A note on the generalised Euler transformation®

P. Wynn

Department of Mathematics, Louisiana State University in New Orleans

The generalised Euler transformation is a well-known device for accelerating the numerical con-
vergence of infinite series. In practice the transformation is often applied to the infinite series
remaining after the first m terms have been added together to form a partial sum. The other
partial sums, obtained by taking the first m terms of the original series and the first r terms of
the transformed remaining series form a double sequence of approximations to the sum or formal

sum of the original series. The purpose of this note is to point out that the partial sums may be
built up by means of a remarkably simple recursion.

The generalised Euler transformation

The generalised Euler transformation is a well-known device
(see, for example, Hartree (1952) Ch. 12) for accelerating the
numerical convergence of infinite series; it functions in the
following way: given the series
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to be transformed, it is assumed that its terms behave like

those of a geometric progression with ratio z, so that we may
write

U, = z"v, m=0,1,..) )
where the quantities {v,} are approximately constant. If E
is the displacement operator and 4 the difference operator
relating to members of the sequence {v,,}, so that
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then we have, quite formally,
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It is to be expected that the successive differences {4%,} will
decrease sharply in magnitude, and that the series (5) will
converge numerically with greater rapidity than the original
series (1).

Some results concerning the convergence of the series (5) are
given in Cherry (1950); others may be deduced from the theory
presented in van Wijngaarden. An extensive convergence
theory for the special case in which z = —1 (formula (5) is
then simply called the Euler transformation) is given in Hardy
(1963) Ch. 1V.

The delayed form of the generalised Euler transformation
In practice it is often wise to delay application of the trans-
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It frequently occurs that the successive differences {43}
(Where m is a fixed finite positive integer) decrease in magnitude
far more sharply than do the differences {4°,}; i.e. the numei-

cal convergence of the infinite series in (6) is more rapid than
that of (5). 5

o
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form a double sequence of approximations to the sum §r
formal sum of the original series (1); they may be placed in tlg:
following two dimensional array: o
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Fig. 1

For the sake of clarity, we point out that the successive partial
sums of the series (1) are to be found in the first column of this
array, and the successive partial sums of the series (5) in the
first diagonal.
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An algorithm

The main purpose of this note is to point out that the partial
sums of formula (7) may be built up by means of a remarkably
simple recursion.

Theorem. The quantities {S} given by equation (7) obey the
recursion

S¢tD =pSO  +q8SP (r=0,1,...;m=0,1,...) (8

where
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= = - . 9
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Proof. We have first of all
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SO = % 2%, (m=0,1,...) (10)
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so that equation (8) is true forr =0, m =0, 1, .. ..
Assume that equation (8) is true for when r is replaced by the
integers 0,1,...,r — 1, and m = 0, 1, . . .. We know that

Ao, =AY, — A, (r=1,2,..;m=0,1,...)(12)

or, in terms of the members of the sequence {S}

s - sy = s, - s
(z‘,;—,f?' S — SEH}, (m=0,1,..) (13)
ie.
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It follows that formula (8) is generally true.
We remark that the quantities referred to in equation (8)
occupy the following relative positions in the array of Fig. 1.

S(r)
m
+1
Se1 SE*D

Fig. 2

When z = —1, recursion (8) is well known; indeed it is used
in the ALGOL 60 report (Backus et al., 1960) to illustrate the
use of this language.

The determination of the parameter z

In many cases the most suitable choice of the parameter z is
clear from an explicit formula for the terms {u,,} occurring in
formulae (2). In others the choice may be determined by analy-
sis or by numerical estimation.

Concerning the cases in which z is determined by analysis, we
remark that linear difference equations with polynomial
coefficients of certain types in the independent variable m have
solutions, involving exponential functions and inverse factor-
ials, of the form

h -] T
XY [T, +m+i~' (m=0, 1,..)
v=0 =0 i=1

where {z,}, {0,} are fixed constants and the {v("} are fixed
coefficients (see, for example Nérlund (1937) and Milne-
Thomson (1951). If the terms {u,} of a series to be trans-
formed satisfy such a difference equation and, in the notation
of the above expression, one of the numbers {z,}, z,. say, is of
largest modulus, we may take z = z,. in formulae (6). Again
if the terms {u,} have a representation of the form

U, = {Ib émda(é)} x" (m=0,1,..))

where «(8) is a bounded non-decreasing function of the real
variable § in the range —o0 < a < { + b < o and x is fixed
finite complex number, it may also be possible to determine a
suitable choice of z: if [b] > |a| (|la| > |b]) and a(8) has points
of increase in an arbitrarily small left (right) neighbourhood of
the point b(a), we may take z = bx(z = ax).

