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Two new families of languages, the Z (k) and %(k) languages, are introduced each of which is, in
some sense, a generalisation of top-down deterministic languages. This leads us to new characteri-
sations of s-languages and LL(1) languages. We include a characterisation of the unambiguous
context-free languages, generalisations of the equivalence relation on s-grammars to s-separable
sets, a summary of the non-closure results for LL(k), F(k) and U (k) languages, and it is shown that
non-degenerate hierarchies exist for the families of # (k) and %(k) languages.
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Introduction

A survey of the approaches to top-down deterministic lan-
guages has been given in Wood (1969a). However, since that
time, some earlier unpublished work by Schorre (1965) and
Tixier (1967) has come to light. The aim of this paper is to
investigate their approach, relating it to the LL(k) languages of
Lewis and Stearns (1968). At the same time we take this
opportunity to generalise some results of Korenjak and
Hopcroft (1966) and to include a survey of the non-closure
results for LL(k) languages, some of which are new.

In Section 2 we introduce separability, in Section 3 f-separ-
ability and f-quasi-separability, in Section 4 we deal with
generalisations of the equivalence relation for s-grammars and
in Section 5 are found the various non-closure counter-
examples.

1. Notation
We use ¢ to denote the empty set. A grammar G is a 4-tuple
G=(N,T,S,P)

where N is a finite set of nonterminal symbols, T is a finite set of
terminal symbols, S in N is the sentence symbol, and P is a
finite set of rules (or productions) of the form X —» x, X in N
and xin(NuT)* Let V=N uUT If X— xin P then x is
an alternative of X.

In the usual manner the free monoid generated by a set of
symbols 4, is denoted by A*, similarly A* = AA*. ¢ denotes

the empty word. We have the binary relations => ,=>",
G G
=>* or more usually =>, =>"*, =>* on words over V*,

G

which define derivations over G. The language generated by a
word w is the set {x: w =>* x, x in T*}, written both as
L(w) or ,w in this paper. The language generated by the
grammar G, denoted L(G), is L(S). The length of a word x in
V* is denoted by |x|, and is the number of symbols in x, |¢]=
0. For k > 0, for all x in V* let k: x be x if |x| < k, other-
wise x; where |x,| = k and x = x,x,.

We say a grammar is admissible if for all X in V there exist
derivations S =>* uXv and X = >* x, where u, v in V*, x
in T*. Henceforth grammar means admissible grammar. The
reader is assumed to be familiar with the concept of ambiguity
and (left) derivations (see Ginsburg, 1966).

Definition
For k > 0, X in N is said to be LL(k) if for all u, v, v', uy, u},
x, x', such that

S =>*uXv => uxv =>* uuy,,

S =>*uXv' => ux'v' =>*uu), and

k:uy, = k:u) then x = x’, where

u, uy, uy; in T*, v, v" in V* and X - x, X - x’ in P. Similarly
a grammar G is LL(k) if for all X in N, X is LL(k). L is an LL(k)
language if it is generated by some LL(k) grammar. Let Z(k)
be the family of LL(k) languages and ¥ = u Z(k).

all k
Definition
A grammar G is an &-free grammar if for all X —» x in P,
x in V+, An e-free LL(1) grammar is an s-grammart, similarly
as s-language is a language that can be generated by an s-
grammar.
A set X is e-free if ¢ not in X.
Definition
A nonterminal X has a cycle (or is cyclic) if there exists a
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derivation X =>* uXv, u, vin V*, uv # ¢. If uv = ¢ then X3

has a loop. A grammar G has a cycle (loop) if at least one
nonterminal in G has a cycle (loop). If X, Y in N have cycles
and there exists no derivation X =>* uYv, u, v in V*, then
X, Y are said to have disjoint cycles.

2. Separability and context-free grammars
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separability in order to apply it to arbitrary context-free
grammars. By ‘set’ we will mean ‘a set of words over some
terminal alphabet 7.

Definition

The left quotient (right quotient) of a set X by a set Y is
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{u:vuin X, vin Y} ({u: wv in X, v in Y}) denoted by Y\X 5

(X/Y).
Definition

right quotient denoted by X/.Y.
Definition
Let (4, B) denote an ordered pair of sets. We say (X, Y) is
separable if X\X n Y/.Y = ¢. Let
I(X, Y) denote the set X\X n Y/.Y.

Remarks
1. It follows that if ¢ is in a set X then

X - {e} = X\Xand X — {e} < X/.X.
2. If x in T* then X.\X = X/.X = ¢.
Definition
A nonterminal X is separable if for all X — x in P, where x

tThe original definition for s-grammars, which is equivalent to
this one, is: an s-grammar is an e-free LL(1) grammar in Greibach
normal form.

*Results mainly obtained at the Courant Institute of Mathematical Sciences, New York University, with the National Science Foundation,
Grant No. NSF-GJ-95, additional work carried out under National Research Council of Canada, Grant No. A-7700.
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isin YV for all Y, Z in V such that x = uYZv, u, v in V'*,
(Y, Z) is separable. A grammar is separable if all X in N are
separable.

Lemma 1

Given a grammar G and Y, Z in N such that ( ¥, Z) is separable
then it follows that:

(i) forall Y = > *yw, yin V*, Win V, (W, Z) is separable,
(i) forall Z =>"* Uz, zin V*, Uin ¥, (Y, O) is separable,
(i) for all W and for all U as above, ( W, U) is separable.

Proof:
We will prove (i) in detail, (ii) and (iii) follow similarly.

