can be addressed in the same way as a simple variable. A short
address length may preclude some array access optimisation,
for instance if ‘a’ is a global array of fixed size a[200] could be
accessed by a single instruction provided the address field was
large enough. In fact the B5500 does not allow array accessing
optimisation because the storage protection system depends
upon access via the array word (descriptor). The optimisation
produced by the ALCOR compilers (Grau, 1967), could be
done on a machine with a short address length, but not the
B5500.

Array bound checking is an area where special hardware can
be used to great advantage. Unfortunately the hardware on the
B5500 does not deal with the general value of the lower bound,
so that explicit code must be generated by the compiler to
subtract the value of this lower bound if it is non-zero. Options
to do bound checking on other machines tend to be very

References

Burroughs B5500 Extended ALGOL Language Manual, 1966.
GRAU, A. A, HiLL, U., and LANGMAACK, H. (1967).

expensive in processor time. The 1108, although having no
built-in hardware for array accessing, has a convenient instruc-
tion for bound checking. With this instruction, a single test
can be made to see if the operand lies within the range
defined by two registers.

Apart from the production of compact code from ALGOL 60,
it is clear that in many scientific fields non-conventional
machines can have other substantial advantages. Array bound
checking has already been mentioned, but other examples lie
outside the scope of this paper, for instance distinction between
data and program and the ability to share the available core
store between processes. The majority of these advantages are
in the field of operating system design, and so are not considered
here. Such advantages are likely to have a substantial effect
upon the performance of the compiling system itself, and the
easy way in which such systems can be developed.

Translation of ALGOL 60, Berlin; Springer.

Hawkins, E. N., and HuxtasLg, D. H. R. (1963). A multipass translation scheme for ALGOL 60, Annual review in Automatic Programming,

Oxford; Pergamon Press.
HEINHOLD, J., and BAUER, F. L. (Editor). (1962).

Fachbegriffe der Programmierungstechnik, Ansgearbeitet vom Fachausschutz Program-

mieren der Gesellschaft fiir Angewandte Mathematik und Mechanik (GAMM), 2 Anfl. Munchen, Oldenbourg-Verlag.

INGERMANN, P. Z. (1961).

Vol. 4, No. 1, pp. 55-58.
KNUTH, D. E. (1964).
RANDELL, B., and RusseLL, L. J. (1964).
ScoweN, R. S. (1965).
WICHMANN, B. A. (1969).
WICHMANN, B. A. (1970).

Thunks—A way of compiling procedure statements with some comments on procedure declarations. CACM,

Man or boy? Algol Bulletin No. 17, page 7, Mathematische Centrum, Amsterdam.

ALGOL 60 Implementation. APIC Studies in Data Processing No. 5, London; Academic Press.
Quickersort, Algorithm 271, CACM, Vol. 8, No. 11, page 669.

A comparison of ALGOL 60 execution speeds. National Physical Laboratory, CCU 3.

Some statistics from ALGOL programs. National Physical Laboratory, CCU 11.

WICHMANN, B. A. (1971). The performance of some ALGOL systems. To appear in the proceedings of the IFIP congress 1971.

Correspondence

To the Editor
The Computer Journal

Sir,
Suggested Extension to FORTRAN IV

When endeavouring to translate an ALGOL program to FORTRAN
recently, T came across a statement of the type:
for I = 1 step 1 until 10, 15, 20 step 10 until 100, I + 100
while (B A (4 < C) do
A statement of this type obviously cannot be translated into
FORTRAN without a great deal of complication.

On the other hand, it would seem a logical extension to FORTRAN
to allow DO loops of an alternative type, of the general form as
follows (or a similar form):

DO n I = [nl, n2/n3[nd, n5, n6/I + (integer variable or
expression), (Boolean variable or expression)/

12

With this, the ALGOL expression above would become, in Extended
FORTRAN:

DO r1 = /1,10/15/20, 100, 10/ + 100, (B. OR. (A.LE.C))/

The usual form of the DO loop would, of course, be retained.
Parsing of the above would be distinguished firstly by the slash
following the equals. The items between the slashes would constitute
a ‘DO’ list element, similar to the for list element in ALGOL.

A further improvement might be to allow the use of negative and/or
real stepping values in the suggested form, which would increase the
power of FORTRAN considerably.

Yours faithfully,
A.J. FINN
‘Aeschi’
Salthaugh Road
Keyingham
Hull HU12 9RT
11 October 1971

The Computer Journal

20z UoJEIN 0Z U0 158NnB AQ G628 1L F/Z1/1/G L/BI0IHE/|UlW0D/W0o" dNoDlWepeDE//:SdjY WOy Papeojumoq