Numerical estimation of the parameter z is perhaps best
carried out by applying an extrapolated limit technique, such
as the e-algorithm (Wynn, 1956a) or the p-algorithm (Wynn,
1956b). (ALGOL programmes for implementing the former are
given in Wynn (1962) and Wynn (1966); they may be adapted
by trivial modification for implementing the second) to the

sequence t% (m=0,1,..)).

The value of the parameter z determined by the methods
suggested in the preceding paragraphs is lim Un+ s - For the
sake of completeness we remark that the Euler transformation
may also be applied with resulting improvement in numerical

Table 1

m/r 0 1 2 3 4 5 6 7 8 9
1 +1-0 +0-3333

2 0-0 0-6667 0-4444

3 +1-3333 0-4444 0:5926 0-4938

4 —0-6667 0-6667 0-5185 0:5679 0-5185

5 +2-5333 0-4000 0-5778 0-5383 0-5580 0-5317

6 —2-8000 0-7556 0:5185 0-5580 0-5449 0-5536 0-5390

7 +6-3429 0-2476 0-5862 0-5411 0-5524 0-5474 0-5515 0-5432

8 —-9-6571 +1-0095 0-5016 0-5580 0-5467 0-5505 0-5484 0-5505 0-5456

9 +18-7873 —0-1757 0-6145 0-5392 0-5518 0-5484 0-5498 0-5489 0-:5500 0-5471
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convergence to many series, for example to > (—1)"m! A™™" 1

m=0

(0 < 4 < o0), for which this limit does not exist.

A numerical example

The results of the above theorem are illustrated in Table 1
which relates to the transformation of the series (7) when

u=@E+D (=01..) (15)
and x = —2; we have taken, in the notation of equation (2),
z =X, v, =(+ 17! (s=0,1,...). (16)

The reader with a facility for mental arithmetic will quickly
note that the members of Table 1 satisfy the recursion

SCHD — 180 4280 (r=0,1,...;m=0,1,...)

The value of S{® (which in the notation of equation (7) is
always zero) has been omitted.

The terms (15) are those of the (divergent) power series expan-
sion of the function —x~!In (1 — x), whose value when
x = —2:01is 0-549 306 to six decimal places. It can be seen that
the best approximation (S¢”) in Table 1 to the formal sum of
the original series is not to be found in the leading diagonal.
We mention in passing that considerably better results are to
be found in a slightly extended version of Table 1: for example,
S = 0-549305.

ALGOL programs

We give two programs which exploit the algorithmic rela-
tionships (8) in the application of the generalised Euler trans-
formation. The first displays a small initial section of Fig. 1
and is to be used in a provisional inquiry as to the efficacy of
the transformation in any particular case; the second is for
actual use in computing the transformed sum of a given series.

In both cases, the transformed sums of Fig. 1 are computed
row by row. Assuming that the row stretching from S to S§
has been computed; the new term u,, is evaluated and equation
(8) is used to evaluate the row of partial sums stretching from
S© to Sg"+1 progressively from left to right. Equation (8)
is used in the form

S¢D =pSP . +qST,. (r=01,...,m) (18)
A program for display

Since the number of transformed sums computed in a pre-
liminary investigation is relatively small, no great wastage of
storage space in a computer occurs if the transformed sums
{S®} are computed as members of what is effectively a tri-
angular array and stored as such.

In order to bring the concept of a triangular array within the
facilities offered by ALGOL, the members of the array are
mapped onto a vector; it is assumed that the indices (m dash,
r dash) relating to an array of functions such as S¢ run from
a minimum, O, to a maximum, dim. The members of the array
are stored as a vector according to the following scheme:

(Since, in the notation of equation (7), S§ is always zero, there
is no need to store this number, and in the ALGOL program
to be given the storage location for this number (namely 0) is
not reserved.) The required mapping is carried out by means
of the following general purpose

integer procedure triangular array(dim, m dash, r dash);
value dim,m dash,r dash;
integer dim,m dash,r dash;
triangular array := m dash + r dash x dim — (r dash x
(r dash — 3)) + 2;

A second general procedure, of which use is made while
printing the results, is the
integer procedure lesser of (first, second);
value first, second;
integer first, second;

lesser of := (if first < second then first else second);
Use is made of a global integer m, which plays the role of the
suffix m in the variable v,,. Its value is adjusted by the display
procedure immediately before the evaluation of each v,,.