(i) Assume the contrary, then I(W, Z) # ¢ therefore there
exists at least one p in I( W, Z). Thus there exists p, in W such
that p,p is in W, therefore © gpy and gp, p are in Y for some g in
. Therefore p is in I( Y, Z) giving a contradiction. The result
follows.

Corollary 2
If G is a separable grammar then for all X, Y in V such that
there exists a derivation Z = >* uXYv, (X, Y)is separable.

The converse of Lemma 1 obviously does not hold.

Definition

For n > 2, an n-tuple of sets (X4, . . ., X,) is R separable if for
alli, 1 <i<n,(X;, X;3q ... X,) is separable.

Definition

A nonterminal X is R separable if for all X - X, ... X, in
P,n>2(X,,... X,)isRseparable. A grammar is R separable
if all X in N are R separable.

We now give a lemma that demonstrates the behaviour of R
separability under substitution.

Lemma 3
Given a grammar G and some X - X, ... X, in P, n > 2,
such that (X,, . . ., X,) is R separable then it follows that:
() foralli,1 <i<n,forall X; => *yY,yinV* YinV,
(9. X%,.,,...X)isR separable
(11)1fforsomez 1<i<nmX;»Y,...Y,isinP,m=>=2
and (Yl, ..., Y,) is R separable, then (¥,.... ¥,
Xivr .. ,,) is R separable.
Proof:

(i) follows directly from Lemma 1.
(i) Assume the contrary, then there exists a j, | < j < m, such
that (Y, Yj+ . ¥, X..,...X,) is not separable. Let j
denote Y;, Y and X denote X......X, This implies
there ex1sts a q in I( ,J%),apin Y and an r in yX such that
pq is in Y and gr in yx Now r = rr, where ry in , r; in X.

(a) gr = gr,r, where gry in y, r, in X.

If r, =r; then ¢ in X( Y, 7 which is a contradiction as
( , J) is separable.

If |r2| > |ry| let ry = ry1r, then ryy in I(X,, X) as both pgr;
in Yy and pgr, in Yy If |r,| < |r,| a similar argument holds.

(b) gr = q,q,r where g, in j, qar in X. As r, in X we have q2r1
in x/x and as p,pq in Y gy,r; in y we have g,r; in
Y5\ Y5.

Both cases lead to I(X,, %) # ¢, a contradiction.

Corollary 4

If G is an R separable grammar then G is separable. This is
really a corollary to the definition of R separability.

Corollary 5

If G is an R separable grammar then for all X; in V such
that there exists a derivation Z =>" X, ... X,, n = 2,
(X, ...,X,) is R separable.

Definition

We say an n-tuple (X4, . . ., X,), n = 2, is L separable if for all
ii1<i<n (X;...X;_ X;)isseparable. We can extend the
definition to nonterminals and grammars. We now give two
examples which illustrate separability.
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Example 1
I;et X - X, X,X; be a rule of some grammar, where
{a}* = X,and X, = {a}.
Then (X, X,) and (X,, X,) are separable but
(X L XX X, 3) and (X,X,, X;) are not separable.
Thus (X,, X,, X,) is not L or R separable (note that the gram-
mar is ambiguous).

Example 2
Let X be as above, where X1 = {a, ¢}, X, = {b,e} and
X; = {a}. Then (X,, X,, X,) is both L and R separable and
X is therefore separable.

This leads to the following lemma.

Lemma 6
A grammar is L separable if and only if it is R separable.

Proof: '
This is not included as it is very similar to that used in Lemma
3.

Definition
A grammar is s(uper)-separable if it is R and hence L separable.o
Corollary 7 5

If G is an s-separable grammar then for all X;in VsuchC>
that there exists a derivation Z =>% X , oo X, n =28
X, .. X) is s-separable foralli,j,i=1,j<ni<]j.

Remark
s-separablllty formalises an intuitive notion of unamblgulty,g
i.e.if (X, Y)is separable then we know that there is no subwordg\)
v, for which there exists x in X, y in ¥ such that xv in X andg
vy in Y. Therefore it follows that each word x in X Ycanm
be uniquely partitioned into x;x, with x; in X, x,in Y. Thuso
s-separablllty is a necessary condition for unambiguity, that 1t°
is not sufficient is shown by the next example.

Example 3
Let G = ({S, X, X,, Yy, Y5}, {a, b}, S, {S = X, Y| X2 1>,
X —-a X,>a Y —b Y2—>b})3
G is trivially s-separable and ambiguous.
We are now in a position to prove the following necessary and°

LUOO/LUOO

e/,

sufficient condition for unambiguity. —é
Theorem 8 . §
A grammar G is unambiguous if and only if the followings
property is satisfied: §
(i) for all Xin N, forall X —» x;, X = x,in P,X; N X, = X
Xy # X, g

(ii) G is s-separable. This is Property A. Q
Proof: 3

As necessity follows trivially consider sufficiency. Assume theS
property holds and G is ambiguous. There exists at least ones
word x in L(G) such that x has at Icast two distinct left deri
vation sequences, let these be {v;} and {w;}, where vy = wo = S:M
and v, = w, = x. There exists j, 0 < j < min (p, q) such thatg
vi=w,0<i<jand v;,; # W

Let v; = aXv, v; = ax,v, Wy, = ax,v, a in T*, X in N,
v in V* where X—»xl,X—>x21nP b ;éxz

Now either x, =>*a,, x, =>%*a,,v =>%a,,a,,a,inT*,
where

x =aaa,. Thus X, "X, # ¢
or
X, =>%a;,x, =>* al,al,a1 in T*, |a,| < |d}|

say, and v =>* a,, v =>%*d), a,, a, in T* with a,a, = a,a,.
Thus I(X, ) # ¢, which by Corollary 7 contradicts the second
condition. The theorem follows.

