vector is
defined within the square in the following way. The initial
point of the vector is the centre of the square. The terminal
point of the vector is defined by the position of the lightpen
within the square. As long as the velocity box is the second
intended operand (an item is an intended operand only while
it is being pointed at by the lightpen), the entire reference
(modelling) space moves with the indicated velocities.

If text is related to a block or line(s), the function called lite

386

will cause the text to appear or disappear (see Fig. 1i). Thlso
enables the text to be ‘turned-off’ when the screen becomes tooc
cluttered or ‘turned-on’ when it becomes necessary to examme%
or modify the text. The lite function is defined by selecting ag
light key labelled LITE as one of the operands. The otherB
operand is the block or line(s) related to the text. If the text\
is currently turned on, this function will turn it off and vicez
versa. When related text is turned off, the hook that relateda
the text is also turned off. (If one text is related to severals
blocks and/or lines, then this function merely turns on or off:
the relating hook but not the text itself unless all the othert
relating hooks for this text are currently turned off.) A hookS
relating a text and a block can also be turned on or off withoutg
turning on or off the text (see Fig. 1j). This is accomplished byZ'
selecting the light key labelled LITE as one operand and the]
text as the other operand. (If the text is related to severalm
blocks, all relating hooks will be turned on or off by thls
function.)

The following operands will result in a DO-NOTHING (N)>
in all but a very limited number of cases. Thus, these operandsS
have been omitted from the discussion thus far so as to mmphfyg
Tables 3 and 5. Two such operands (Dv and Mh) and theR®
instances in which a function other than DO-NOTHING (N)
is executed are listed here.

A. Dv—The dividing line between reference and modelling
spaces

First operand = MOVE

Second operand = Dv

Function = Move the dividing line thereby increas-
ing or decreasing the room allowed for
the reference or modelling space

B. Mh—Hook in modelling set

First operand = Mh

Second operand = Rn

Function = Erase (E) a hook thereby undoing a
relation that was created previously

The Computer Journal

DRAW (D) T

DO-NOTHING (N)

GRAPHICAL
MODELLING
SUBSET

COPY (C)*

RELATE
(R

TEXTUAL
MODELLING
SUBSET

DO-NOTHING (N)

Fig. 3. Graph representation of relation between operands and
functions with text considered

*If the operand in the reference set is a new point (Rn), an erase (E) is
executed instead of a copy (C).

t1If the two operands are the same, a do-nothing (V) is executed instead cf
a draw (D).

Filing and retrieving

The filing and retrieving scheme described here is unique in
several ways. For one thing, it is the filing and retrieving
mechanism itself that provides the ability for structuring models
and for zooming in on fine details of the model. For another
thing the filing and retrieving mechanism provides the ability
to define new reference and modelling spaces thereby leading
to a very simple bootsirapping technique for system generation.
These features will become more apparent after the filing and
retrieving mechanism is described.

Complicated models are often broken up into small parts in
order to simplify the representation of the model. To provide
this ability, some blocks may be defined as a set of inter-
connected blocks. Such blocks are called complex blocks and
the interconnections of blocks that make up the complex
blocks are called the contents of the complex block. Similarly the
contents of the reference or modelling space is the interconnec-
tion of blocks currently being displayed in that space. If a
block has no contents it is called a simple block. The symbol of a
block is the pictorial representation of that block. The name
of a block, on the other hand, is a verbal representation of the
block. Note that the symbol of a complex block is usually not
the interconnection of the symbols of the blocks making up its
contents; rather it is a unique symbol pictorially representing
the complex block.

Complex blocks are defined through the use of the define
function. The define function is implied by selecting a light key
operand labelled DEFINE. If the other operand is a block
(Mb or Rb), the contents of the block are replaced by the con-
tents of the modelling space. Complex text can similarly te
defined. Any comments applying to complex blocks also apply
to complex texts.

The contents of a complex block can be displayed in either the
reference space or the modelling space. The corresponding
functions that do this are the display-reference and the display-

Volume 14 Number 4

model functions. Note that the define and display functions are,
in effect, performing filing and retrieving operations.

The display-reference or display-model functions are implied
by selecting a light key operand labelled DISPLAY-
REFERENCE or DISPLAY-MODEL respectively. If the
other operand is a complex block (Mb or Rb), the contents of
the reference or modelling space are replaced by the contents
of the block. If the operand is a simple block, a blank reference
or modelling space appears.