The display procedure may now be given. Its input para-
meters are
z: a real variable occurring in equations (2), (7), (8) and (9). 5
v: a real variable playing the role of v,, in equations (2) and (7&
m max: an integer. The transformed sums {S©} are derived
from the terms u,(m = 0, 1, . . ., m max) of the original series;
col: an integer. It is assumed that the output typewriter printg
col numbers to a line. The results are printed out in a form
similar to that of Table 1 cut into vertical strips of col columns.
procedure Display Generalised Euler (z, v, m max, col);
value z, m max, col;
integer m max, col;
real z, v;
begin integer m max plus 1,

m max plus 1 := m max + 1;
begin integer procedure s scheme (m, r);
integer m, r;
s scheme = triangular array (m max plus 1, m, r);
begin Boolean m equals zero;
integer m plus 1, r, m minus r, r anfang,
real p, q, z to power m, u;
real array S[1: s scheme (0, m max plus 1)];
comment See equations (9);
p:=10/(10—-2);9:= —z X p;
for m := 0 step 1 until m max do
begin m equals zero := (m = 0); mplus 1 :=m + 1;
z to power m := (if m equals zero then 1-0
else z X z to power m);
comment See equation (2);
u .= z to power m X v;
comment S is computed, see equation (10);
S[m plus 1] := (if m equals zero then 0-0
else S[m]) + u;
comment S) is computed, see equation (11);
S[m max plus 1 + m plus 1] := (if m equals zero
then 0-0 else S[m]) + p X u;

moQ
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for r := 1 step 1 until m do
begin m minus r := m — r;
comment See equation (18);
S[s scheme (m minus r,r + 1)] :=
p % S[s scheme (m minusr + 1,r)] + q x
S[s scheme (m minus r, r)];
end computing a row of transformed sums
end evaluating all the terms:
for r anfang := 0 step col until m max plus 1 do
begin comment NLCR operates the New Line Carriage
Return mechanism of the typewriter;
NLCR; for m := (if r anfang = O then 1 else 0)
step 1 until m max plus 1 — r anfang do
begin NLCR; for r := r anfang step 1 until
(r anfang + lesser of (m, col — 1)) do
print (S[s scheme (im — r + r anfang, r)])
end printing out a vertical strip of the S-array
end printing out the entire S-array '
end the block in which the size of the S-array is declared
end the block in which the procedure s scheme operates
end Display Generalised Euler;

In order to illustrate the use of this procedure, we introduce
the real procedure In v which computes the quantities v,, =
m+1)1(m=0,1,..);
real procedure /n v;

hv: = 10/(m + 1);
Use of this procedure is, of course, hardly necessary in the
present example; the formal parameter v of Display General-
ised Euler may be replaced by the arithmetic expression 1-0/
(m + 1). However, in a more complicated case, if not in this,
it is aesthetically more pleasing to make use of such a pro-
cedure.

A complete program which uses the above procedure is
the following:
begin integer m, max m, col;

real z;

comment This comment should be replaced by the above
procedures

lesser of, triangular array, Display Generalised Euler and

Inv;

read (z, max m, col); print (z, —(In(1-0 — 2))/2);

Display Generalised Euler (z, In v, max m, col)

end

The results of Table 1, cut into two vertical strips of five
columns, may be produced by use of this programme with the
input parameters

z= —2:0,maxm = 8, col = 5.

A program for use

Two main problems must be faced in the design of a program
which actually computes the transformed sum of a given
series. They relate to the economical use of computer storage
and a criterion for terminating the computations.

Although the transformed sums {S®} may be placed in a
two dimensional array, it is possible and (when computing a
large number of these sums) it is desirable to arrange that the
intermediate results required for the continuation of the com-
putation should occupy a one dimensional array in the storage.
After the computation of S (r =0, 1, ..., m), this vector
(we call it /), stretches along this row of transformed sums, /.
containing S¢ (r = 0, 1, ..., m); a new term u,, is computed,
and progressively the vector / is pushed down by one step in
the S-array, so as to contain S . (r=0,1,...,m + 1).
The mechanism for accomplishing this requires two auxiliary
storage spaces, called aux 0 and aux 1.

In Fig. 4 this process is illustrated at an intermediate stage.