Definition
G1sabmarygrammar1fforall X o> xinP,x =¢orx = X X,,
Xin N, X;, X,in V.

Schorre (1965) proved the following result.
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Corollary 9
A binary grammar is unambiguous if and only if the following
property is satisfied

(i) for all X in N, for all X - x,, X - X, in P, x; # X,,

X NnXy = ¢.

(i) G is separable. This is Property B.
Proof:
(X, Y) is s-separable if and only if (X, Y) is separable.
Remark
The proof of Theorem 8 can be followed through by replacing
s-separability with separability, and thus Lemma 6 is not
necessary for this proof. Thus a direct proof of Corollary 9
would be much shorter than that originally given by Schorre
(1965). Property B can be apphed whenever at most two non-
terminals appear together in the right sides of the rules in a
grammar, so we obtain the following result.
Definition
A grammar is in e-(k, 2)-normal form, k > 1 if for all X - x
in P, either x in T*, |x| < k or x = ay, ain T*, |a| = k, y in
N U NN.

It is known (Wood, 1970), that every grammar can be put in
&-(k, 2) normal form.
Corollary 10
An e-(k, 2) normal form grammar is unambiguous if and
only if Property B holds.
Definition
A grammar is an operator grammar if for all X — x in P, x in
T* (NT*)* (Greibach, 1965).
Corollary 11

An operator grammar is unambiguous if for all X in N, for all
X—>x1, XﬁxzinP,.XI #xl,il niz = ¢.

3. f-separability and k: separability
Definition
(X, Y) is f-separable if
SX\X) 0 f(Y].Y) = ¢
where f'is a map from T into some set D.
Letting f(4) = u for all u in T* then we have separability.

We extend the definition to give f-s-separability in the obvious
way. We are particularly interested in the following special
map.
Definition
(X, Y)is k:separable if k: (X\X) nk:(Y].Y) = ¢. We define
k:s-separable in a similar way; let I,(X, Y) denote the set
k: (X\X) nk:(Y/.Y).
Definition
Given an integer k, k > 0 a grammar G is a U(k) grammar if
the following property is satisfied :

(@) for all X in N, for all X - x,;, X -» x, in P, x;, # x,,

kX, nk:%, = ¢.

(ii) G is k:s-separable.
Definition
(X, Y)is f~q(uasi)-separable if

SX\X) N f(Y)=¢

where fis a map from T* into some set D. Similarly define
k:q-separable and k:q-s-separable.
Definition
Given an integer k, k > 0, a grammar G is an F(k) grammar if
the following property holds:

(i) for all X in N, for all X —» x;, X > x, in P, x, # x,

k:X nk:%, = ¢.
(ii) G is k:q-s-separable.
F(k) grammars are a generalisation of the RCF (regular
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context free) grammars of Tixier (1967) and the FCR (first
character recognition) grammars of Schorre (1965).
Definition
A language is a U(k) or F(k) language if it is generated by a
U(k) or F(k) grammar. Let %(k) and % (k) denote the fami!ies
of U(k) and F(k) languages. Further let % = {L: there exists
a k > 0, such that L is in %(k)} and similarly define &.

Let us look at some basic properties of these families. From
the definitions and Theorem 8 we have:

Corollary 12

Forall L, Lin %, L is unambiguous.

However, because of the definition of g-separability we have:
Letting X = {c,¢} and Y = {ca'b’c’, a'b/c’: i, j = 1} we

have {ca'b’c!, ca'bic’: i, j =1} < XY and (X,Y) is

2: g-separable. Further as both X and Y can be generated

by 1: g-s-separable rules we obtain the following result.

Theorem 13

& contains (inherently) ambiguous languages. We now
exhibit a language which is not in #

Theorem 14 g
L, = {d’,a'b’:i > 1} is not in &, and therefore & is a proper 5
subset of the family of context-free languages. §_
Proof 2

If G is such that L(G) = L, then G must have two disjoint 5’
cycles and therefore at least three nonterminals. Ot:he:rw1se3
L(G) would contain words of the form a'b’, i > j, thus we need =3
at least one nonterminal for each cycle and one nonterminal £
that branches to either cycle, let this be X. Then X has at least S
two alternatives, one of which leads to words of the form a'
and the other to words of the form a'b’; let these be X — x1 =
and X — x,. Then for any k > 0, k: X, r\k X, # ¢.
Corollary 15
L, is not in %.

It turns out that  and &
result.

Theorem 16
L, = {a'bc/:i >j>1}isin % but not in F.
Proof:
The rules S — AB, A — aAle, B — aBc|b are l:s-separable;
therefore L, is in %(1).

There are three distinct ways in which L, can be generated,
these are:

Iwe

are incomparable, an unexpected

(@) form a'a’b ¢’
(b) form a’a’d ¢’
(c) form a’b(c|e)’

Each of these can be shown to be non-generable by an F(k) 3
grammar for any k > 0; in a similar manner to the proof of ©
Theorem 14. We will prove (a) only. There must be two d1s101ntn
cycles, one to generate a’, one to generate a’b ¢/ and there must N
be a nonterminal that branches to both cycles, so that a’a’d ¢/ 5
can be formed. Let this be the rule X - AB, where 4 = {a'},
B = {a'b ¢’} then A.\A = {a'} and therefore

k:(A\A) nk: B # ¢ for any k > 0.
We now show every LL(k) grammar is U(k).
Theorem 17
For all k > 0, each LL(k) grammar is U(k).

