
File design fallacies
S. J. Waters

LSE London WC2

Many systems publications and courses refer to hearsay rules of thumb which supposedly simplify the
complex procedure of designing data processing files; consequently, these rules are widely used in
practice. In the apparent absence of any published justifications for these rules, this paper demonstrates
that they fail so often that they should be completely disregarded.
(Received August 1971)

The CAM project at LSE is investigating a computer-assisted
methodology of developing data processing systems; the project
is currently financed by the Science Research Council. The
present area of research is the development of prototype soft-
ware to assist the systems designer in structuring programs and
files to satisfy denned data processing requirements on a given
computer configuration. While investigating the methodology
of systems design, it became clear that various false rules of
thumb are widely used in practice; this paper attempts to
disprove these rules.

Martin (1967), Losty (1969), Daniels and Yeates (1969) are
among the more well-thumbed authors to publish rules based
on the hit ratio (or activity ratio) of a file; this parameter
measures file activity for a batch-processing run as

Number of records accessed
Hit ratio = ——- ? -5 ^ — •

Number of records on file

The common version is 'if hit ratio is low assign the file to a
direct access device, otherwise magnetic tape' and its vari-
ations indicate file access method or file processing mode.
'Low' is often left undefined or assigned such apparently
arbitrary values as 1, 5, 7 or 10%. Although these rules have
probably sold many disc computeis and eliminated much time
and thought at the systems design stage, they are completely
false as evidenced by the following general and particular
criticisms.

Objectives of systems design
In the very first place, what are the objectives of systems design ?
Generally, a system should be:

1. Economical (ie: cost-effective), compared with alternative
systems.

2. Accurate, to ensure that all required operational outputs
are correct.

3. Timely, in that these outputs must be produced on schedule.
4. Flexible, to cope with unforeseen requirements and change.
5. Robust, to stand up to variations in workload.
6. Secure, to guarantee regular service in spite of failures.
7. Efficient, so as not to waste valuable resources.
8. Maintainable, and, in particular, intelligible to future

generations.
9. Implementable, with due regard to available resources,

particularly programming skills.
10. Compatible, with existing systems.
11. Portable, over a range of hardware/software configurations.
12. Acceptable, to any design standards imposed by the

organisation.
In practice, these objectives conflict and their relative weights
vary between systems and designers; therefore, it is extremely
doubtful that any rule of thumb will satisfy these variations.
The rules in question supposedly satisfy the efficiency objective
(by reducing computer run time); however, not all the remain-
ing objectives will be satisfied, particularly that of economy

(which requires balancing a costed saving in computer run time
against increased costs of hardware and stationery).

File design decisions
In the second place, what decisions have to be taken in order
to fully specify a file ? Three have already been mentioned as
possessing rules of thumb but Waters (1970) indicates that the
full set for key orientated files is:

1. Data content: which data items constitute a record and
which records constitute the file (including controls) ?

2. Sequence: random or sequential and, in the latter case,
which particular sequence ?

3. Access method: search, index or algorithm (the simplest
being self-indexing) ?

4. Format: binary or decimal and fixed or variable length
data?

5. Processing mode: sequential, skip (or selective) sequential
or random ?

6. Security system: generation, dumping or duplication?
7. Breakpoints (or restart points): what dumping is necessary ?
8. Device: to which device(s) should the file be assigned?
9. Buffering: single, double or multiple buffering?

10. Block size: standard or optimal?
11. Channelling: which devices should be allocated to which

channels ?

The first four decisions are program-independent but the
remaining seven depend heavily on program organisations.
The decisions are listed in the order that they might logically
be taken and not in order of significance with respect to com-
puter run time. In practice, the relative significances of these
decisions vary between systems: for example, choice of block
size might be critical on a small configuration but trivial on a
larger one.

Clearly, these file design decisions are highly interactive and
research is showing that no decision should be taken in isol-
ation; in fact, the design process must necessarily be iterative.
Consequently, it is very doubtful that any rule of thumb will
justify a short-cut in this design process.