At all times there is displayed in a corner of the reference
(modelling) space the symbol of the block whose contents are
being displayed in the reference (modelling) space. This
symbol is called the current reference (modelling) space indicator.
Any succeeding changes made to the contents of the modelling
space will automatically update the contents in the current
modelling space indicator (note it is not possible to make
changes to the contents of the reference space). Hence, an
implicit filing is done whenever the contents of either of the
spaces on the screen changes.

The symbol of the block, whose contents were displayed in the
reference (modelling) space prior to the last execution of the
display-reference (display-model) function, is displayed next to 2
the current reference (modelling) space indicator. This symbol 2
is called the previous reference (modelling) space indicator. The 3 3
previous reference and modelling space indicators can be used Q
to go up or down through the levels of a complicated structure
as will be next demonstrated.

Each time a display-reference (display-model) function isS
executed, the symbol in the current reference (modelling) space =
indicator is put on a reference (modelling) push-down stack.
However, if a dlsplay reference (display-model) function uses @
the symbol in the previousreference (modellmg) space indicator &
as its other operand, the symbol in the current reference 2 =
(modelling) space indicator is not put on the reference o g
(modelling) stack and instead the last entry is removed from the 3
stack and placed in the current reference (modellmg) space 8
indicator. The resulting last entry on the stack is put in the S
previous reference (modellmg) space indicator and the contents &
of the new block in the current reference (modelling) space &
indicator are displayed in the reference (modelling) space. =
With the exception of the operation of the stack, the symbols in & A
the current and previous space indicators behave as Rb’s if they &
are used as operands of any functions.

Thus, the display functions tog°ther with the previous space &
indicators provide the ability of going down through the levels 2
of a complicated structure and returning up through the g
structure. In addition, attacher points on a copy of a complex‘Q
block and text associated with the copy could be made to
correspond to lines and text in the contents of the complex S
block. This feature is analogous to the transferring of arguments 2
between a main program and its subroutines. z

A complex block can be converted to a simple block by the =
use of the remove-contents function. This function is implied by S S
selecting an operand labelled REMOVE-CONTENTS. If the R
other operand is a block (Rb or Mb), the contents of that block
are destroyed. If the block is the current reference or modelling
space indicator, a blank screen appears for the reference or
modelling space.

A portion of the contents of a complex block can be added to
the modelling space (i.e. added to the contents of the block
whose symbol is in the current modelling space indicator) by
use of the add-contents function. This is illustrated in Fig. 1k.
In that example, the two triangles are the contents of the block
represented by the circle. The add-contents function is implied
by selecting a lightpen operand labelled ADD-CONTENTS.
If the other operand is a block (Rb or Mb), the portion of the
block’s contents that appeared on the screen when the block
was last dlsplayed is added to the contents of the modelling

space and is superimposed over the portion of the virtual

[:sdpy woy

wa peoe

9 lJ

LGce/ese

387

wmodelling space that is currently displayed on the screen. This
function gives the user the ability to copy the contents of a
block in his model instead of merely copying a single block.

System organisation

As mentioned previously, the filing and retrieving mechanism
allow for a simple bootstrapping technique for system gener-
ation. This will now be described.

All blocks that are ever used in either the reference or model-
ling space are contained in a library called the reference
library. Hence, the reference library is the set of all blocks in
the system. Through a separate phase, the user can enter
symbols for new blocks into the reference library.

The system organisation described below provides a user with
a bootstrapping facility for generating reference spaces; these
spaces can then be used in future modelling. This bootstrapping
facility means that the number of blocks provided by the system
can be small and yet the system will be completely general.

At the time the system is created, the reference library contains
only the following blocks:

1. MENU block—This is the block whose symbol appears in
the current reference space indicator and whose contents
appear in the reference space when the user signs on. (The
symbol in the previous reference space indicator when the
user signs on is the symbol of the block whose contents
were displayed in the reference space when the user last
signed off.)

2. WORK block—This is the block whose symbol appears in
the current modelling space indicator and whose contents
appear in the modelling space when the user signs on. (The
symbol in the previous modelling space indicator when the
user signs on is the symbol of the block whose contents
were displayed in the modelling space when the user last
signed off.)

3. LIB block—The contents of this block consist of all
blocks, other than LIB itself, which are ever used in either
the reference or modelling space. When the user adds
symbols for new blocks to the reference library (through a
separate phase), these symbols appear in the contents of
LIB.

The contents of the above blocks at the time the system is
created are shown in Fig. 4.