Proof:

EacI{LL(k) grammar trivially satisfies the first condition for a
grammar to be U(k), therefore it remains to show that each
LL(k) grammar is k:s-separable. Proceed by contradiction.
Given G, an LL(k) grammar assume it is not a U(k) grammar.
Then there exists at least one rule ¥ — xXy such that (X, ) is
not k:separable. This implies: b in I(X, 7). If bc in I(X, ),
¢ in T* then G is ambiguous, therefore we must have bc in
X\X and bd in 7/.5, ¢, din T*, |b| = k and cd # .

0 sonb Aq | 81.G2€/96€/¥/t |/3191e/|ulwod/wod dno*
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Thus 5
abc in X for some a in X and
bde in j for some e in j.

We have
Y=>xXy=>*u, Xy =>*%uw,ay, u, in T*, )

and
Y=>xXy =>*u Xy =>*u,abcy, )
which in turn implies there exists Z in N such that
X=>*aqZ=>a,z =>*%aa, 3)
X=>%a,Z=>a,z, =>%a,a,bc, (C))

where

aa, =a,a,a,inT* z, #2,,Z—>z2,Z—z,inP,
Thus letting S = >* u Yv, combining (1) with (3) and (2) with
(4) and noticing that in (1) y = >* bde, we have that Z is not
LL(k).
By an almost identical proof, we also have:

Corollary 18
For all k > 0 L(k) = F(k).

We now compare £(1), %(1), #(1).

Theorem 19
O £@1) =)
(i) £(1) # %(1)
Proof:
(i) Because of Corollary 18 we need only show that 1:g-s-
separability implies LL(1). Assume it does not. Then given G,
an F(1) grammar there exists at least one X in N, which is not
LL(1). Thus

S=>*uXv=>ux,y =>*uu,,

S=>%uXv =>ux,y =>*uu,u,u in T*,
v,vVin V¥, X > x;, X > x, in P,
1:u; = 1:u but x; # x,.

(a) ¢in X.

Then as either u; = ¢ and u, = ¢ implies ¢ in %; N X, or
X — {e} < X.\X therefore 1: 4, in 1: (X¥.\X) and 1: u;in1: 4.
(b) e not in X.

1: %, n1: %, # ¢.
In both cases we have a contradiction.
(ii) Ly = {a'(b|bbd)': i > 1} is known to be LL(2) but not
LL(1) (Rosenkrantz and Stearns, 1970). It can be generated by
a U(1) grammar, however. Let

G = ({S,4,B,C}, {a,b,d}, S, P)

where

P={S- ad,
A > aAB|B,
B - bC,
C — bd|e}.

As B/.B = ¢ the grammar is trivially U(1), but not F(1). We
have the weaker characterisation:

Corollary 20
A grammar is an s-grammar iff it is an e-free U(1) grammar.
Thus the (k) languages can be thought of as a generalisation
of s-languages while the # (k) languages are a generalisation
of the LL(1) languages.
Because L; in Theorem 14 is deterministic but not in # we
are lead to the following result.

Theorem 21
% and the family of deterministic languages are incomparable,
Proof-
Let Ly = {ww®: w in {a, b}*}, then L, is not deterministic
but it is generated by the rules
S — aSa|bSb|e
which are trivially U(1) and F(2).
Corollary 22
FNU> ZL.

Volume 14 Number 4

We now show that a nontrivial hierarchy exists for both the
F (k) and %(k) families.
Theorem 23 ' .
For any k > 1, L,(k) = {a'(b|b**'d)': i = 1} not in F(k).
Proof:
Any grammar generatmg L,(k) must have a cycle for some
nonterminal X, say, i.e.

X=>%uXv
where u =>*a", v =>*(b|b**'d)", m = 1. This implies:
b*din X.\X and b* in k: #. Thus

k:(X\X) nk:5 #0.

However it is F(k + 1).

Corollary 24
Fk)c F(k+ 1)forall k > 1.

Theorem 25
For any k > 1, Ly(k) = {a'(d|b*d|db**')': i > 1} not in %(k),
but in Z(k + 1). Thus %(k) = %(k + 1), for all k > 1.
Proof :

As in Theorem 23 we find an X in N such that X => uX»E’
b**1in X.\X and b* in #/.5; thus k: (X.\X) n k: (#/.D) # ¢1
therefore Ls(k) is not U(k), but it is Uk + 1).

Operations on U(k) and F(k) languages

By noting that L, = {a’,a’b’: i > 1} is neither U(k) nor F{(
for any k > 0, but that it is the union of two languages whic
are both U(1) and F(l) we can construct the various nons
closure results given in Table 1, in a similar manner to those:
given for LL(k) languages in Section 5.

} Papeo
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4. Relations and context-free grammars

Korenjak and Hopcroft (1966) (henceforth let KH denote thig
reference) solved the equivalence problem for s-grammars by
considering a relation on V* (in fact, an equivalence relatlon)i
Attempts since then have been made, without success, t

extend this method to solve the equivalence problem for LL(k}

grammars, although this problem has been solved by a different
route in Rosenkrantz and Stearns (1970). Tixier extended th¢
relation to LL(1) grammars; we now extend it to s-separab1§
sets. Wood (1971) gives some further results.

