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Operators in Boolean algebra for NOR and NAND are introduced and applied to problems in
switching circuit design. These operators have properties which very closely parallel the properties
of NOR and NAND gates. Their relationship to the problems of fan-in, fan-out and signal-delay

are briefly discussed.
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In nearly all writings on logic design, the Boolean algebra is
worked out in terms of the elementary operators AND, OR,
and NOT. However, modern techniques call for the design of
NOR and NAND circuits. It seems reasonable, therefore, to
introduce operators for NOR and NAND, and to dewelop
theorems and other results for use in the design of NOR/NAND
circuits.

AND and OR are usually regarded as dyadic (binary) opera-
tors. Since they are associative this restriction is no inconveni-
ence. However, dyadic NOR and NAND are not associative.

[If NOR(4, B) = A.B
then NOR(NOR(4, B), C) = NOR(4.B, C) =
4+ B).C
while NOR(4, NOR(B, C)) = NOR(4, BC)
A(B + C)]
Therefore NOR and NAND will not be defined as dyadic
operators. Instead, NOR and NAND will be defined for any
number of operands, and relationships between them for
different numbers will be worked at.

This treatment follows very closely the properties of electronic
NOR and NAND gates with different fan-in restrictions. The
question of fan-in will be referred to later.

It is well known that there is a duality between NOR and
NAND; therefore the worked examples will be given in
terms of NOR gates only.

The development of results with the proposed notation illust-
rates the disadvantages of the Sheffer stroke and Pierce arrow
notation for this purpose. These latter are conceived as dyadic
infix operators; they are extended for more than two operands
as are arithmetic operators, while for single operands a very
artificial convention is adopted (“ala”). These extensions mean
that there is not in general a one-to-one correspondence
between operations and operators. In the proposed notation,
however, there is a very close, one-to-one correspondence
between operations and operators, which in terms of switching
circuits means that there is a one-to-one correspondence
between gates and operators and between input signals and
operands. This point is illustrated in the circuit diagrams which
accompany the following text.

In the worked examples, the procedure adopted is first to
replace the conventional operators by NAND or NOR
operators, and then to simplify the NAND or NOR expression
as far as possible. The replacement of conventional operators
follows the usual rules for evaluating expressions: inner
brackets first, NOT before AND, and AND before OR. The
simplification is rather unsystematic; a methodical approach
to this problem is under consideration, although naturally it
will depend to a large extent on practice obtained with the new
notation.

The last example, which is the problem posed by Roth, Karp,
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McFarlin and Wilts (1961) and solved on a computer by
Barnard and Holman (1968), has been worked rather differ-
ently. The expression has been minimised with the new oper-
ators first; the steps are justified in detail, in terms of the con-5

ventional operators, in another paper (Duncan and Zissos,3
1970) by the present authors.

Definitions

1.

Theorems, etc.
1.

14.
15.
16.

.V(4, A) = VA
.V0)=1= V0
.V(1) =0=VI1

.VA.VB = A4.B = V(4, B)

.VVV(4,B)= VV(AB)=V(4 + B)= 4 + B=A4.B

V stands for the NOR operator.
V(A =VA4=4

V(4,B) = A.B
V(4,B,C)=A.B.C
V(4,B,C,..,X)=A4.B.C... X

Since Boolean multiplication (AND) is commutative, the

=

order of terms in the argument list of V is irrelevant. In3
particular, V(4, B, C) = V(B, 4, C)
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V(4, 4, B) = V(4, B)
In general, a repeated term is equivalent to the single term.

V(4,0) = VA
In general, a zero term can be omitted.

V4, 1) =0.
If any term is 1, the whole is 0

VA.VB.VC = A.B.C = V(4, B, C) etc.

A+ B=A4.B=V(4.B) = VV(4, B).
A.B=V(4,B) = V(V A4, VB)
A+B+C+...+ X=VV(4,B,C,...X)
A.B.C...X=V(VA,VB,VC,...VX)
VVA =VA4 = A.
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= V(4, B)

.VVV(4, B,...,X) =V(4,B, ..., X) similarly.
. Analogue to the distributive law:

VV(4, V(B, C)) = V(V(4, VB), V(4, VC))
Proof: RHS = V(4B, AC)
= VVV(4B, AC)
= V(4B + AC)

= VV(4, V(B + C))

= VV(4, VVV(B, C))

= VV(4, V(B, C)) = LHS.
V(4, B) = V(4 + B)
V(4,B,..,X)=V(A+B+...+ X)
V(4,VA) =0
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Definitions
A stands for the NAND operator.

1. A(4) = N = A
2.N4,B)=A+B
3. N\(4,B,C)=A+B+C
+

4 AN(4,B,C,...X)=A+B+C+...+X

Theorems, etc.