File activity parameters

In the third place, what parameters fully define the activity of a
file? File size could be included here in that, whatever the hit
ratio, a small file might be input to core storage, updated and
then dumped; further factors that affect systems design are:

1. Hit ratio, defined above; for example, only 1 % of custom-
ers might order each day or 100% of employees might be
paid each week. Hit ratio can vary with:

(a) Time; for example, in a seasonal trade 80 % of customers
might order in each of the initial days of the season where-
as less than 1 % might order in each of the final days of the
season.

(b) Message; for example, customer orders might hit 5% of

Volume 15 Number 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/1/418287 by guest on 19 April 2024



the file whereas customer statements or bills might be
output for 60% of the file. In practice, every file is com-
pletely hit at some frequency, if only for security purposes
when dumping.

A record is but one level of storage within a file, the other
levels including block (and/or bucket), track, cylinder and
device; each has a hit ratio given by (assuming hit records are
randomly spread over the file),

Track Hit Ratio = 1—(1-Record Hit Ratio) Number of
Records in Track

and similarly for block, cylinder and device hit ratios. Notice
that record hit ratio could be low but track hit ratio could be
high; for example, 1 % record hit ratio with 100 records per
track yields 64% track hit ratio.
2. Hit group, defined as an area of the file containing a

significant proportion of the hit records; for example 80%
of customer order items might relate to 20% of the
product file, this being a hit group of catalogued products.
Hit group can vary with:

(a) Time; for example, a hire purchase file of clients' records
sequenced on monthly repayment day would feature a hit
group (in terms of posting repayments) centred on the
current date.

(b) Message; for example, a public utility system (e.g.
electricity billing) might use a file of consumer records
sequenced on meter-reading round number. One hit group
refers to output messages instructing meter-readers on
their rounds, a second hit group refers to input messages
of meter readings and possibly a third hit group refers to
input messages of customer payments; all these hit groups
vary over a time cycle (of usually one quarter).

3. Fan in/out ratio, defined as

Number of input/output messages
Number of hit records

this measures the number of times each active record is hit
by input/output messages. This fan in/out ratio can vary
with:

(a) Time; for example, customer orders might fan in 200 to 1
for each product at the start of the season but only evens
at the end of the season.

(b) Message; in a banking system, cheque debits might fan in
2 to 1 for each moving current account record whereas
overdraft warnings should only fan out evens.

4. Volatility, loosely defined as measures of the file's
'breathing' (i.e. expansion and contraction or growth and
decay); usually, this is a measure of the percentage of
insertion and/or deletion records over time. Examples of
volatility are:

(a) A product file might be fairly static if no expansion is
anticipated to a well-established product range.

(b) A medical research file might have a steady growth rate of
10% per annum, without any decay, if it contains a record
for each known sufferer of a particular disease (whether
alive or dead).

(c) A project control file might have a steady decay rate of 2 %
per month, without any growth, if it only contains records
for outstanding tasks.

(d) An airline reservation system file of impending flights
might be extremely volatile in that each flight record might
exist for only 10 hours so that the file is continually
changing without significantly growing nor decaying.

5. Overflow characteristics, loosely defined as measures of any
patterns in record insertions; usually, this is an indication
of any 'point overflow' conditions that might occui. For
example, a rapidly expanding product file might have new
product records inserted with consecutive keys (i.e. record
identifiers being product code numbers in this case).

Generally, files seldom possess this characteristic as
insertion records are evenly spread throughout the file.

Thus, hit ratio is only one file activity parameter of many, and
often the least significant; consequently, any rule of thumb
based exclusively on hit ratio must have doubtful value.
Generally, these parameters are often difficult to estimate and

measure and they have a further habit of changing due to the
influences of dynamic environmental systems; witness how
often an estimated 5 % hit ratio at design stage operationally
grows to exceed 20% due to increased demand and then
reaches 100% due to some unforeseen requirement. Thus,
over-reliance on these parameters to achieve efficiency in
computer run time can result in a system that is neither
flexible nor robust; further, if the computer system's design is
heavily based on these parameters then they should be oper-
ationally monitored and reviewed to detect any significant
changes which would degrade the system's performance.

Other general criticisms
So far, the rules of thumb in question have been attacked for
not meeting general design objectives, for oversimplifying a
complex design process and for ignoring equally-important
design criteria. Further technical criticisms are:

1. It is unlikely that any rule of thumb will cope with the
rapidly developing technology of secondary storage devices;
hardware performances increase (e.g. magnetic tape transfer
rates and exchangeable disc pack capacities) while costs
decrease and not proportionally.