Definition
A nonterminal X in N has the prefix property if X =>* x =3
yz (z # €) then X #>7* y. A set X is a prefix set if for all x i
X there exists no y, y # ¢, such that xy in X. We note that X
is a prefix set iff X.\X = ¢.

The following result is taken from KH.
Lemma 26
Given G, an s-grammar, every X in N has the prefix property
Proof: B
Assume the contrary then there exist words x, y in X, zin T*,
# ¢, such that x = yz. Now there is a left derivation sequence

S=> Alxl => A1A2x2 =>...=> Al ...A,,_lx,,_l
where x,_; > A, in P and A4,... A4, = y. Because of the
determinism of s-grammars x must have the same derivation
sequence, but as x,_; — 4, in P there cannot be any x,_; —
A,x, in P. Therefore the result follows.

If S has the prefix property then L(G) is said to have the prefix
property. Therefore every s-language is a prefix set.
Definition
If X is a set of words let sA(X) denote the length of a shortest
word in X, defined as follows: if

X =¢,sh(X)= —1
|x|, x in X such that there exists no y in X,

196€//
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otherwise, sh(X) =
Iyl < Ix].
Definition
A grammar G is in (1,2)-normal form if for all X - x in P either
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xinT, xin TN or x in TNN.

Definition

If X, Y are sets of words from 7* and for all x, x in X if and
only if x in Y then write X = Y (i.e. X = Y if and only if
X = Y). We extend this to the catenation product of sets of
words and to words over ¥ (i.e. x = y if and only if X = ).

We say X = Y is an equivalence pair.
As in KH we have:

Lemma 27

The relation ‘=’
product.
Proof:

(i) reflexive: X = X,

(ii) symmetric: X = Y implies Y = X,
(iii) transitive: X = Y and Y = Z implies X = Z,
(iv) catenation: X = Y and W = Z implies XW = YZ.
Considering the corresponding sets of words (i)-(iv) follow
trivially.

is a congruence relation under catenation

Remark
Note that the above lemma holds for any sets of words, how-
ever they are generated.

We now assume that for any set X, X is nonempty.

Definition

We say n(X,, ..., X,)iff (X,, ..., X,) is s-separable.
Lemma 28

If n(X,Z), n(W, Y), W= Xand WY = XZ then Y = Z.
Proof:

Assume otherwise. There exists a shortest word a that contra-
dicts Y = Z; without loss of generality assume a in Y.
Let b be a shortest word in W (and hence in X); then

bain WY and ba in XZ.

Now no proper prefix of b can be in X, by construction, there-
fore ba, in X, a, in Z, a,a, = a, a; # ¢. Furthera, in Yasa
is a shortest word that contradicts Y = Z. Therefore b,ba, in
W, a,a,, a, in Y contradicts n(W, Y).

Corollary 29. Left cancellation
If (W, Z), (W, Y)and WY = WZ then Y = Z.

Corollary 30
If n(X,2Z), n(W, Y), Y =Z and WY = XZ then W = X.
Corollary 31. Right cancellation
Ifn(W, Y),n(X, Y)and WY = XY then W = X.

A useful operation is substitution of equivalences, which
preserves equivalences.
Lemma 32
Ifn(X, Y),n(W, Y)and XY = Zthen X = Wif WY = Z.
Proof:

if: XY=Zand WY =Zthen XY= WYand X = W.

onlyif: X = Wand Y = Ythen XY = WY giving WY = Z.

KH give two transformations on equivalence pairs; we extend
these in a natural way.

Definition. The A-transformation
Given an ¢-free set X we let X(a) denote the subset of X defined
as {u:uin X, u = au,}.

Given the equivalence pair X;... X, = Y,...Y, form
Xi(a) and Y,(a) for all a in T. We replace the equivalence
pair by a set of new equivalence pairs

X(@X,...X,= Y,(@Y,... Y, forallainT.
We have trivially:

Lemma 33
In the above definition
X,...X,=Y,...Y,iffforallainT
X@X,...X,=Y@VY,...Y,
400

Remarks

(i) Note that X(a) = {a}\X.

(ii) If the equivalence pair is over ¥* x V' then the A-

transformation is carried out as a left substitution,
followed by a collecting of terms, as more than one
alternative of X; may begin with a specific terminal
symbol.
Note that X,(a) or Y,(a) for some a in T may contain the
empty word. For s-languages (and grammars) we have ¢
in X (a) iff ¢ in Y (a) for any a in T. However, this is
obviously not true for LL(k) languages (and grammars)
in general.

(iii)

From Remark (i) above we can infer the more general result.
Corollary 34
IfX,...X,=Y,...Y,and X = T* then
X\(X;...X,)= X\(Y,...Y,).
We now generalise the B-transformation of KH.

Definition. The B-transformation
Let X;...X,=Y,...Y,,ain X, and aZ < Y,... Y,,
I = 1, for some set Z such that there exists no set Z,, Z = Z,
withaZ, < Y, ... Y,, then replacing
X,...X,=Y,...Y,by
X,.. X,=2Y,4,...Y,and X, Z=Y,... 7Y,
we have the B-transformation.

Theorem 35
Xi...X,=7Y,...Y,iff
X,...X,=2Y,,,...Y,and X, Z=Y,... Y,
Proof:
As in KH.

Further, s-separability is preserved.