1. Since Boolean addition (OR) is commutative, the order of
terms in the argument list of A is irrelevant. In particular,
A4, B, C) = A(B, 4, C).

2. A(4,4) = NA
A(4, 4, B) = A(4, B)

In general, a repeated term is equivalent to the single term.
3.AND)=0= Al

A4, 1) = NA

In general, if a term is 1 it can be omitted.

4. N0O)=1= A0
A(4,0) =1
If any term is 0, the whole is 1.

5.N\A+ AB=A4 + B= A(4, B).

AA+ AB+ ANC=A4+ B+ C= A(4, B, C) etc.

6A.B=A4A+B= AA+ B)= AA(4, B)
7.A+ B= A(A B) = A(AA4, AB)
8.4.B.C. = AA4,B,C,...,X).
9.A+B+C+ L+ X= A(AA AB, AC, ..., AX)
10. AAAd= N = A
11. AAA(A4, By =ANA + B)y= N(AB)=A + B
= (4, B)
12. AAA, B, . ) A4, B, ..., X), similarly.

13. Analogue to dlstrlbunve law:

ANMA, AB, C)) = A(A(4, AB),
B _ A4, AC))

AA+ B, A+ C)

AANA + B, A+ C)

A(A + B)(4 + C))

A4 + BC)

A N4, A(BC))

ANMA, AN N(B, C))

ANMA, A(B, C)) = LHS

14. A(4, B) = N(4.B)

Proof: RHS

{1 1 1 T

15. A(4,B,...,X)= A(4.B. ... .X)
16. A(4, A4) =1
Examples
1.P=A4+ BC
= A+ V(VB,VC) (T.7)
= VV(4,V(VB,VC)) (T6) — (i)
= V(V(4, B), V(4, C)) (T.13) —(ii)

Here (i) corresponds to the five-gate circuit of figure 1 while
(i) corresponds to the three-gate circuit of figure 2
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=A+B)A4+C)

= VV(4, B).VV(4, C) (T.6)
= V(VVV(4, B), VVV(4, C)) (T.7)
= V(V(4, B), V(4, C)) (T.11)
as in Example 1.
3.P=4 + BC o
=4+ V(B,C) g
= VV(4, V(B, C)) (Figure 4) éi
=(A+ B4+ 0C) 8
= VV(4, VB).VV(4,VC) =
= V(VVV(4, VB), VVV(4, VC)) S
= V(V(4, VB),V(4,VC)) - (@
= VV(4, V(B, C)) (T.13) —(iip
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Fig. 3 §
Here (i) corresponds to the five-gate circuit of figure 3 while ( ii§

(and the result of example 3) corresponds to the three- gatg

circuit of figure 4. 8
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5.P=AB + C)
= V(4, V(B + C))
= V(4, VVV(B, C))
= V(4, V(B, C)) (Figure 5)
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V(B, VE, VG, VH)}]

= V[V(4, C), V{V(VA4, VB), V(VD, VG, VH),
V(B, VE, V(V(D, VF), V(VG, VH))}]