2. Any rule of thumb that globally refers to direct access
devices is bound to mislead. The timing performances of
zero seek time devices (e.g. fixed head drums and discs)
are usually far superior to other devices (e.g. movable head
drums and discs, datacell and magnetic card files). Even
the timing performance of a particular device can signifi-
cantly vary between configurations due to differing software
implementations.

3. Even if the rule refers to a particular device, for example an
IBM 2311 exchangeable disc pack, then it should state
whether or not the device be dedicated to the file. There can
be a marked difference in timing performance for a file
exclusively allocated to a device and for the same file
sharing the same device in a multi-programming environ-
ment (due to interrupted arm movements).

4. Any rule of thumb that globally refers to magnetic tape is
bound to mislead in light of the wide range of transfer rates
(between 20 and 320 Kc, say).

5. Finally, a distinction should be drawn between a reference
file (i.e. input only) and an updated file (i.e. both input and
output) as, yet again, timing considerations could be
significantly different; for example, updating time could be
double reference time and significantly more if read after
write techniques are employed to check the recording on
direct access devices.

Thus, global rules of thumb tend to beg all the complex timing
questions associated with the already wide and developing
range of secondary storage devices.
There now follows detailed criticism of the most common

rules, each rule being broken by examples.

If hit ratio is low update the file skip sequentially, otherwise
sequentially
This version suggests that the file is to be assigned to a direct
access device and any messages are to be sorted to the same
physical sequence as the file; the choice is apparently between
updating hit records in situ (by overlaying) and updating the
entire file. Superficially, this version of the rule appears to be
sensible as unnecessary records are not accessed, but it fails for
the following reasons:

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/1/418287 by guest on 19 April 2024



1. Blocks of records are transferred and not individual
records; records are usually grouped into blocks for the
following reasons:

(a) Direct access devices impose constraints which can severely
reduce the effective capacity of the device. For example,
each block might suffer gap and software overheads of say
60 to 100 characters; also, unused capacity less than block
size can be wasted at the end of each track and some
configurations further restrict block sizes to 500, 1,000,
2,000 or 4,000 characters (these latter configurations often
call the block a 'bucket' and the term 'block' defines a
particular storage capacity of 500 characters). Conse-
quently, records are often packed into blocks to efficiently
utilise direct access device capacity.

(b) Some organisations impose general standards on block
size, say 1,000 characters per block, to achieve configur-
ation and/or device independence.

(c) Although a file might possess a low hit ratio for its most
frequent updates, it still needs to be totally processed from
time to time (if only for dumping purposes as noted
above). This sequential processing prefers large block size,
subject to core storage availability, to avoid excessive time
overheads with respect to rotational delays; Waters (1971)
develops an algorithm for this case. This imbalance
between small block size for low hit ratio updates and
large block size for high hit ratio updates is usually
resolved by choosing some intermediate block size.

Thus, since records are usually grouped into blocks, unrequired
records will be accessed; further, if

Hit ratio > ^Number of records in block

then the vast majority of records will be accessed anyway.
2. Track hit ratio is often more significant than record hit

ratio for timing purposes. For example, if the majority of
tracks are hit and each hit track contains more than two
hit records, then sequential processing is often faster than
skip-sequential processing (particularly if block size is the
maximum of track size); this is largely due to savings in
rotational delays. These conditions can apply even when
the record hit ratio is low.

3. Often, any time saved by skip sequential processing is
insignificant for small to medium-sized files; for example,
sequentially accessing all blocks of a file held on an IBM
2311 exchangeable disc pack could take as little time as 1
minute (particularly if block size is the maximum of track
size).

4. Skip sequential processing infers single-buffering the file
which, in turn, infers a loss of simultaneity between input,
processing and output functions. Double-buffering a
sequentially processed file can achieve this simultaneity
which again narrows the time gap between the two process-
ing modes. Occasionally, multiple-buffering a sequentially
processed file can virtually eliminate the overhead transfer
time of inactive records if the processing time of active
records is sufficiently high.

5. If the low hit ratio situation is such that all hit records
form an isolatable hit group then processing time can be
saved by extracting this hit group into a separate file which
is processed sequentially. This technique can also apply
when a minority of hit records are outside the hit group if
less frequent updating of these records is acceptable.