Considering equivalences on s-grammars we have the follow-
ing corollaries.

Noting that Z will have the form Z, ...Z,, Z;in V, p > 0,
we have:

Corollary 36
O0<p<la+1ifY,..
Definition
Given a grammar G, let
t; = max ({sh(X): X in N,}) and let 1 = max ({t;}),
all 7.
This leads to the following corollary.

Corollary 37
IfX,..X,=Y,...Y,
G, and G,, then
() sh(X,...X,)=sh(Y,...Y,)
(ii) 1 < m < nt, i.e. the length of the right side is bounded by
the length of the left side.

Then we have the special case of KH.

Corollary 38

If n <t + 3 then the left sides generated by the B-trans-
formation have length at most ¢ + 2, and therefore the right
sides have length at most #(¢ + 2).

Remark

So far the underlying properties of equivalence pairs have not
been examined in much detail. Consider the following simple
question for prefix sets:

if

Y, #>"ay, forg <l

is an equivalence on s-grammars

X1X2 = Yl Yz and Sh(Xl) = Sh(Yl)
then is it true that X, = Y,?
The results above do not answer this and other related
questions, therefore the remainder of the section will investi-
gate these problems.
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Definition
Given two sets X, Y then we say:
() X -< Y, Xis left string contained in Y, if for all x in X,
xy in Y for some y in T*,
(i) X > Y, X left string contains Y, if for all x in X, there
exists y in Y and z in T* such that x = yz,
(i) X <- Y, Xis right string contained in Y, if for all x in X,
yx in Y for some y in T*,
(iv) X > Y, X right string contains Y, if for all x in X, there
exists y in ¥ and z in T*, such that x = zy.
Similarly we can define x - <, ->, <+, > y for words x, y in
T*.
We also have:
Definition
Given two sets X, Y then
DX cYifX-<Yand Y > X,
(i) Xo-YifX>-Yand Y <- X.
We now have the following theorem, which relates equivalence
pairs, shortest words and prefix sets.
Theorem 39
Given X, X, = Y,Y,, where each set is a prefix set we have:
(i) if sh(X;) = sh(Y,) then X, = Y,
(ii) if sh(X,) < sh(Y,) then X, -< Y|,
(iii) if sh(X,) > sh(Y,), then X, -> Y,.
Proof:
Let X,, X,, 71, 7, be shortest words in X,, X,, ¥,, ¥,, and
X, X,, Y;, Y, be the corresponding sets of shortest words.
(i) Choose the shortest word which contradicts X; = Y, let
this be x,. It is true that

X,=YandX, = Y,.
Now x,Xx, in Y,Y,. This implies X, is not prefix, therefore
X, =7,.

(i) Wehave X, - Y, and X, o Y,. First show X, < Y,.
Let x, be the shortest word in X, such that there exists no y
in T* such that x,y in Y,. Immediately we have

XX, in Y, Y, implies x,, in Y;, x,,%, in Y,
where x,,x,, = x,, giving _
X11¥2 in X1 X, and as X, o+ Y, we have
vy in X, v,5, in X,, where v,v, = x,,,
giving a contradiction of the prefix condition.

Secondly, show Y, -> X, which then implies the result.
Assume there is a y in Y| for which there exists no x in X,
such that y - > x. Then:

Yy2 in X, X,, giving
y1in Xy, y,5, in X, as si(Y,) < sh(X,).

Now y - > y,, therefore contradiction hence the result.

(iii) is proved in a similar way to (ii).

We have in fact a stronger result.

Theorem 40
Given sets X, X,, Yy, Y,, where X,, Y, have the prefix
property, sh(X,) = sh(Y,) and sh(X,) = sh(Y,) then
X1X2 = Y1Y2 iﬁ‘Xl = Yl and Xz = Y2.
The following question arises.
Does Theorem 40 hold without the prefix property ?

Example 4

Let
X,
Y,

{abi:i = 0}, XZ = {d}7
{a}, Y, = {b'd:i = 0}.
X, does not have the prefix property.
sh(X,) = sh(Y,), sh(X,) = sh(Y,) and X, X, = Y, Y,
but X; # X, and Y, # Y,.
The most we can say is:

Lemma 41
Given sets X, X,, Y;, Y, with sh(X,) = sh(Y,) and sh(X,) =
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sh(Y,) then X, X, = Y, Y,if X;, = Y, and X, = Y,.

This is just a trivial restatement of the catenation property.
Remark
In Example 4 (above), n(X;, X,) and =n(Y,, Y,) imply that in
order to prove a theorem similar to Theorem 39 for s-separable
sets either extra conditions are needed or a weakening of the
statement of the theorem. We choose the latter course giving
the following very weak version of Theorem 39 for s-separable
sets.

Theorem 42
Given X, X, = Y, Y,, n(X,, X,), n(Y,, Y,) we have:

(1) if sh(X,) = sh(Y,)then X; -> Y, & Y, - > X,

(i) if sh(X,) < sh(Y,;) then Y, - < X,

(iii) if sh(X,) > sh(Y,) then X, -> Y,.
The proof of this theorem follows immediately from the
assumptions. We now state a conjecture, which, if true, would
be the expected weakened version of Theorem 39. However its
proof or disproof is non-trivial.