We assume that the intended contents (S, ) of /. have
been computed and lie in aux 0, and that the intended contents
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(S$=1,) of I, have also been computed and lie in aux 1.
The first step in the computation is to replace the actual
contents (S¢-1) ) of /,_, by those of aux 1, and then those of
aux 1 by those of aux 0. The new contents of aux 0 are now
computed from those of aux 0 and /, (S¢),,, and S®), res-
pectively), the suffix is increased by unity, and the cycle is
repeated.

Clearly special steps must be taken to prepare the above
mechanism; furthermore the process must be terminated by
transferring the contents of aux 1 and aux 0 to the appropriate
positions of the vector /.

The decision as to which of the transformed sums is to be
accepted as a suitable approximation to the sum or formal
sum of the original series is based upon the following strategy
which has proved to be satisfactory in many practical examples:
the relative differences of succeeding pairs of transformed sums
S¢ , and S¢*1  (lying adjacently on a row of Fig. 4) are
examined. When the relative differences of zim such consecu-
tive pairs are all less in absolute magnitude than a prescribed
quantity, é say, than the computation is terminated ; the second
member of the last pair is accepted as the required approxi-

Fig. 4

mation. The positive integer tim, and the small positive real :

quantity J are prescribed by the user.

Use is again made of a global integer m, which plays the same
role as before.

The program for use may now be given; its formal para-
meters are
z, v: real variables, whose function is as described for the dis-
play procedure
relative error: a real variable whose value, &, is prescribed by
the user. Its significance is described above
the very end: a positive integer prescribed by the user. The
components /, of Fig. 4 may have indices r running from 0
to the very end
tim: a positive integer whose role is described above
storage not exceeded: a Boolean variable; if the computations
have been terminated according to the criterion described
above, before all the positions of the vector / have been used,
then this variable is given the value true, otherwise the value
false.
transformed sum: a real variable; if without exceeding the
storage capacity of the vector /, for some m and r

abs (1

then transformed sum is given the value S¢*tim)

m-—r—tim*

(r+r'—1)
- M <é (=12 tim)
S(r+r’) - I et B

m-=r—r’

procedure Generalised Euler (z, v, relative error, the very end,
tim, storage not exceeded, transformed sum);
value z, relative error, the very end, tim;
Boolean storage not exceeded,
integer the very end, tim;
real z, v, relative error, transformed sum;
begin integer number of times agreement has been reached, r;
real p, g, u, z to power m, aux 0, aux 1;
real array /[0: the very end];
comment See equations (9);
p:=10/10—-2);q:= —z x p;
comment The row of transformed sums is prepared by
inserting S and S{*;
m:=0;I[0] :=u:=v;I[1] := p x u; z to power
m:= 10;

The Computer Journal

202 udy 61 U0 188n6 AQ 022GZ€/LE /It 1 /81014e/|uf00/W0d"dNo"oILLEPEDE//:SARY W) PAPEO|UMOQ



compute new term: m :=m + 1;

if m = the very end then
begin comment The computation has failed due to
insufficient storage space;
storage not exceeded := false; goto all is over
end;
comment See equation (2);
Z to power m .= z X z to power m; u .= z to power m X v;
comment The mechanism of Fig. 4 is prepared;
aux 1 :=I[0] + u; aux 0: = I[0] + p X u;
number of times agreement has been reached := 0;
for r := 1 step 1 until m do
begin comment The mechanism of Fig. 4 now functions;
fIr—1]:=aux1;aux 1 := aux0 ;
comment See equation (8);
aux0 :=p x aux 1 + q x I[r];
if abs (1-0 — aux 1/aux 0) < relative error then
begin comment Provisional agreement has been reached;
number of times agreement has been reached :=
number of times agreement has been reached + 1;
if number of times agreement has been reached = tim
then

begin comment If provisional agreement is not
sustained counting must begin anew;
number of times agreement has been reached := 0
end
end r, working across a line of Fig. 4;
comment The mechanism of Fig. 4 is terminated;
I[m] := aux 1; I[m + 1] := aux 0; goto compute new
term;
all is over:
end Generalised Euler;

This procedure may be used in the following complete

program:
begin Boolean successful,
integer m, tim, available storage;,
real z, delta, result;
comment This comment must be replaced by the
procedure Generalised Euler and In v;
read (z, delta, tim, available storage);
print (z, delta, tim, available storage);
Generalised Euler (z, In v, delta, available storage, tim,
successful, result);
if successful then print (result)

begin transformed sum := aux 0; storage not
exceeded := true;
goto all is over
end
end else

end

The reader may care to experiment with the above progra
using the input variables

z = —2-0, delta = 1074, tim = 3, available storage = 100.
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