6. The previous five points have demonstrated that even if
hit ratio is low there are many cases where sequential
processing is preferable. Conversely, if hit ratio is high
then it might well be preferable to process the file skip
sequentially; for instance, if skip-sequential processing
requires less secondary storage capacity.

If hit ratio is low update the file randomly, otherwise sequentially

Volume 15 Number 1

This version suggests that the file is to be assigned to a direct
access device; the choice is apparently between randomly
updating hit records in situ and updating the entire file. This
rule often fails because:

1. Random processing infers the entire file be on-line to the
central processing unit; further, if fast restart recovery
procedures are necessary, then incremental dumping of
original file records can be necessary which demands further
secondary storage. These two requirements often cannot be
met due to limited on-line storage capacity.

2. Splitting the file into hit and non-hit (or infrequently hit)
sections and processing sequentially, as above, might be
justifiable; particularly if fan in/out ratios are high which
causes multiple accesses to the same records when randomly
processing.

3. These previous two points indicate that sequential process-
ing is again often preferable for low hit ratio situations.
Conversely, random processing might be used in a high hit
ratio situation; for instance, if messages cause a high degree
of interaction between separate files then one-shot pro-
cessing might be required whereby a batch of messages
update one file sequentially and remaining files randomly.

Finally, the two rules considered above lead to a comparison
between skip sequential and random processing; an extra
consideration is the time to sort messages to the file sequence
compared with the seek time incurred by random processing.
Often, seek time exceeds sort time in which case skip sequential
processing might be preferable; even some quick response
systems sort message queues to file sequence for this reason.

If hit ratio is low use indexed sequential file organisation, other-
wise sequential
This version suggests that the file is to be assigned to a direct
access device and confuses the distinction between file access
method and file processing mode. The above comments have
discussed the choice of processing mode and the following
points complete the criticism of this rule:

1. If the file has a severe point overflow characteristic then
indexed sequential organisation could cause high inefficien-
cies when accessing the file. Thus, whatever the hit ratio,
sequential, indexed random or algorithmic organisation
would probably be chosen.

2. If the file is highly volatile then similar inefficiencies might
result from indexed sequential organisation. Whatever the
hit ratio, another organisation would probably be chosen.

3. If the hit ratio is low and record keys are dense (i.e. relatively
few values of the range are unassigned), then the simplest
algorithm (self-indexing) might be preferable to indexed
sequential organisation.

4. On the other hand, if the hit ratio is high then indexed
sequential organisation could be chosen to support a future
quick response requirement.

If hit ratio is low use disc, otherwise magnetic tape
This version of the rule is the most general (other than replacing
'disc' by 'direct access device') and embodies confusion between
file organisation methods, file processing methods and devices;
the first two decisions have been discussed above, therefore it
merely remains to compare disc and tape for sequential pro-
cessing purposes, as follows:

1. Discs are faster than most tapes (other than high-speed
varieties) when sequentially processing; thus, a tight time
requirement (e.g. fast turnaround or fit heavy existing
computer workload) might favour discs.

2. Sequentially processing discs might require fewer devices
than a similar tape system as many files can be assigned to a

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/1/418287 by guest on 19 April 2024



disc; further, the 'split cylinder' technique can be used to
reduce time-consuming seeks in this case. For example, a
two-disc configuration might match the throughput of a
five-tape configuration (but possibly might still be the more
expensive of the two).

3. Even sequential disc files have the flexibility of direct access
when required, if only by the 'binary chop' technique; this
facility might save passes of the file. For example, amend-
ments to record keys can require that the file be resequenced
in the current run; a tape file will require an extra pass to
achieve this, whereas the direct access facility can be used to
avoid this for the disc version.

4. There are many more arguments that favour disc sequential
processing but, on the other hand, tape sequential process-
ing often (but not always) proves to be more economical.
Generally, a costed saving in computer run time must be
weighed against increased hardware and stationery costs.

