can be addressed in the same way as a simple variable. A short
address length may preclude some array access optimisation,
for instance if ‘a’ is a global array of fixed size a[200] could be
accessed by a single instruction provided the address field was
large enough. In fact the B5500 does not allow array accessing
optimisation because the storage protection system depends
upon access via the array word (descriptor). The optimisation
produced by the ALCOR compilers (Grau, 1967), could be
done on a machine with a short address length, but not the
B5500.

Array bound checking is an area where special hardware can
be used to great advantage. Unfortunately the hardware on the
B5500 does not deal with the general value of the lower bound,
so that explicit code must be generated by the compiler to
subtract the value of this lower bound if it is non-zero. Options
to do bound checking on other machines tend to be very
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Correspondence

To the Editor
The Computer Journal

Sir,
Suggested Extension to FORTRAN IV

When endeavouring to translate an ALGOL program to FORTRAN
recently, T came across a statement of the type:
for I = 1 step 1 until 10, 15, 20 step 10 until 100, I + 100
while (B A (4 < C) do
A statement of this type obviously cannot be translated into
FORTRAN without a great deal of complication.

On the other hand, it would seem a logical extension to FORTRAN
to allow DO loops of an alternative type, of the general form as
follows (or a similar form):

DO n I = [nl, n2/n3[nd, n5, n6/I + (integer variable or
expression), (Boolean variable or expression)/

12

With this, the ALGOL expression above would become, in Extended
FORTRAN:

DO r1 = /1,10/15/20, 100, 10/ + 100, (B. OR. (A.LE.C))/

The usual form of the DO loop would, of course, be retained.
Parsing of the above would be distinguished firstly by the slash
following the equals. The items between the slashes would constitute
a ‘DO’ list element, similar to the for list element in ALGOL.

A further improvement might be to allow the use of negative and/or
real stepping values in the suggested form, which would increase the
power of FORTRAN considerably.

Yours faithfully,
A.J. FINN
‘Aeschi’
Salthaugh Road
Keyingham
Hull HU12 9RT
11 October 1971
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