The effect of the define function is to associate the contents
of the modelling space with a block in the reference library.
The user can define any block in the reference library to be an
interconnection of other blocks in the reference library with the
following exceptions:

1. The user cannot define the block LIB.

2. The user cannot remove the appearance of the block LIB
from the contents of the block MENU. This guarantees that
the user will always be able to display the library in the
reference space and hence get access to every block in the
library.

New blocks are created (and modified) during a separate
phase and placed in the reference library. Such new blocks can
be used initially only by copying out of the reference library
(LIB must be in the reference space). After the new block is
copied into the modelling space, the contenis of some other
block can be replaced by the contents of the modelling space
(via the define function) and the contents of that block can
later be call-referenced thereby giving the user access to the
new block again.

New texts are created and/or modified directly in the model-
ling space as an Mt. Text never gets entered into the reference
library. After the text is created in the modelling space, the
contents of some other block can be replaced by the contents

388

of the modelling space (via the define function), and the con-
tents of that block can later be call-referenced causing the
text to appear in the reference space as an Rt. If that Rt is
copied into the modelling space, it becomes an M. This Mt is
independent of the Rt and can be modified without affecting the
Rt. Also, if several copies of the same Rt are made, each copy
can be modified separately.

Implementation

A subset of the modelling functions was implemented on an
IBM 1130 with 8K words of 16 bits each. The 1130 uses a
modified IBM 2250 Model III display console which provides
the graphic output. The 2250 uses the 1130 main storage as a
display buffer. Although the functions presented in this paper
have been described in terms of light-pen input they are in fact
independent of the actual input medium. In the present imple-
mentation, a Sylvania Tablet with electronic pen was used for
the graphic input.

The functions implemented are COPY, DRAW, ERASE,
DO-NOTHING, and SELECT. In addition, some primitive
text functions were added so that parameters could be assoc1-
ated with blocks in the model. The modelling program can be g
connected to an application program that analyses the model =
created. One such application program included in the present g_
implementation is the ‘IBM 1130 Continuous Systems Model- &
ling Program’ which is capable of analysing an analog computer &
configuration and generating its response. 3

The users of the implemented system were able to properly 5
execute the modelling functions after about 15 minutes of &
experimenting with the system and virtually no explanation of 2
the system. Those users that were familiar with other drawing & 2
programs were indeed impressed with the ease of learning and =
ease of use of implicit functions in contrast to explicit functions. 2 o

Acknowledgements

The authors are grateful to W. A. Muenzner for his comments ©
and ideas regarding text editing and for his Text Editings
program (Muenzner, 1968) which was used to produce allZ
working drafts and the final copy of this paper. The authors are & 5
also thankful to L. A. Belady for his encouragement and\
guidance throughout the research and his helpful SUggCSthﬂS-b
and criticisms. The authors would like to thank H. B. Baskm%
for initially suggesting topological modelling as an area of o @
research.

[wo! O/LUOO'd

Appendix: Entering and modifying text
Text is entered as a string of characters from the alphanumerlcc
keyboard. A terminal character in the string is used to delineate %
items of text. The initial position of an item of text is specnﬁedO
as one of the operands of the function that creates the text.o
Each item of text has a top, bottom, left, and right margmU
defined as follows:

Aq g9162

¥20c 4

MENU WORK LB

LIB
[meny]

Fig. 4. Initial conditions of system

MENU, WORK, and LIB are the names of blocks. The symbols for
the blocks are [MENU], [WORK], [LIB| respectively. The contents
of the three blocks are shown in the figure.

The Computer Journal

1. Left margin of text is the position of a vertical line passing
through the initial position of the text.

2. Top of text is the position of a horizontal line passing
through the initial position of the text.

3. Right margin and bottom of text are initially defined as
right margin and bottom of virtual modelling space.

A cursor is used to indicate where in the modelling space the
next typed character will appear. The cursor takes the form of
an underscore in a character position unless the cursor pre-
cedes the left margin or follows the right margin of the text.
In such cases, it takes the form of an arrow to the line of text.
The cursor is advanced one character position each time a
character is typed. In addition, the following four typewriter
keys provide facilities for moving the cursor:

1. Spacebar—Move cursor right one character position but
write nothing. If cursor was one character position beyond
right margin, cursor goes to one character position beyond
left margin on next line.

2. Backspace—Move cursor left one character position but
write nothing. If cursor was one character position beyond
left margin, cursor goes to one character position beyond
right margin of preceding line.

3. Advance—Move cursor down one line and over to one
character position beyond left margin. If cursor was at
bottom of text, text will roll up one line.