Conclusion
The rules of thumb have been disproved. A methodology of
computer systems design must necessarily commence with
careful consideration of the objectives and continue through an
iterative, decision-making procedure which attempts to meet
these objectives; the CAM project is developing such a method-
ology. It appears doubtful that any short-cuts can justifiably
be taken to achieve an efficient design other than stopping the
design procedure when an acceptable solution has been
achieved.
Finally, the author wishes to acknowledge the assistance of

his colleagues at LSE, particularly Mr. F. F. Land and Dr. A.
H. Land of the Statistics, Mathematics, Computing and Oper-
ational Research Department. The author would be pleased to
discuss the details of this paper with any interested organis-
ation, particularly in relation to specific computer systems
design problems.

References

DANIELS, A., and YEATES, D. (1969). Basic Training in Systems Analysis, London: Pitman (for National Computing Centre).
LOSTY, P. A. (1969). The Effective Use of Computers in Business, London: Cassell.
MARTIN, J. (1967). Design of Real-Time Computer Systems, New Jersey: Prentice-Hall.
WATERS, S. J. (1970). Physical Data Structure. Paper 6 of Proceedings of BCS Conference on Data Organisation.
WATERS, S. J. (1971). Blocking Sequentially Processed Magnetic Files, The Computer Journal, Vol. 14, pp. 109-112.

Correspondence
To the Editor
The Computer Journal

Sir,
High level languages are unnecessarily complex for the inexperienced
user, D. G. Evershed and G. E. Rippon say in a paper in Vol. 14,
No. 1,1971 of this Journal. The authors of the paper discuss a number
of modifications to FORTRAN, ALGOL and other high level
languages. The goal of most of the suggested modifications is to
make it easier to write programs which are acceptable to the com-
piler. Many of the suggestions made by the authors are very valuable.
However, the authors do not seem to be aware of a basic conflict
underlying some of their suggestions.
The basic conflict is the following: The errors in a computer

program can be divided into two categories:
1. Language errors, which can be detected by the compiler.
2. Logical errors, which can only be detected by erroneous results

during the execution.
The second category, the logical errors, are much more troublesome

than the language errors. The reason for this is that the compiler
gives a good and useful diagnostic for most language errors, which
makes it very simple for the programmer to correct his errors. For
logical errors, on the other hand, the process of finding and correct-
ing them is often much harder. There is even a large risk that logical
errors are not discovered until production use of the program has
begun. Sometimes, logical errors are not discovered at all, which
means that the results of the runsof the program maybe dangerously
false.

Because of this, it is much more important to design a computer
system which gives few logical errors than to design a system which
gives few language errors.
In many cases, a programming language construct can be designed

either to give few language errors or to give few logical errors. The
reason for this is that the language can be designed in such a way that
as many common logical errors as possible will also cause language
errors. If a programming language is designed in this way, then the

compiler has much larger possibilities to help the programmer avoid
logical errors.
A very simple example; the following ALGOL program contains an

error:
integer abcde;

abcde : = abode + 1;

The intention of the programmer was to increase abcde by 1.
However, by mistake, he instead wrote abode on the right hand side.
This may cause a logical error which is very difficult to discover, if
the sequence above was written in FORTRAN. However, in
ALGOL, a language error occurs: abode is an undeclared variable.
Thus, the compiler can detect the programming error in ALGOL
but not in FORTRAN.
A second example; the following construct is allowed in both

ALGOL 60 and FORTRAN but not in ALGOL 68:

real a; integer i;

/ := a;
The difficulty with this statement is that real variables can be

converted into integers in many different ways. You can make a
correct rounding (using different ways of rounding) or you can take
the nearest lower integer, either with sign (as the ALGOL entier
function) or without sign (as the FORTRAN int function). In fact,
the program above will be executed in one of these ways in ALGOL
60 and in another way in FORTRAN. A very common programming
error is to assume one conversion when the real conversion is another
than the one assumed. This error cannot occur in ALGOL 68.
A third, more complex example, is the handling of pointer variables

in various languages. If these pointer variables are typedeclared and
typechecked (like in ALGOL 68 and in Simula 67) then the risk of
undetected logical errors is much smaller than without such checking
(like in PL/1 or in SIMSCRIPT). Also, a garbage collector (like in
LISP, SNOBOL, ALGOL 68, SIMULA 67) gives smaller risk of
programming errors than explicit deallocation of list structure
records (which is done in PL/1 and SIMSCRIPT).

(Continued on page 36)

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/1/418287 by guest on 19 April 2024