Conjecture o
Given X, X, = Y, Y,, n(Xy, X,), n(Y;, Y,) we have: g
3
(i) if sh(X;) = sh(Y,)then X; < Y, or Y, < X,, ]
(i) if sh(X,) < sh(Y,) then X, - < Y|, §
(iii) if sh(X,) > sh(Y,) then Y, - < X,. 5
We now compare - = with the set inclusion relation. 3
Lemma 43 ‘3
X-c Y& Y- -c X does not imply X = Y, although theﬂ:;
converse result holds. 2
Q.
Proof: . ) 2
Let X = {b':i> 0}, Y = {b?':i> 0}, then o
X cY&Y -c Xbut X#Y. 5
Q
We have a weaker version of Lemma 28. S
Lemma 44 8
If X, X, =YY, n(Xy, X)), n(Y;, Ys), X, <X, therg
X2 > Yz. %,\)
This result follows trivially having once noted that: o}
Lemma 45. =
If X - < Y then sh(X) < sh(Y and g
ifX -« Y&Y -c X thensh(X)= sh(Y). o
Proof- §
X - Y implies Y -> X which implies that sh(Y) > sh(X)z;
The second result follows immediately. -
<
Table 1 Comparison of LL(k), F(k), U(k) and deterministiqu_
languages 9
CLOSED UNDER LL(k) DPDL U(k)oR 3
F(k)y =
Union no no no §
Concatenation no no no =
Concatenation with R no yes no
Closure no no no
Reversal no no no
Intersection no no no
Complement no yes ?
Intersection with regular set no yes no
Substitution no no no
e-free substitution no no no
Gsm mappings no yes no
e-free gsm mappings no yes no
Inverse deterministic gsm
mappings ? yes ?
Quotient with regular set no yes no
Homomorphism no no no
e-free homomorphism no no no
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S. Operations and LL(k) languages

In Table 1 we compare LL(k) languages with the deterministic
context-free languages of Ginsburg and Greibach (1966). The
results for LL(k) languages are non-closure results; this with
the known result (Rosenkrantz and Stearns, 1970) that the
LIL(k) languages form the largest known class for which the
equivalence problem is decidable, their misbehaviour is sur-
prising. Most of the results detailed below appeared previously
in Korenjak and Hopcroft (1966), Rosenkrantz and Stearns
(1970), Tixier (1967) and Wood (1969b).

Boolean operations

Lemma 46

£ is not closed under (i) union, (ii) intersection, (iii) comple-
ment.

Proof:

() Let L, = {a:i > 1}, L, = {a@'b:i > 1} then L, UL,
is not LL(k) for any k > 0.

(i) Let L, = {a'(blc) a'(Ble): i = 1},

L, = {a@'ba’b,d'cdic:i,j > 1},

then Ly = Ly n L, = {a'ba'b,a’ca’c:i,j > 1} which
is not LL(k) for any k.

(iii) Let Ly = {a@'b’:j > i > 1} then {a, b}* — L; is not
LL(k) for any k,

this is proved in Rosenkrantz and Stearns (1970). Because L,
and L, are regular sets we have the following.

Corollary 47

Z is not closed under union or intersection with a regular set.
Letting L, = {a'ba’c, a’c a’b:i,j > 1} then Ly — Ly = L

and as {a, b}* — Lqis not LL(k) we have:

Corollary 48

Z is not closed under subtraction or subtraction with a regular

set.

Mappings

Let Ly = cL, v dL,, then Lgis LL(1).

Define a homomorphism o, that maps d onto ¢ and the other

symbols onto themselves, then

o(Lg) = Ly = {ca’, ca’’: i > 1}
which is not LL(k) for any k. We have shown

Lemma 49
£ is not closed under e-free homomorphism. Further as
homomorphism is a special case of substitution we have

Corollary 50
£ is not closed under e-free(finite) substitution, homomor-
phism or (finite) substitution.

Similarly we can define a gsm mapping that perforins the
homorphism o, therefore we also have

Corollary 51
& is not closed under e-free gsm mappings. Finally we note
that as £ is not closed under e-free homomorphism, it is not
closed under k-limited erasing.
Products and quotients
Let L,y = {c} U cL, which is LL(1); then
L, L, = {cd’, ca’b'a’: i,j > 1} is not LL(k).
Trivially letting L,; = L, U cL, we have
{c,cc} Ly, = {cd’, cca’, cca’d’, ccca’b’: i > 1}
is not LL(k). We have just shown the following.
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this gives:
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Z is not closed under catenation closure.

{c,e}\L;; = L;; v L, and is therefore not LL(k) giving an
expected result:

Lemma 56
£ is not closed under left quotient, left quotient with a regular
set or left quotient with a finite set.

Tixier (1967) has shown the strongest possible result:

Lemma 57

& is closed under left quotient with a single word. Letting
Ly = L,/({ab*:i = 1} U {&})

{a'bi,aitl:i > 1}

which is not LL(k) for any k. Therefore we have

Lemma 58
£ is not closed under right quotient or right quotient with a
regular set.

However, as expected by the post-product result:

Lemma 59

& is closed under right quotient with a finite set. We now
examine those operations introduced by Ginsburg and
Greibach (1966) which preserve the deterministic languages.

Definition
Init(L) = {u: uv in L for some v in T*}, thus
Init(L) = L/T*, the set of all initial subwords of words in L.
Taking L = {a'b*:i > 1}, Init(L) = {a'b’:i = j = 0} which
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Book review

Progress of Cybernetics, Vols. 1, I and I11,-by J. Rose (editor), 1970;
521 pages. (Gordon & Breach, Vol. 1 £10-25 or $24-50), Vol. 2
and Vol. 3 £8 or $19-50 (each), complete set £20-75 or $50-00).