= V[V(4, C), V{V(V4, VB), V[V(D, V(B, VE)),
V(V(D, VF), V(VG, VH))]}] (Figure 9)
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Fig. 6
6.P= (4 + BC)(D + E) B
=(4 + V(VB,C)).(D + E)
= VV(4, V(VB, C)).VV(D, VE) 1
= V(VVV(4, V(VB, C)), VVV(D, VE))
= V(V(4, V(VB, C)), V(D, VE)) (Figure 6) o
7.P = (4B + CD).(E + F) Fig. 8 5
= (V(4, B) + V(C, D)).(VE + F) 8
= gvv(g(é"fh V(C’V D)).VV(VE, VF ) as in example 8. %
= \7§V(V(/(1 E?)’g%c g;’) Dv»(’vavF)()vfier)re 7 10.P=(B+F+H)B+D+E)(4d+B+ H) g
» ) » HhD ’ (B+D+ H)(A+ B+ G)(B+ D + G) =4
B+F+G)(A+B+D)yd+ 0 @
L S = V[V(B, F, H),V(B, D, E),V(4, VB, H), §
1 V(B,VD, H),V(4,VB, G),V(B,VD,G), 8
B V(B, F, G),V(4, VB, D),V(4, C)] 3
= V[V(4, C),V(B, D, E), V(B, F,V(VG, VH)), o
V(B,VD,V(NG,VH)),V(4,VB,V(VD,VG,VH))] 5
1 = V[V(4, C),V(B, D, E), V(B, VD, VF), 8
V(VG,VH)),V(4,VB,V(VD,VG,VH))] 3
C = V[V(4, C), V{B, V(V(D, E), V(V(D, VF), S
- V(VG, VH))}, V(4, VB, V(VD, VG, VH))] El
1 = V[V(4, C), V{V(VB,V(4,V(V D, VG, VH))), g
L V(B, V(D, E), V(V(D, VF), V(VG, VH)}] &
1 = V[V, C), V{V(VA4,VB),V(VB,VD,VG,VH), *
V(B,VD,VG,VH),V(B, D,VE,VF), §
@
R
N
N
g
e
Fig. 7 ‘ Further considerations %
1. Fan-in 2
8. P = ABE + ECD + ABF + CDF The number of arguments in a list (e.g. 7in A(4y, 43, - . - 4,)) T
T is the fan-in of the corresponding gate. S
= V(4, B, E) + V(E, C, D) + V(4, B, VF) + . . =
v C’ D, VF) > > If there is a fan-in restriction, it may be necessary to manipu-
= v( E, V’V( A, B)) + V(E, VV(C, D)) late the expression to reduce the length of argument lists to the '®
+ V’(V F, V,V( 4, B)) +’V(V F. ’VV( C, D)) ma)l(limugll pfgrﬁlittgg t:an-in. This can be achieved with results
= VV(V(E, VV(4, B)), V(VF, VV(4, B))) such as the foflowing:
+ VV(V(E, VV(C, D)), V(VF, VV(C, D)) A4, B, C) = N(4, AN(B, C))
= VVV(VV(4, B) V(VE, F)) V(4, B, C) = V(4, VV(B, C))
+ VVV(VV(C, D), V(VE, F)) [Proof: AA(B,C) = B.C
= g(vv(Z(Z)V»(A, B), V(VE, F)), V(VV(C, D), ZA(A(’B A Ag, ) = A4, é?C) ( )
) =A+ B+ =A+B+C= A(4,B,C
= VVV(V(VE, F),V(V(4, B), V(C, D))) and similarly for V1.
= Y(_V_E’ F 2,_V_(V({,_B), V(_Ci D))) (Figure 8) This asserts that the two circuits of figure 10 are equivalent.
9.P = ABE + ECD + ABF + CDF However, if A(4, B, C) is replaced by A(4, AA(B, C)),
= ([1(43 +) CD)V((E + ;‘ ) further algebraic simplification may well be possible, and a
= [(4, B) + V(C, D)].(VV(VE, F)) simpler circuit produced.
= (VV(V(4, B), V(C, D))).(VV(VE, F)) 2. Fan-out
= V(VVV(V(4, B), V(C, D)), VVV(VE, F)) Fan-out means the number of gates to which the output signal
= V(V(V(4, B), V(C, D)), V(VE, F)) from a given gate is taken as input.
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In the V, A expressions, taken as they stand, a fan-out of one
is implied, since each operator is an operand only in the list
in which it is written.

However, there may well be cases in which a sub-expression is
repeated.
e.g.in P = (4 + BC) (D + BC)

= V(V(4, V(B, C)), V(D, V(B, C)))
we have V(B, C) occurring twice—that is, we apparently need
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two gates each to receive the same pair of signals. If we write
V(B, C) = I we have

In the expression for P, I appears twice. This corresponds to a
fan-out of two from the gate generating I in the subsidiary
expression. Taking the two expressions together, we produce
first the two circuits of figure 11 and therefore finally the circuit
of figure 12.
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Fig. 11

Whenever a repeated sub-expression is seen in the expression
for a circuit, it can be replaced by a new name (true literal) and
the subsidiary expression written down separately. The number
of occurrences of the new name in the expression is the fan-out
required; clearly if there is a fan-out restriction which is less
than the number of occurrences, these occurrences will have
to be grouped in sets of not more than the fan-out restriction
and each set provided with a (physical) gate.

3. Signal delays

The signal delay of any signal at any point in the circuit can be
seen directly in the expression; starting at the point in the
expression corresponding to the signal we simply count the
number of operators out to the beginning of the expression.
This is the number of gate delays, and so can be multiplied by
the gate delay time to give the required signal delay.

E.g. in P = V(V(4, 1), V(D, I); I = V(B, C)
12 3 4

we have A4 delayed by two gates (2 and 1), and D delayed by
two gates (3 and 1). B, C are each delayed by gate 4 and then
by either 2 and 1 or 3 and 1; in both cases by 3 gates.

Conclusion

We have attempted to justify the use of specially defined NOR
and NAND operators in the design of switching circuits. We
believe that previous attempts to use similar operators have
failed because of an imperfect correspondence between the
proposed operators and the actual gates, and we have therefore
taken care to ensure as exact a correspondence as possible. Ing
the present paper we have discussed only combinationag
circuits. We have also used the notations presented here, witlp
modifications to accommodate gate delay times, in the analysig
and design of sequential circuits. In particular we have beerf:
able to predict, by algebraic means only, the behaviour of
sequential circuits under varying race conditions. Howeverg
this belongs to another paper.
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