4. Jump—Move cursor up one line and over to one character
position beyond right margin. If cursor was at top of text,
text will roll down one line.

Characters appear at the current location of the cursor and
the cursor is advanced one character space each time a character
is entered. If cursor precedes left margin, character appears at
location of left margin (i.e. one character position to right of
cursor) and cursor moves right two character positions. If
cursor follows right margin and character (other than a space)
is entered, all preceding characters up to last space are moved
to left margin of next line and entered character is placed after
these characters. Cursor is placed after entered character. All
characters following the cursor are similarly moved to make
space for these moved characters.

All text editing commands (with the exception of character
replacement) are explicitly given by pressing an alternate-code
key simultaneously with some other alphanumeric character
key. For example, a delete command is given by typing D while
depressing the alternate-code key. An alternate-code key is
similar to an upper-case key in the sense that it gives special
significance to any alphanumeric character. Unlike the model-
ling functions, it does not appear that the text editing functions
can be implied by context but rather must be given as explicit
commands. A list of a suitable set of text editing functions is
the following:

1. Replacing characters—Overtyping any character has the
effect of replacing the old character with the new character.
A command exists for replacing a character with a blank
(a space does not do this).

References
BaskiN, H. B., and Morsk, S. P. (1968).
ELLis, T. O., and SiBLEY, W. L. (1967).
Vol. HFE-8, No. 1, pp. 15-17.
HORNBUCKLE, G. D. (1967).
No. 1, pp. 17-20.
MUENZNER, W. A. (1968).
SUTHERLAND, I. E. (1963).
pp. 329-346.
SUTHERLAND, W. R. (1966).

10.

11.

. Define bottom—This command defines the horizontal line2

. Delete character at cursor location—The delete command

causes succeeding characters to be moved left one character
position.

. Insert characters preceding cursor location—The insert

command causes future characters to be inserted preceding
the current location of the cursor. Another command must
be given to end the insert. A backspace typed while in this
mode has the effect of undoing the last character inserted
(i.e. deleting the character preceding the location of the
cursor).

. Delete line—This function is executed if delete command is

given when cursor is located beyond left margin.

. Insert line preceding current line—This function is executed

if insert command is given when cursor is located beyond
left margin.

. Insert line following current line—This function is executed

if insert command is given when cursor is located beyond
right margin.

o
. Define right margin—The define-right-margin command2

defines the vertical line passing through location of cursor=
as right margln for all future lines of text typcd in. PresentQ
lines remain as they are. However, if text is turned off anda
then turned back on again, all lines of text will use the lasts
defined right margin. Also any future copies of a text w1ll3
use the last defined right margin.

/:sdny

~

passing through location of cursor as bottom of text. Alﬁ
lines beyond bottom of text are blanked. If advance key3
is pressed when cursor is at bottom line, text will ‘roll upo
one line. 'o

. Start new line—The new-line command creates a spemaﬁ

symbol at the cursor location and all characters on thatg
line that are to the right of this special symbol are moved té
the beginning of the next line. The characters on this nexﬁ
line are moved to the right to make room for the inserte

characters. Any words that in whole or part would bex
moved past right margin are instead moved to beginning:
of next line etc.

/8€E/

Removmg right margin—This command defines the rlghts’
margin to be the rlght side of virtual screen for all futureA
lines of text typed in. Note that a new right margin can btg‘
defined even though a right margin has previously beery;
defined. However, if the new rlght margin is to be to thg%
right of existing right margin, it is 1mposs1b1e to posmoq;
cursor at this location without first removing the prevxous)D

right margin. >

©
Removing bottom—This command defines the bottom of*
virtual screen as bottom of text. All lines beyond previous3
bottom line location and up until bottom of virtual screen™
are made visible. Note that a new bottom can be defined
even though a bottom has previously been defined.

Multilevel Modelling in a Graphical Design Facility, IBM Systems Journal, Vol. 7, Nos. 3 and 4.
On the Development of Equitable Graphic I/O, IEEE Trans. on Human Factors in Electronics,

The Computer Graphics User/Machine Interface, IEEE Trans. on Human Factors in Electronics, Vol. HFE-8,

An Experimental Text Editor for the IBM 1130/2250, IBM Research Report RC-2063.
Sketchpad—A Man Machine Graphical Communication System, AFIPS Conference Proceedings, SJCC 23,

The On-Line Graphical Specification of Computer Procedures, Ph.D. Dissertation, MIT, Cambridge, Mass.

Volume 14 Number 4
3

389