The number and diversity of the contributions to a large compilation
precludes the reviewer from attempting to assess them individually.
His proper task is rather to select systematic trends; a problem in
fact of pattern recognition. Where an editor has exerted cybernetic
influence on the compilation, it is also proper to enquire whether
the editorial statement of aims has been duly reflected in the actual
material.

The Editor of the present three volumes states in the preface thatan
objective of the 1969 Congress of Cybernetics was ‘To establish
cybernetics as an interdisciplinary science on solid foundations
without the spurious accretions of the last two decades’; also that
‘it is intended to demonstrate the scope and maturity of cybernetics,
though a few papers bear the stamp of a rather exotic approach.
These somewhat fatuous contributions were included in order to
bring to the surface certain undesirable accretions. A mature
science has to be able to live and cope with those who are trying to
Jjump on the band-wagon and use it as a vehicle for their exuberant
claims’. We ask therefore whether (exluding ‘fatuous contributions’
which the reader can skip without outside aid) the contents do
reflect a mature science. Specifically, do they represent sound
contributions to the scientific method of systematic observation,
formation of hypotheses, quantitative development of the conse-
quences of these hypotheses, and confrontation with new obser-
vations ?

The present reviewer judges these matters in part by scoring
positively for pages containing relevant mathematical development
or experimental results and comparisons. He scores negatively for
such features as material that is either not new or (non-exclusively)
is trivial, repetitions of well-worn diagrams, the mutual taking in of
quotational washing, photographs of opulent apparatus accom-
panied by minimal experimental results, and above all for acres of
qualitative discourse. It is a question of whether the author is
actually doing the subject, or just talking about doing the subject.

By these criteria ‘Progress of Cybernetics’ scores somewhere
around half marks. There is indeed a good sprinkling of sound
scientific building-blocks, enough perhaps for one volume or even a
little more; experiments, theoretical developments, developments of
technical capabilities, and the combination of these things into
coherent scientific strategies.

The opening section is called ‘Main Papers’. These are rather longer
than the general run of contributions, appear to have an invited
status and are largely of a review nature. The density of plus scores
is not maximal in this Section; one would not for example mistake
the general format for the undoubtedly mature Reports of Progress
in Physics. Among others, however, Ashby has an interesting
discussion of information flow in tasks like tight-rope walking or
driving in a large city (the connection is only too obvious), Beer has
some deservedly unkind things to say about our economic and social
institutions, and Glushkow gives a solid account of data processing
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in specific natural sciences. 2

Section I (which follows the Main Papers) is called ‘The Meaning
of Cybernetics’ so one fears the worst but does not always find i
Muses, going as far afield as operator algebras and epistemology_;.h
still keeps the appearance of rigor. Section II, ‘Neuro- and bics
cybernetics’, includes a contribution by Levy on computer simulatios
of neurological systems, by Andrew on the results of simulation
self-organising systems with significance feedback, by Arigoni on tbg
algebra of intelligence, by Moore et al. on a model of a visual systenf
by Taylor on visual size-illusions, by Gambardella on auditory tim%
frequency analysis (but some concepts appear to have been anticg_
pated by P. M. Woodward), and by Auslander and Sharma ont
computer simulation of hormone levels. These unselectively choseg
examples illustrate the broad international flavour of the Congressg

Volume 2 opens with Section III, ‘Cybernetics and Industrg
(automation)’. With a few exceptions, the contributions in thg
Section are good, solid, quantitative and practical, perhaps eveg.
sometimes stolid; the plus scores are here too numerous to mentiof:
individually. Section IV, ‘Social and economic consequences of
Cybernetics’, has the additional rubric ‘including managementd
pace Beer’s assertion (q.v.) that there ain’t no such animal, anc\t
overall scores about S—. However, Billeter-Frey criticises current
economic models for leaving out some of the most important feeds
back connections, Winkelbauer analyses co-operative games (Or,;
how to maximise your divi) and Vaida has a paper on ALGOL 6@
implementation and translation which would not be out of place i
The Computer Journal. g

‘Cybernetics and artifacts’ (Section V) is wide-ranging, includin%
even computer sculptures, and contains several interesting articlesp
notably a pouring of cold water by Bagley on any assumption of an
easy road to artificial intelligence. .

Volume 3 contains Section VI, ‘Cybernetics and natural sciences’?
and Section VII, ‘Cybernetics and social science’. Neither receive§
many plus marks from your reviewer, Section VII in particulaf;
posing the implicit question whether there are indeed as yet an{3
social sciences. Two specific and quantitative contributions are by
Chiaraviglio on computer modelling of DNA sequences, and by
Malitza and Zidaroiu on random decision processes. Goffman
treats the spread of the ideas of symbolic logic by means of a theory
developed for epidemics, Irtem gives an intriguing hint about how to
‘change’ natural laws. There is also the aimable intelligence given by
Kerschner that the term Cybernetics had been used before Wiener
not only by Ampére in 1843 but also by Platon. Kerschner also tells
us that all but 2-* of the professional ‘political scientists’ in the
world are American; no comment.

The reviewer draws two general conclusions. The first is that these
volumes suffice neither to prove nor to deny the assertion that
Cybernetics is now a mature science. The second is that while one
may have reservations about the usefulness of publishing conference
reports in general, this is not a bad example of its kind. (The
reviewer would not personally pay £20-75 for it, however.)

P. B. FeLLGETT (Reading)
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